• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WANG Yao, TIAN Kan, FENG Yue-peng, WANG Wei. Preparation and Certification of a Soil Total Organic Carbon Reference Material[J]. Rock and Mineral Analysis, 2021, 40(4): 593-602. DOI: 10.15898/j.cnki.11-2131/td.202101150009
Citation: WANG Yao, TIAN Kan, FENG Yue-peng, WANG Wei. Preparation and Certification of a Soil Total Organic Carbon Reference Material[J]. Rock and Mineral Analysis, 2021, 40(4): 593-602. DOI: 10.15898/j.cnki.11-2131/td.202101150009

Preparation and Certification of a Soil Total Organic Carbon Reference Material

More Information
  • Received Date: January 14, 2021
  • Revised Date: April 04, 2021
  • Accepted Date: May 03, 2021
  • Published Date: July 27, 2021
  • HIGHLIGHTS
    (1) A soil TOC reference material was developed using combustion oxidation-NDIR absorption method.
    (2) The uncertainty range met the quality control requirements of soil environmental monitoring.
    (3) The reference material supported the standard method "Soil—Determination of Organic Carbon—Combustion Oxidation Nondispersive Infrared Absorption Method "(HJ 695—2014)
    (4) The certified value was comparable to that of the overseas TOC reference materials.
    BACKGROUNDSoil environmental reference materials are important technical tools for the quality control of soil environmental monitoring. However, there is no self-developed environmental matrix reference material with total organic carbon (TOC). In particular, a soil standard sample supporting the combustion oxidation-non-dispersive infrared method has not been developed yet.
    OBJECTIVESTo develop a soil TOC reference material that can support standard methods for the determination of TOC in soil.
    METHODSAgricultural land soil with a high organic carbon content was selected as the raw material. The soil TOC reference materials were prepared after drying, grinding, mixing, bottling, and sterilization. Ten bottles of the reference materials were randomly sampled in layers, and their homogeneities were determined using combustion oxidation-non-dispersive infrared (NDIR) absorption method. The data were assessed using a single element analysis of variance. The reference material was stored at room temperature, and its stability was determined for 18 months. The test results were assessed using a linear fitting model. Eleven laboratories were organized as the cooperation to determine the TOC content of the prepared reference material using combustion oxidation-NDIR absorption method and potassium dichromate volumetric method. All measurement data were statistically analyzed to obtain the certified value and uncertainty of the reference material.
    RESULTSThe soil TOC reference material exhibited good homogeneity and stability. After evaluation, the F value was determined to be less than the critical value of F0.05 (9, 10). Additionally, the relative uncertainty (ubb) of the uniformity between bottles was 1.5%, and the sample exhibited good uniformity. The stability uncertainty was 1.2%, which indicated good stability. The certified value of the soil TOC reference material was determined to be (25.2±1.4)mg/g, using the grand mean of the collaborative determination results from multiple laboratories.
    CONCLUSIONSA soil TOC reference material was developed using combustion oxidation-NDIR absorption method. This reference material can be used to support the standard determination methods of TOC in soil and meets the requirements of the studies on TOC content in soil. Moreover, it is comparable with similar foreign samples.
  • Lefèvre C, Rekik F, Alcantara V. Soil organic carbon: The hidden potential[M]. Food and Agriculture Organization of the United Nations, 2017.
    Ramesh T, Bolan N S, Kirkham M B, et al. Soil organic carbon dynamics: Impact of land use changes and management practices: A review[J]. Advances in Agronomy, 2019, 156: 1-107. http://www.sciencedirect.com/science/article/pii/S0065211319300343
    Avramidis P, Nikolaou K, Bekiari V. Total organic carbon and total nitrogen in sediments and soils: A comparison of the wet oxidation-titration method with the combustion-infrared method[J]. Agriculture and Agricultural Science Procedia, 2015, 4: 425-430. doi: 10.1016/j.aaspro.2015.03.048
    冯锦, 崔东, 孙国军, 等. 新疆土壤有机碳与土壤理化性质的相关性[J]. 草业科学, 2017, 34(4): 692-697. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201704004.htm

    Feng J, Cui D, Sun G J, et al. Soil organic carbon in relation to soil physicochemical properties in Xinjiang[J]. Pratacultural Science, 2017, 34(4): 692-697. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201704004.htm
    蔡婷, 张枝焕, 王新伟, 等. 有机碳含量对土壤剖面中多环芳烃纵向迁移的影响[J]. 环境科学学报, 2019, 39(3): 880-890. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201903028.htm

    Cai T, Zhang Z H, Wang X W, et al. Effects of total content of organic carbon (TOC) on the vertical migration of polycyclic aromatic hydrocarbons (PAHs) in soil profiles[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 880-890. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201903028.htm
    邱灵佳, 黄国林, 苏玉, 等. 总有机碳测定方法研究进展[J]. 广东化工, 2015, 42(9): 107-108. doi: 10.3969/j.issn.1007-1865.2015.09.050

    Qiu L J, Huang G L, Su Y, et al. An overview on current measurement methods of total organic carbon[J]. Guangdong Chemical Industry, 2015, 42(9): 107-108. doi: 10.3969/j.issn.1007-1865.2015.09.050
    骆永明, 李广贺, 李发生, 等. 中国土壤环境管理支撑技术体系研究[M]. 北京: 科学出版社, 2015: 70-75.

    Luo Y M, Li G H, Li F S, et al. Research on supporting technology system of soil environment management in China[M]. Beijing: Science Press, 2015: 70-75.
    田洪海, 邢小茹, 宁远英, 等. 我国环境标准样品发展及应用[J]. 中国环境监测, 2019, 35(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201905003.htm

    Tian H H, Xing X R, Ning Y Y, et al. A review on the development and application of environmental reference materials[J]. Environmental Monitoring in China, 2019, 35(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201905003.htm
    李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm

    Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm
    陈宗定, 许春雪, 安子怡, 等. 土壤碳赋存形态及分析方法研究进展[J]. 岩矿测试, 2019, 38(2): 233-244. doi: 10.15898/j.cnki.11-2131/td.201709270148

    Chen Z D, Xu C X, An Z Y, et al. Research progress on fraction and analysis methods of soil carbon[J]. Rock and Mineral Analysis, 2019, 38(2): 233-244. doi: 10.15898/j.cnki.11-2131/td.201709270148
    夏龙龙, 颜晓元, 蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报, 2020, 39(4): 834-841. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004021.htm

    Xia L L, Yan X Y, Cai Z C. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China[J]. Journal of Agro-Environment Science, 2020, 39(4): 834-841. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004021.htm
    张秀, 赵永存, 谢恩泽, 等. 土壤有机碳时空变化研究进展与展望[J]. 农业环境科学学报, 2020, 39(4): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004004.htm

    Zhang X, Zhao Y C, Xie E Z, et al. Spatio-temporal change of soil organic carbon, progress and prospects[J]. Journal of Agro-Environment Science, 2020, 39(4): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004004.htm
    李雄, 张旭博, 孙楠, 等. 不同土地利用方式对土壤有机碳比例的影响[J]. 植物营养与肥料学报, 2018, 24(6): 1508-1519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201806013.htm

    Li X, Zhang X B, Sun N, et al. Impact of land uses on the ratio of soil organic and inorganic carbon[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1508-1519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201806013.htm
    Zhang H L, Rattan L, Zhao X, et al. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China[J]. Advances in Agronomy, 2014, 124: 1-36. http://www.sciencedirect.com/science/article/pii/B9780128001387000012
    蒋腊梅, 杨晓东, 杨建军, 等. 不同管理模式对干旱区草地土壤有机碳氮库的影响及其影响因素探究[J]. 草业学报, 2018, 27(12): 22-33. doi: 10.11686/cyxb2018062

    Jiang L M, Yang X D, Yang J J, et al. Effects of different management strategies on soil organic carbon and nitrogen pools in arid areas and their influencing factors[J]. Acta Prataculturae Sinica, 2018, 27(12): 22-33. doi: 10.11686/cyxb2018062
    周李磊, 朱华忠, 钟华平, 等. 新疆伊犁地区草地土壤全碳含量空间格局分析[J]. 草业科学, 2016, 33(10): 1963-1974. doi: 10.11829/j.issn.1001-0629.2015-0745

    Zhou L L, Zhu H Z, Zhong H P, et al. Spatial analysis of the soil total carbon in Ili, Xinjiang Uygur Autonomous Region, China[J]. Pratacultural Science, 2016, 33(10): 1963-1974. doi: 10.11829/j.issn.1001-0629.2015-0745
    李朝英, 郑路. 土壤颗粒粒径及进样量对TOC含量测定精度的影响[J]. 上海农业学报, 2018, 34(5): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201805003.htm

    Li Z Y, Zheng L. Effects of soil particle size and sample size on the determination accuracy of TOC content[J]. Acta Agriculturae Shanghai, 2018, 34(5): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201805003.htm
    田衎, 杨珺, 孙自杰, 等. 矿区污染场地土壤重金属元素分析标准样品的研制[J]. 岩矿测试, 2017, 36(1): 82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012

    Tian K, Yang J, Sun Z J, et al. Preparation of soil certified reference materials for heavy metals in contaminated sites[J]. Rock and Mineral Analysis, 2017, 36(1): 82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012
    生态环境部. 土壤环境监测分析方法[M]. 北京: 中国环境出版集团, 2019: 141-149.

    Ministry of Ecology and Environment. Soil environment monitoring and analysis method[M]. Beijing: China Environment Publishing Group, 2019: 141-149.
    Wang J P, Wang X J, Zhang J. Evaluating loss-on-ignition method for determinations of soil organic and inorganic carbon in arid soils of northwestern China[J]. Pedosphere, 2013, 23(5): 593-599. http://d.wanfangdata.com.cn/Periodical_trq-e201305004.aspx
    李国傲, 陈雪, 孙建伶, 等. 土壤有机碳含量测定方法评述及最新研究进展[J]. 江苏农业科学, 2017, 45(5): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201705006.htm

    Li G A, Chen X, Sun J L, et al. A review and the latest research progress of soil organic carbon content determination methods[J]. Jiangsu Agricultural Sciences, 2017, 45(5): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201705006.htm
    吴才武, 夏建新, 段峥嵘. 土壤有机质测定方法述评与展望[J]. 土壤, 2015, 47(3): 453-460. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201503004.htm

    Wu C W, Xia J X, Duan Z R. Review on detection methods of soil organic matter (SOM)[J]. Soils, 2015, 47(3): 453-460. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201503004.htm
    田云飞, 安俊芳, 陶士敏. 重铬酸钾氧化-分光光度法测定土壤有机碳含量的研究[J]. 现代化工, 2020, 40(4): 231-235. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202004057.htm

    Tian Y F, An J F, Tao S M. Determination of organic carbon content in soil by potassium dichromate oxidation-spectrophotometry[J]. Modern Chemical Industry, 2020, 40(4): 231-235. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202004057.htm
    杨丹, 潘建明. 总有机碳分析技术的研究现状及进展[J]. 浙江师范大学学报(自然科学版), 2008, 31(4): 441-444. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSZ200804021.htm

    Yang D, Pan J M. Progress and study on analytical approach of total organic carbon[J]. Journal of Zhejiang Normal University (Natural Science Edition), 2008, 31(4): 441-444. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSZ200804021.htm
    谢娟, 张心昱, 王秋凤, 等. 燃烧法与化学氧化法测定不同pH土壤有机碳之比较[J]. 土壤通报, 2013, 44(2): 333-337. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201302014.htm

    Xie J, Zhang X Y, Wang Q F, et al. Comparative determination of soil organic carbon with different pH using combustion method and chemical oxidation method[J]. Chinese Journal of Soil Science, 2013, 44(2): 333-337. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201302014.htm
    于艳梅, 刘小粉, 王艳丹, 等. 酸性土壤有机碳两种测定方法的比较[J]. 中国土壤与肥料, 2017(5): 152-156. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201705026.htm

    Yu Y M, Liu X F. Wang Y D, et al. Comparison of two methods for determining soil organic carbon in acid soil[J]. Soil and Fertilizer Sciences in China, 2017(5): 152-156. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201705026.htm
    唐伟祥, 孟凡乔, 张煜, 等. 不同土壤有机碳测定方法的比较[J]. 土壤, 2018, 50(3): 552-557. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201803016.htm

    Tang W X, Meng F Q, Zhang Y, et al. Method comparison for determining soil organic carbon[J]. Soils, 2018, 50(3): 552-557. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201803016.htm
    何海龙, 君珊, 张学宽. 总有机碳(TOC)分析仪测定土壤中TOC的研究[J]. 分析仪器, 2014(5): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201405013.htm

    He H L, Jun S, Zhang X K. Analysis of total organic carbon in soil by TOC analyzer[J]. Analytical Instrumentation, 2014(5): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201405013.htm
    李小涵, 王朝辉. 两种测定土壤有机碳方法的比较[J]. 分析仪器, 2009(5): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ200905024.htm

    Li X H, Wang Z H. Comparison of two soil organic carbon determination methods[J]. Analytical Instrumentation, 2009(5): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ200905024.htm
    Linsinger T P J, Pauwels J, van der Veen A M H, et al. Homogeneity and stability of reference materials[J]. Accredition and Quality Assurance, 2001, 6(1): 20-25. doi: 10.1007%2Fs007690000261
    吴庆标, 王效科, 郭然. 土壤有机碳稳定性及其影响因素[J]. 土壤通报, 2005, 36(5): 743-747. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200505025.htm

    Wu Q B, Wang X K, Guo R. Soil organic carbon stability and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(5): 743-747. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200505025.htm
    田衎, 周裕敏, 邢书才, 等. 土壤类标准样品的稳定性研究方法探讨[J]. 理化检验(化学分册), 2017, 53(2): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201702017.htm

    Tian K, Zhou Y M, Xing S C, et al. Discussion on the stability research methods of soil reference materials[J]. Physical and Chemical Test (Part B: Chemical Analysis), 2017, 53(2): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201702017.htm
    田衎, 王尧, 房丽萍, 等. 土壤中重金属可提取态(氯化钙法)分析质量控制样品的研制[J]. 中国环境监测, 2019, 35(6): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201906017.htm

    Tian K, Wang Y, Fang L P, et al. Preparation and certification of quality control sample for CaCl2-extractable heavy metals in agricultural soil[J]. Environmental Monitoring in China, 2019, 35(6): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201906017.htm
    田宗平, 彭君, 王干珍, 等. 石煤钒矿成分分析标准物质的研制[J]. 岩矿测试, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008

    Tian Z P, Peng J, Wang G Z, et al. Preparation of standard materials for composition analysis of stone coal vanadium ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008
    黄梓宸, 周瑾艳, 黄彦捷, 等. 水中总有机碳溶液标准物质的研制[J]. 食品安全质量检测学报, 2019, 10(11): 3530-3535. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201911053.htm

    Huang Z C, Zhou J Y, Huang Y J, et al. Development of total organic carbon reference materials in water solution[J]. Journal of Food Safety and Quality, 2019, 10(11): 3530-3535. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201911053.htm
  • Related Articles

    [1]CAI Weiting, SONG Junpeng, ZHANG Minghui, WANG Anli, RONG Wenna, LI Bei. Determination of Sulfur in Fly Ash by High Frequency Combustion Infrared Absorption Spectroscopy with Matrix Matching[J]. Rock and Mineral Analysis. DOI: 10.15898/j.ykcs.202412190263
    [2]YANG Rong, GU Tiexin, PAN Hanjiang, LIU Mei, ZHAO Kai. Redevelopment of Oolong Tea and Green Tea Component Analysis Reference Materials[J]. Rock and Mineral Analysis, 2023, 42(2): 420-431. DOI: 10.15898/j.cnki.11-2131/td.202202180025
    [3]FANG Pengda, ZHANG Lijuan, WANG Jiasong, WEI Shuang, XU Tiemin. Preparation of Perlite Reference Material for Compositional Analysis[J]. Rock and Mineral Analysis, 2023, 42(2): 411-419. DOI: 10.15898/j.cnki.11-2131/td.202103290045
    [4]AN Caixiu, LIU Shuhong, SHI Huiqing, YANG Lijuan, HE Yantao, CHEN Yang. An Infrared Standard Curve Method for Calculating the Total Amount of Petroleum in Environmental Samples[J]. Rock and Mineral Analysis, 2022, 41(5): 849-856. DOI: 10.15898/j.cnki.11-2131/td.202111040162
    [5]SHI Youchang, CHEN Guiren, ZHAO Mengsheng, LYU Zhenlong, YANG Jinguo. Determination of Sulfur in Different Types of Geochemical Samples by ICP-OES with Acid Dissolution and Combustion-Infrared Absorption Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(4): 663-672. DOI: 10.15898/j.cnki.11-2131/td.202108200104
    [6]ZHAO Xiu-feng, GAO Xiao-li, CAO Lei, CAO Jing-yang, LU Xin-cheng. Preparation of Certified Reference Materials for Soil Limit Water Content[J]. Rock and Mineral Analysis, 2021, 40(4): 583-592. DOI: 10.15898/j.cnki.11-2131/td.202008280119
    [7]TIAN Kan, HE Yan-tao, ZHANG Qin, GUO Wei-chen, ZHAO Ya-xian, YUE Ya-ping, YANG Yong. Discussion onthe Data Drift Correction Method in Homogeneity Assessment of Environmental Reference Materials[J]. Rock and Mineral Analysis, 2020, 39(3): 425-433. DOI: 10.15898/j.cnki.11-2131/td.201912040168
    [8]Yong ZHANG, Ji-min ZHANG, Li YANG, Li-chun ZHENG, Zuo-dong ZHANG, Rui LIU, Zheng YU. Determination of Carbon in Ni-Al Powder by the Pure Chemical Substance Calibration-high Frequency Combustion Infrared Absorption Method[J]. Rock and Mineral Analysis, 2014, 33(4): 523-527.
    [9]Xiao-song WANG, Xi CHEN, Xiao-qiang WANG, Sha-bai HE, Guang-yu YANG. Determination of High Content Sulfur in Molybdenum Ore and Nickel Ore Using High Frequency Combustion-Infrared Absorption Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(4): 581-585.
    [10]Geological Certified Reference Materials: A Review Since 1992[J]. Rock and Mineral Analysis, 2003, (3): 188-200.
  • Cited by

    Periodical cited type(1)

    1. 刘文刚,魏双,张晓伟,张健,周红英. 氨水共沉淀法在锶同位素分析中的应用. 分析化学. 2025(01): 115-123 .

    Other cited types(0)

Catalog

    Article views (2052) PDF downloads (37) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return