• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Li-jun, XUE Jing. Determination of 10 Trace Elements in Kaolin by ICP-MS with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(1): 22-31. DOI: 10.15898/j.cnki.11-2131/td.202103240042
Citation: LI Li-jun, XUE Jing. Determination of 10 Trace Elements in Kaolin by ICP-MS with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(1): 22-31. DOI: 10.15898/j.cnki.11-2131/td.202103240042

Determination of 10 Trace Elements in Kaolin by ICP-MS with Microwave Digestion

More Information
  • Received Date: March 23, 2021
  • Revised Date: June 02, 2021
  • Accepted Date: July 01, 2021
  • Published Date: January 27, 2022
  • HIGHLIGHTS
    (1) Significant microwave digestion was obtained by three-acid system, three-step temperature digestion mode.
    (2) Mass interference was eliminated using a standard solution and kinetic energy discrimination model, which improved the signal to noise ratio and reduced the method detection limit.
    (3) The evaluation uncertainty results showed the method was suitable for rapid batch determination of 10 elements in kaolin.
    BACKGROUNDAs an important aluminosilicate, trace element contents affect the performance of the product. The kaolin standard substances GBW03121, GBW03122, GBW03122a lack the recommended values of ten elements such as arsenic and antimony. Similar rock standard materials were used for monitoring the determination procedure, but the accurate results of the kaolin samples may be affected.
    OBJECTIVESTo establish a method for accurate determination of 10 trace elements in kaolin sample such as arsenic and antimony.
    METHODSWith microwave digestion technology, the nitrate-hydrofluoric acid system and nitrate-hydrofluoric-peroxide system were compared for the procedural heating conditions and dissolution time of microwave digestion. Interference factors of the inductively coupled plasma mass spectrum were also investigated.
    RESULTSThe detection limits of 10 elements were 0.01-0.09mg/kg, and measurement limits were 0.03-0.30mg/kg. The accuracy and precision of the method were directly verified by using rock reference materials. The element recovery was between 90.9% and 103.2%, and the relative standard deviation (RSD) was between 1.2% and 5.8%. At the same time, a comprehensive evaluation of the uncertainty of the method was carried out, and the method was proved to be accurate and reliable.
    CONCLUSIONSThis method has little acid dosage, shortens the measurement time, and reduces the damage on the environment and human, making it suitable for the batch analysis of 10 trace elements in kaolin samples. The method also provides a reference for the determination of the certified values of 10 trace elements such as As and Sb in the national standard material of kaolin.

  • Elanchezhiyan S D, Perumal K, Karthik R, et al. Magnetic kaolinite immobilized chitosan beads for the removal of Pb(Ⅱ) and Cd(Ⅱ) ions from an aqueous environment[J]. Carbohydrate Polymers, 2021, 261: 117892. doi: 10.1016/j.carbpol.2021.117892
    Khudyakov A Y, Vashchenko S V, Bayul K V, et al. Kaolin raw material briquetting for lump chamotte production[J]. Refractories and Industrial Ceramics, 2018, 59(4): 333-337. doi: 10.1007/s11148-018-0231-3
    Baioumy H, Farahat M, Arifin M H, et al. Hypogene kaolin deposits from felsic intrusive rocks (Peninsular Malaysia) with special reference to rare earth elements and stable isotopes geochemistry[J]. Geosciences Journal, 2021, doi: 10.1007/s12303-021-0003-9.
    Tohid N, Rahim M. Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran[J]. Turkish Journal of Earth Sciences, 2020, 29: 325-346. doi: 10.3906/yer-1906-7
    Mahmoud E A, Alberto L G, Djordje M, et al. Flow and tableting behaviors of some Egyptian kaolin powders as potential pharmaceutical excipients[J]. Minerals, 2019, 10: 23. https://www.mdpi.com/2075-163X/10/1/23
    郑智慷, 王家松, 张楠, 等. 微波消解-原子荧光光谱法测定岩石和土壤中锑[J]. 理化检验(化学分册), 2019, 55(8): 960-962. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201908020.htm

    Zheng Z K, Wang J S, Zhang N, et al. AFS determination of antimony in rock and soil with microwave digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(8): 960-962. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201908020.htm
    刘佩佩. 高效液相色谱-氢化物发生-原子荧光光谱联用技术测定土壤中砷的形态[D]. 武汉: 武汉科技大学, 2017.

    Liu P P. High performance liquid chromatography-hydride generation-atomic fluorescence spectrometry determine forms of arsenic in the soil[D]. Wuhan: Wuhan University of Technology, 2017.
    赵小学, 王芳, 刘丹, 等. 沸水浴消解-原子荧光光谱法测定土壤及水系沉积物中5种元素[J]. 理化检验(化学分册), 2020, 56(12): 1307-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202012014.htm

    Zhao X X, Wang F, Liu D, et al. AFS determination of 5 elements in soil and sediment with digestion of boiling water bath[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(12): 1307-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202012014.htm
    Terrance H, Phil L. 微波等离子体原子发射光谱法(MP-AES)测定地质样品中的常量和微量元素[J]. 中国无机分析化学, 2015, 5(1): 41-44. doi: 10.3969/j.issn.2095-1035.2015.01.012

    Terrance H, Phil L. Determination of major and minor elements contained in geological samples by microwave plasma-atomic emission spectrometer (MP-AES)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(1): 41-44. doi: 10.3969/j.issn.2095-1035.2015.01.012
    庞文品, 邓云江, 周小林. 电感耦合等离子体原子发射光谱法测定高岭土中7种微量组分[J]. 理化检验(化学分册), 2018, 54(5): 559-562. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201805019.htm

    Pang W P, Deng Y J, Zhou X L. ICP-AES determination of 7 trace components in kaolin clay[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(5): 559-562. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201805019.htm
    亢德华, 于媛君, 李颖, 等. 熔融制样-X射线荧光光谱法测定黑刚玉中6种组分[J]. 冶金分析, 2021, 41(2): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202102007.htm

    Kang D H, Yu Y J, Li Y, et al. Determination of six components in black corundum by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2021, 41(2): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202102007.htm
    袁静, 刘建坤, 郑荣华, 等. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析[J]. 岩矿测试, 2020, 39(6): 816-827. doi: 10.15898/j.cnki.11-2131/td.202001070007

    Yuan J, Liu J K, Zheng R H, et al. Studies on characteristics of high-energy polarized energy-dispersive X-ray fluorescence spectrometer and determination of major and trace elements in geological samples[J]. Rock and Mineral Analysis, 2020, 39(6): 816-827. doi: 10.15898/j.cnki.11-2131/td.202001070007
    黄杏娇, 张学友, 曹小勇, 等. 电感耦合等离子体质谱法测定高纯金中铝、砷、铋、铬、铁、铅、锑、硒、碲、铱痕量元素[J]. 中国无机分析化学, 2021, 11(1): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202101016.htm

    Huang X J, Zhang X Y, Cao X Y, et al. Determination of trace elements in high purity gold by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(1): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202101016.htm
    彭杨, 吴婧, 巢静波, 等. 土壤/沉积物中14种金属元素的ICP-MS准确测定方法[J]. 环境化学, 2017, 36(1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201701020.htm

    Peng Y, Wu J, Chao J B, et al. A method for the accurate determination of 14 metal elements in soils/sediments by ICP-MS[J]. Environmental Chemistry, 2017, 36(1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201701020.htm
    何永昱, 曹玉嫔, 覃东庙, 等. 磁免疫结合单颗粒模式ICP-MS同时测定乳腺癌病人血清中的CEA与CA15-3[J]. 分析测试学报, 2021, 40(6): 965-972. doi: 10.3969/j.issn.1004-4957.2021.06.025

    He Y Y, Cao Y P, Qin D M, et al. Detection of carcinoembryonic antigen and carbohydrate antigen 15-3 in human breast cancer serum using single particle mode ICP-MS coupled with magnetic immunoassay[J]. Journal of Instrumental Analysis, 2021, 40(6): 965-972. doi: 10.3969/j.issn.1004-4957.2021.06.025
    黄冬根, 周文斌, 刘雷, 等. ICP-MS法测定高岭土中微量成分及杂质元素的研究[J]. 光谱学与光谱分析, 2009, 29(2): 504-508. doi: 10.3964/j.issn.1000-0593(2009)02-0504-05

    Huang D G, Zhou W B, Liu L, et al. Study on the determination of trace composition and impurity elements in kaolin with ICP-MS[J]. Spectroscopy and Spectral Analysis, 2009, 29(2): 504-508. doi: 10.3964/j.issn.1000-0593(2009)02-0504-05
    罗勉, 王贵超, 罗芝雅, 等. ICP-OES对高岭土中多种杂质元素的标准加入测定法研究[J]. 湖南有色金属, 2020, 36(6): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ202006018.htm

    Luo M, Wang G C, Luo Z Y, et al. Research of standard addition method for various impurity elements in kaolin by ICP-OES[J]. Hunan Nonferrous Metals, 2020, 36(6): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ202006018.htm
    马生凤, 温宏利, 马新荣, 等. 四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J]. 矿物岩石地球化学通报, 2011, 30(1): 65-72. doi: 10.3969/j.issn.1007-2802.2011.01.010

    Ma S F, Wen H L, Ma X R, et al. Determination of 22 elements in iron, copper, zinc, and lead sulphide ores by ICP-AES with four acids digestion[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 65-72. doi: 10.3969/j.issn.1007-2802.2011.01.010
    张亚峰, 冯俊, 唐杰, 等. 基于五酸溶样体系-ICP-MS同时测定地质样品中稀土等46种元素[J]. 质谱学报, 2016, 37(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201602012.htm

    Zhang Y F, Feng J, Tang J, et al. Simultaneous determination of 46 species of micro, trace and rare earth elements by ICP-MS based on the system of five-acids dissolution of sample[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201602012.htm
    张晨芳, 李墨, 杨颖, 等. 密闭压力酸溶电感耦合等离子体质谱法测定岩浆岩中稀有元素[J]. 分析科学学报, 2018, 34(6): 801-805. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201806018.htm

    Zhang C F, Li M, Yang Y, et al. Quantification of rare elements in magmatic rocks by inductively coupled plasma-mass spectrometry after pressurized acid digestion[J]. Journal of Analytical Science, 2018, 34(6): 801-805. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201806018.htm
    王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085

    Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085
    王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

    Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043
    王佩佩, 李肖, 宋伟娇. 微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J]. 分析测试学报, 2016, 35(2): 235-240. doi: 10.3969/j.issn.1004-4957.2016.02.017

    Wang P P, Li X, Song W J. Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J]. Journal of Instrumental Analysis, 2016, 35(2): 235-240. doi: 10.3969/j.issn.1004-4957.2016.02.017
    王金砖, 张玉洁, 伏荣进, 等. 校准曲线和观测方式对电感耦合等离子体原子发射光谱法测定不锈钢中镍、铬和锰的影响[J]. 冶金分析, 2015, 35(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201501008.htm

    Wang J Z, Zhang Y J, Fu R J, et al. Effect of calibration curve and observation way on the determination of nickel, chromium and manganese in stainless steel by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201501008.htm
    荀颖怡. 不同熔(溶)矿方法测定水系沉积物中稀土元素的研究与比较分析[D]. 长春: 吉林大学, 2014.

    Xun Y Y. Comparative analysis of the REEs measurement using different melting (dissolved) methods in stream sediment[D]. Changchun: Jilin University, 2014.
    吴佳伦, 罗霜, 李思思, 等. 微波消解/石墨消解-ICP-MS测定土壤中的多种重金属[J]. 中国测试, 2021, 47(5): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202105010.htm

    Wu J L, Luo X, Li S S, et al. Microwave digestion/graphite digestion-ICP-MS determination of multiple heavy metals in soil[J]. China Measurement & Test, 2021, 47(5): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202105010.htm
    张祎玮, 蒋俊平, 李浩, 等. 微波消解-电感耦合等离子体质谱法测定土壤中稀土元素条件优化[J]. 岩石矿物学杂志, 2021, 40(3): 605-613. doi: 10.3969/j.issn.1000-6524.2021.03.014

    Zhang Y W, Jiang J P, Li H, et al. Optimization of microwave digestion inductively coupled plasma spectrometry for determination of rare earth elements in soil[J]. Acta Petrologica et Mineralogica, 2021, 40(3): 605-613. doi: 10.3969/j.issn.1000-6524.2021.03.014
    《岩石矿物分析》编委会. 岩石矿物分析(第四版第一分册)[M]. 北京: 地质出版社, 2011.

    The editorial committee of 《Rock and Mineral Analysis》. Rock and mineral analysis (The fourth edition: Vol. Ⅰ)[M]. Beijing: Geological Publishing House, 2011.
    胡圣虹, 林守麟, 刘勇, 等. 等离子体质谱法测定地质样品中痕量稀土元素的基体效应及多原子离子干扰的校正研究[J]. 高等学校化学学报, 2000, 21(3): 368-372. doi: 10.3321/j.issn:0251-0790.2000.03.009

    Hu S H, Lin S L, Liu Y, et al. Studies on the calibration of matrix effects and polyatomic ion for rare earth elements in geochemical samples by ICP-MS[J]. Chemical Journal of Chinese Universities, 2000, 21(3): 368-372. doi: 10.3321/j.issn:0251-0790.2000.03.009
    徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131

    Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131
    赵志飞, 任小荣, 李策, 等. 氧气反应模式-电感耦合等离子体串联质谱法测定土壤中的镉[J]. 岩矿测试, 2021, 40(1): 95-102. doi: 10.15898/j.cnki.11-2131/td.202003150034

    Zhao Z F, Ren X R, Li C, et al. Determination of cadmium in soil samples by ICP-MS/MS using oxygen reaction mode[J]. Rock and Mineral Analysis, 2021, 40(1): 95-102. doi: 10.15898/j.cnki.11-2131/td.202003150034
    李诚, 任利锋, 张泽华. 熔融法-X射线荧光光谱测定金红石矿石中18种主次量元素[J]. 环境化学, 2021, 40(5): 1623-1627. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202105034.htm

    Li C, Ren L F, Zhang Z H. Determination of 18 elements in nutile ore by XRF of fusion sample preparation technique[J]. Environmental Chemistry, 2021, 40(5): 1623-1627. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202105034.htm
    Gazulla M F, Rodrigo S, Vicente M, et al. Methodology for the determination of minor and trace elements in petroleum cokes by wavelength-dispersive X-ray fluorescence (WD-XRF)[J]. X-Ray Spectrometry, 2010, 39(5): 321-327. doi: 10.1002/xrs.1270
  • Related Articles

    [1]JI Ang. Development of X-ray Fluorescence Spectrometry in the 30 Years[J]. Rock and Mineral Analysis, 2012, 31(3): 383-398.
    [2]MA Tian-fang, LI Xiao-li, CHEN Yong-jun, DENG Zhen-pin, LI Guo-hui. Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 486-490.
    [3]LI Xiaoli, AN Shuqing, XU Tiemin, YANG Lifeng, LI Guohui, ZHU Jianfeng. Determination of Major and Minor Components in Coal Ash Samples by X-ray Fluorescence Spectrometry with Fused Bead Sample Preparation[J]. Rock and Mineral Analysis, 2009, 28(4): 385-387.
    [4]ZHANG Jian-bo, LIN Li, LIU Zai-mei. Determinations of Major and Minor Components in Titanium Concentrates by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2009, 28(2): 188-190.
    [5]Determination of 31 Components in Soil Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(6): 490-492.
    [6]Determination of Calcium Fluoride in Fluorspar by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(5): 419-420.
    [7]X-ray Fluorescence Spectrometric Analysis of Wollastonite[J]. Rock and Mineral Analysis, 2007, 26(3): 245-247.
    [8]Analysis of ZL205A Alloy by X-Ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2003, (4): 303-306.
    [9]Composition Analysis by X ray EDS and Magnetic Susceptibility Test of Gems and Jades[J]. Rock and Mineral Analysis, 1996, (3): 226-228.
    [10]X-Ray Fluorescence Spectrometry Integrated Analysis System[J]. Rock and Mineral Analysis, 1995, (1): 61-65.
  • Cited by

    Periodical cited type(7)

    1. 王玥,程然然,孟信刚. 气相色谱法测定新烟碱类农药研究进展. 现代农业科技. 2022(08): 89-94 .
    2. 李鸿,吕丽兰,杜国冬,甘志勇,李乾坤,陆覃昱,秦玉燕,吴静娜,时鹏涛,梁宏合. 水生蔬菜重金属污染及农药残留状况调查. 广西农学报. 2022(02): 18-24 .
    3. 秦佳琪,王焱,周同宁,张亚红,朱美霖. 不同地区枸杞中农药残留及膳食风险评估. 宁夏农林科技. 2022(03): 43-49+58 .
    4. 王彦祖,李白. 农药污染对我国生态环境的影响及对策分析. 皮革制作与环保科技. 2022(15): 77-79 .
    5. 陈永艳,吕佳,张岚,叶必雄,金宁. 在线固相萃取-超高效液相色谱-三重四极杆质谱法测定水源水和饮用水中107种典型农药及代谢产物. 色谱. 2022(12): 1064-1075 .
    6. 马健生,王卓,张泽宇,刘强,李丽君. 哈尔滨市地下水中29种抗生素分布特征研究. 岩矿测试. 2021(06): 944-953 . 本站查看
    7. 高冉,饶竹,郭晓辰. 地下水中91种农药多残留气相色谱-质谱分析方法研究及应用. 岩矿测试. 2021(06): 973-986 . 本站查看

    Other cited types(7)

Catalog

    Article views (641) PDF downloads (89) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return