Citation: | ZHAO Linghao,SUN Dongyang,HU Mingyue,et al. Simultaneous Determination of U-Pb Age and Trace Elements of Zircon by Laser Ablation Sector Field Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis,2024,43(1):47−62. DOI: 10.15898/j.ykcs.202309110151 |
Laser ablation sector field inductively coupled plasma-mass spectrometry (LA-SF-ICP-MS) is widely applied in U-Pb dating of zircon due to its remarkable sensitivity. However, the utilization of a magnetic sector mass analyzer imposes constraints on its scanning speeds, potentially affecting the concurrent acquisition of U-Pb isotopes and other trace elements. Here a method for simultaneous zircon U-Pb dating and key trace elements quantifying by LA-SF-ICP-MS were developed. Seven zircon U-Pb standard samples were measured to assess the method's feasibility. Experimental data indicate that simultaneous collection of U-Pb isotopes and other trace elements may decrease signal stability, particularly for low-content isotopes like 207Pb, which in turn leads to an increased age uncertainty and dispersion for single analyses. However, the accuracy of the concordance age and weighted mean 206Pb/238U age of each sample, and the statistical results of all data points, are not affected significantly. Compared to TIMS ages, the discordance in these ages across all samples remains below 1.0% and 0.7%, respectively, meeting the requirements of U-Pb geological dating. Furthermore, the determination of key trace elements in zircon samples shows relative errors to recommended values of less than 10%. LA-SF-ICP-MS can accurately determine both zircon U-Pb ages and trace element contents simultaneously. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202309110151.
[1] |
Engi M. Petrochronology based on REE-minerals: Monazite, allanite, xenotime, apatite[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 365−418. doi: 10.2138/rmg.2017.83.12
|
[2] |
赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753.
Zhao L H, Zhan X C, Zeng L S, et al. Direct calibration method for LA-HR-ICP-MS apatite U-Pb dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744−753.
|
[3] |
Chew D M, Spikings R A. Apatite U-Pb thermochronology: A review[J]. Minerals, 2021, 11(10): 1095−1116. doi: 10.3390/min11101095
|
[4] |
赵令浩, 曾令森, 詹秀春, 等. 榍石LA-SF-ICP-MS U-Pb定年及对结晶和封闭温度的指示[J]. 岩石学报, 2020, 36(10): 2983−2994. doi: 10.18654/1000-0569/2020.10.04
Zhao L H, Zeng L S, Zhan X C, et al. In situ U-Pb dating of titanite by LA-SF-ICP-MS and insights into titanite crystallization and closure temperature[J]. Acta Petrologica Sinica, 2020, 36(10): 2983−2994. doi: 10.18654/1000-0569/2020.10.04
|
[5] |
Luo T, Zhao H, Zhang W, et al. Non-matrix-matched analysis of U-Th-Pb geochronology of bastnäsite by laser ablation inductively coupled plasma mass spectrometry[J]. Science China: Earth Sciences, 2021, 64(4): 667−676. doi: 10.1007/s11430-020-9715-1
|
[6] |
Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27−62. doi: 10.2113/0530027
|
[7] |
Toscano M, Pascual E, Nesbitt R W, et al. Geochemical discrimination of hydrothermal and igneous zircon in the Iberian Pyrite Belt, Spain[J]. Ore Geology Reviews, 2014, 56: 301−311. doi: 10.1016/j.oregeorev.2013.06.007
|
[8] |
Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1-2): 123−138. doi: 10.1016/S0009-2541(01)00355-2
|
[9] |
Pyle J, Spear F. Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions[J]. American Mineralogist, 2003,88(4): 708.
|
[10] |
Henrichs I A, Chew D M, O’Sullivan G J, et al. Trace element (Mn-Sr-Y-Th-REE) and U-Pb isotope systematics of metapelitic apatite during progressive greenschist- to amphibolite-facies barrovian metamorphism[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(8): 4103−4129. doi: 10.1029/2019GC008359
|
[11] |
O’Sullivan G, Chew D, Kenny G, et al. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 2020, 201: 103044. doi: 10.1016/j.earscirev.2019.103044
|
[12] |
Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723): 841−844. doi: 10.1126/science.1110873
|
[13] |
Hayden L A, Watson E B, Wark D A. A thermobarometer for sphene (titanite)[J]. Contributions to Mineralogy and Petrology, 2008, 155(4): 529−540. doi: 10.1007/s00410-007-0256-y
|
[14] |
Ballard J R, Palin J M, Campbell I H. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon: Application to porphyry copper deposits of Northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144(3): 347−364. doi: 10.1007/s00410-002-0402-5
|
[15] |
Zeng L, Asimow P D, Saleeby J B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source[J]. Geochimica et Cosmochimica Acta, 2005, 69(14): 3671−3682. doi: 10.1016/j.gca.2005.02.035
|
[16] |
Zeng L, Gao L E, Zhao L, et al. The role of titanite in shaping the geochemistry of amphibolite-derived melts[J]. Lithos, 2021, 402-403: 106312. doi: 10.1016/j.lithos.2021.106312
|
[17] |
赵令浩, 曾令森, 胡明月, 等. 金红石-榍石转变过程中元素地球化学行为——以雅鲁藏布江缝合带角闪岩为例[J]. 岩石学报, 2017, 33(8): 2494−2508.
Zhao L H, Zeng L S, Hu M Y, et al. Rutile to titanite trasformation in amphibolite and its geochemical consequences: A case study of the amphibolite from Yarlung Tsangpo suture zone[J]. Acta Petrologica Sinica, 2017, 33(8): 2494−2508.
|
[18] |
赵令浩, 曾令森, 高利娥, 等. 变基性岩部分熔融过程中榍石的微量元素效应: 以南迦巴瓦混合岩为例[J]. 岩石学报, 2020, 36(9): 2714−2728. doi: 10.18654/1000-0569/2020.09.07
Zhao L H, Zeng L S, Gao L E, et al. Role of titanite in the redistribution of key trace elements during partial melting of meta-mafic rocks: An example from Namche Barwa migmatite[J]. Acta Petrologica Sinica, 2020, 36(9): 2714−2728. doi: 10.18654/1000-0569/2020.09.07
|
[19] |
Zhao L, Zeng L, Gao L, et al. Rutile to titanite transformation in eclogites and its geochemical consequences: An example from the Sumdo Eclogite, Tibet[J]. Acta Geologica Sinica-English Edition, 2023, 97(1): 122−133. doi: 10.1111/1755-6724.14919
|
[20] |
Engi M, Lanari P, Kohn M. Significant ages—An introduction to petrochronology[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 1−12.
|
[21] |
Wei Q D, Yang M, Romer R L, et al. In situ U-Pb geochronology of vesuvianite by LA-SF-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(1): 69−81. doi: 10.1039/D1JA00303H
|
[22] |
Seman S, Stockli D F, McLean N M. U-Pb geochronology of grossular-andradite garnet[J]. Chemical Geology, 2017, 460: 106−116. doi: 10.1016/j.chemgeo.2017.04.020
|
[23] |
Woodhead J, Petrus J. Exploring the advantages and limitations of in situ U-Pb carbonate geochronology using speleothems[J]. Geochronology, 2019, 1: 69−84. doi: 10.5194/gchron-1-69-2019
|
[24] |
Li D, Tan C, Miao F, et al. Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: Constraints from U-Pb dating of grossular-rich garnet[J]. Ore Geology Reviews, 2019, 107: 587−599. doi: 10.1016/j.oregeorev.2019.03.011
|
[25] |
Yang Y H, Wu F Y, Yang J H, et al. U-Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 231−239. doi: 10.1039/C7JA00315C
|
[26] |
Kylander-Clark A R C, Hacker B R, Cottle J M. Laser-ablation split-stream ICP petrochronology[J]. Chemical Geology, 2013, 345: 99−112. doi: 10.1016/j.chemgeo.2013.02.019
|
[27] |
Hattendorf B, Latkoczy C, Günther D. Peer reviewed: Laser ablation-ICPMS[J]. Analytical Chemistry, 2003, 75(15): 341A−347A. doi: 10.1021/ac031283r
|
[28] |
Kooijman E, Berndt J, Mezger K. U-Pb dating of zircon by laser ablation ICP-MS: Recent improvements and new insights[J]. European Journal of Mineralogy, 2012, 24: 5−21. doi: 10.1127/0935-1221/2012/0024-2170
|
[29] |
Wu S, Yang M, Yang Y, et al. Improved in situ zircon U-Pb dating at high spatial resolution (5-16μm) by laser ablation-single collector-sector field-ICP-MS using jet sample and X skimmer cones[J]. International Journal of Mass Spectrometry, 2020, 456: 116394. doi: 10.1016/j.ijms.2020.116394
|
[30] |
Roberts N M W, Rasbury E T, Parrish R R, et al. A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807−2814. doi: 10.1002/2016GC006784
|
[31] |
Latkoczy C, Günther D. Enhanced sensitivity in inductively coupled plasma sector field mass spectrometry for direct solid analysis using laser ablation (LA-ICP-SFMS)[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(10): 1264−1270. doi: 10.1039/B204532J
|
[32] |
Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1−23. doi: 10.1111/j.1751-908X.1995.tb00147.x
|
[33] |
Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211: 47−69. doi: 10.1016/j.chemgeo.2004.06.017
|
[34] |
Hu Z, Li X H, Luo T, et al. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U-Pb ages and Zr-O isotopes[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2715−2734. doi: 10.1039/D1JA00311A
|
[35] |
Huang C, Wang H, Yang J H, et al. SA01—A proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 103−123. doi: 10.1111/ggr.12307
|
[36] |
Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200(1): 155−170.
|
[37] |
Sláma J, Košler J, Condon D J, et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1−35. doi: 10.1016/j.chemgeo.2007.11.005
|
[38] |
李献华, 唐国强, 龚冰, 等. Qinghu(清湖)锆石: 一个新的U-Pb年龄和O, Hf同位素微区分析工作标样[J]. 科学通报, 2013, 58(20): 1954−1961. doi: 10.1360/csb2013-58-20-1954
Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analusis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(20): 1954−1961. doi: 10.1360/csb2013-58-20-1954
|
[39] |
Horn I, Günther D. The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: Implications for LA-ICP-MS[J]. Applied Surface Science, 2003, 207(1-4): 144−157. doi: 10.1016/S0169-4332(02)01324-7
|
[40] |
Hu Z, Gao S, Liu Y, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093−1101. doi: 10.1039/b804760j
|
[41] |
Griffin W, Powell W, Pearson N J, et al. GLITTER: Data reduction software for laser ablation ICP-MS[M]//Sylvester P. Laser ablation-ICP-MS in the Earth sciences. Mineralogical Association of Canada, 2008: 204-207.
|
[42] |
Ludwig K R. User’s manual for Isoplot 3.6: A geochronological toolkit for Microsoft excel[M]. Berkeley Geochronology Center, 2003.
|
[43] |
李献华, 柳小明, 刘勇胜, 等. LA-ICPMS锆石U-Pb定年的准确度: 多实验室对比分析[J]. 中国科学: 地球科学, 2015, 45(9): 1294-1303.
Li X H, Liu X M, Liu Y S, et al. Accuracy of LA-ICPMS zircon U-Pb age determination: An inter-laboratory comparison[J]. Science China: Earth Sciences, 2015, 58: 1722-1730.
|
[44] |
Horstwood M, Košler J, Gehrels G, et al. Community-derived standards for LA-ICP-MS U-(Th)-Pb geochronology—Uncertainty propagation, age interpretation and data reporting[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 311−332. doi: 10.1111/j.1751-908X.2016.00379.x
|
[45] |
Fisher C, Longerich H, Jackson S, et al. Data acquisition and calculation of U-Pb isotopic analyses using laser ablation (single collector) inductively coupled plasma mass sperometry[J]. Journal of Analytical Atomic Spectrometry, 2010, 25: 1905−1920. doi: 10.1039/c004955g
|
[46] |
Schoene B, Condon D, Morgan L, et al. Precision and accuracy in geochronology[J]. Ekements, 2013, 9: 19−24.
|
[47] |
Liu Y, Hu Z, Zong K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535−1546. doi: 10.1007/s11434-010-3052-4
|
[48] |
Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 9−39. doi: 10.1111/j.1751-908X.2004.tb01041.x
|
[49] |
Zhao K D, Jiang S Y, Ling H F, et al. Reliability of LA-ICP-MS U-Pb dating of zircons with high U concentrations: A case study from the U-bearing Douzhashan granite in South China[J]. Chemical Geology, 2014, 389: 110−121. doi: 10.1016/j.chemgeo.2014.09.018
|
[50] |
Marillo-Sialer E, Woodhead J, Hanchar J M, et al. An investigation of the laser-induced zircon ‘matrix effect’[J]. Chemical Geology, 2016, 438: 11−24. doi: 10.1016/j.chemgeo.2016.05.014
|
1. |
侯将,肖传晶,姚阔为. 快速检测技术在水环境污染物检测中的应用研究进展. 实验室检测. 2024(07): 30-33 .
![]() | |
2. |
高启宇. SPE-UFLC-MS法测定医药废水中8种四环素类抗生素. 化学工程师. 2024(08): 30-34 .
![]() | |
3. |
赵静,侯静云,高超,包虹艳. 无机及分析化学实验的综合应用教学研究. 保山学院学报. 2024(05): 103-108 .
![]() | |
4. |
王宝丽,张逸君,张宇航,陈艳. 生物炭基材料及其在电化学传感领域的应用. 岩矿测试. 2024(06): 967-981 .
![]() |