• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
CAI Weiting,SONG Junpeng,ZHANG Minghui,et al. Determination of Sulfur in Fly Ash by High Frequency Combustion Infrared Absorption Spectroscopy with Matrix Matching [J]. Rock and Mineral Analysis,2025,44(4):1−8. DOI: 10.15898/j.ykcs.202412190263
Citation: CAI Weiting,SONG Junpeng,ZHANG Minghui,et al. Determination of Sulfur in Fly Ash by High Frequency Combustion Infrared Absorption Spectroscopy with Matrix Matching [J]. Rock and Mineral Analysis,2025,44(4):1−8. DOI: 10.15898/j.ykcs.202412190263

Determination of Sulfur in Fly Ash by High Frequency Combustion Infrared Absorption Spectroscopy with Matrix Matching

More Information
  • Received Date: December 18, 2024
  • Revised Date: January 23, 2025
  • Accepted Date: January 28, 2025
  • Available Online: February 21, 2025
  • HIGHLIGHTS
    (1) In order to avoid matrix effect, and prepare the effective samples, the occurrence state of sulfur in fly ash was studied by SEM-EDS.
    (2) Calcium sulfate is added into the fly ash matrix to prepare calibration sample to avoid the deviation caused by the difference of the matrix.
    (3) The orthogonal experiment of 4 factors and 3 levels with the flux addition amount and the flux adding order as factors was designed to determine the best experimental scheme.

    Fly ash can be used as concrete admixture. If the sulfur content in fly ash is too high, the volume of concrete will change, resulting in expansion cracking and other problems. Therefore, accurate determination of sulfur content in fly ash is great significance for the fly ash application. The sulfur content in fly ash is determined by barium sulfate mass method, which has complicated process, complicated operation, strict requirements for personnel and operation. It was found that the sulfur in fly ash was mainly combined with calcium by SEM-EDS. In order to avoid the influence of matrix effect, a synthetic calibration sample was prepared by adding calcium sulfate to the matrix of fly ash sample. The sulfur content in fly ash was determined by high frequency combustion infrared absorption method. In order to explore the best experimental scheme, the orthogonal test with 4 factors and 3 levels was designed. The 4 factors were quality of flux (iron, tungsten, tin), and the adding order of flux and sample. The influence of analysis time, sample weight and other parameters on the determination of sulfur content was also investigated. The calibration curve equation is y=2194.4x+8.21, the correlation coefficient r=0.9998, the detection limit of the method is 0.00036% (mass fraction, the same below), and the limit of quantitation is 0.0012%. The relative standard deviation (RSD) of sulfur content in fly ash is 0.6%-2.1% and the results are consistent with those of barium sulfate mass method. Compared with barium sulfate mass method, this method is simple to operate and can rapidly and accurately determine sulfur content in actual fly ash sample.

  • [1]
    Guanghui L, Min L, Xin Z, et al. Hydrothermal Synthesis of Zeolites-Calcium Silicate Hydrate Composite from Coal Fly Ash with Co-Activation of Ca(OH)2-NaOH for Aqueous Heavy Metals Removal[J]. International Journal of Mining Science and Technology, 2022, 32(3): 563−573. doi: 10.1016/J.IJMST.2022.03.001
    [2]
    罗文斌, 许晔, 李中林, 等. Ca/Si 对复合胶凝材料力学性能的影响及复合凝胶材料的水化机理[J]. 有色金属(冶炼部分), 2025(1): 141−152. doi: 10.20237/j.issn.1007-7545.2025.01.018

    Luo W B, Xu Y, Li Z L, et al. Effect of Ca/Si on Mechanical Properties and Hydration Mechanism of Composite Cementitious Materials[J]. Nonferrous Metals (Extractive Metallurgy), 2025(1): 141−152. doi: 10.20237/j.issn.1007-7545.2025.01.018
    [3]
    李敏, 彭晓彤, 林晨. 粉煤灰制备免蒸压加气混凝土配合比试验研究[J/OL]. 济南大学学报(自然科学版)(2024-12-12) [2025-02-03]. https://doi.org/10.13349/j.cnki.jdxbn.20241211.001

    Li M, Peng X T, Lin C, et al. Experimental Research on Proportioning of Non-Aautoclaved Aerated Concrete Prepared by Using Fly Ash [J/OL]. Journal of University of Jinan (Science and Technology) (2024-12-12) [2025-02-03]. https://doi.org/10.13349/j.cnki.jdxbn.20241211.001
    [4]
    Wang X Y, Lv J Z , Yang J C, et al. Synergistic Effects of Ground Granulated Blast Furnace Slag and Circulating Fluidized Bed Fly Ash in Lime-Activated Cementitious Materials[J]. Case Studies in Construction Materials, 2025, 22: e04259−e04259. doi: 10.1016/J.CSCM.2025.E04259
    [5]
    王效渊, 张凯信, 雷钰, 等. 高硫粉煤灰-水泥气泡材料电化学阻抗特性的试验研究[J]. 混凝土, 2021(4): 82−86. doi: 10.3969/j.issn.1002-3550.2021.04.020

    Wang X Y, Zhang K X, Lei Y, et al. Experimental Study on Electrochemical Impedance Characteristics of Lightweight Materials with High Sulfur Fly Ash and Cement Bubbles[J]. Concrete, 2021(4): 82−86. doi: 10.3969/j.issn.1002-3550.2021.04.020
    [6]
    Chi M, Huang R. Effect of Circulating Fluidized Bed Combustion Ash on the Properties of Roller Compacted Concrete[J]. Cement & Concrete Composites, 2014, 45: 148−156. doi: 10.1016/j.cemconcomp.2013.10.001
    [7]
    李阳春, 庞雪飞. 硅烷偶联剂改性超细粉煤灰增强泡沫混凝土防水和隔热性能研究[J]. 塑料科技, 2024(12): 77−80. doi: 10.15925/j.cnki.issn1005-3360.2024.12.014

    Li Y C, Pang X F. Waterproof and Thermal Insulation Performance Study of Foam Concrete Reinforced by Ultrafine Fly Ash Modified by Silane Coupling Agent[J]. Plastics Science and Technology, 2024(12): 77−80. doi: 10.15925/j.cnki.issn1005-3360.2024.12.014
    [8]
    Carneiro G, Bier T, Waida S, et al. Treatment of Energy from Waste Plant Fly-Ash for Blast Furnace Slag Substitution as a Supplementary Cementitious Material[J]. Journal of Cleaner Production, 2025, 490: 144693. doi: 10.1016/J.JCLEPRO.2025.144693
    [9]
    武宏香, 刘东艳, 刘颖, 等. 红外光谱法测定煤灰中硫含量的研究[J]. 煤质技术, 2018(4): 23−26. doi: 10.3969/j.issn.1007-7677.2018.04.006

    Wu H X, Liu D Y, Liu Y, et al. Determination of Sulfur Content in Coal Using Infrared Spectroscopy[J]. Coal Quality Technology, 2018(4): 23−26. doi: 10.3969/j.issn.1007-7677.2018.04.006
    [10]
    耶曼, 李婧, 马怡飞, 等. 高频红外碳硫仪快速测定镍铅锌矿石中的硫含量[J]. 岩矿测试, 2022, 41(4): 680−687. doi: 10.15898/j.cnki.11-2131/td.202108270109

    Ye M, Li J, Ma Y F, et al. Rapid Determination of Sulfur in Nickel-Lead-Zinc Ore by High-Frequency Infrared Carbon and Sulfur Analyzer[J]. Rock and Mineral Analysis, 2022, 41(4): 680−687. doi: 10.15898/j.cnki.11-2131/td.202108270109
    [11]
    张高庆, 王录锋. 高频燃烧红外吸收法测定二硼化钛中硫[J]. 冶金分析, 2023, 43(10): 41−46. doi: 10.13228/j.boyuan.issn1000-7571.012115

    Zhang G Q, Wang L F. Determination of Sulfur in Titanium Diboride by High Frequency Combustion Infrared Absorption Method[J]. Metallurgical Analysis, 2023, 43(10): 41−46. doi: 10.13228/j.boyuan.issn1000-7571.012115
    [12]
    陈倩倩, 张毅, 张健豪, 等. 高频感应燃烧红外吸收光谱法测定碳化硼增强铝基复合材料中碳[J]. 中国无机分析化学, 2024, 14(11): 1576−1580. doi: 10.3969/j.issn.2095-1035.2024.11.014

    Chen Q Q, Zhang Y, Zhang J H, et al. Determination of Carbon in Boron Carbide Reinforced Aluminum Matrix Composites by High-Frequency Induction Combustion Infrared Absorption Spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(11): 1576−1580. doi: 10.3969/j.issn.2095-1035.2024.11.014
    [13]
    王林, 王楠. 高频燃烧红外吸收法测定铜铅锌多金属矿中的碳、硫[J]. 中国无机分析化学, 2024, 14(11): 1563−1568. doi: 10.3969/j.issn.2095-1035.2024.11.012

    Wang L, Wang N. Determination of Carbon and Sulfur in Copper-Lead-Zinc Polymetallic Ores by High Frequency Combustion Infrared Absorption Method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(11): 1563−1568. doi: 10.3969/j.issn.2095-1035.2024.11.012
    [14]
    王勇, 李子敬, 刘林, 等. 攀西地区钒钛磁铁矿中硫含量测定方法优化[J]. 岩矿测试, 2024, 43(3): 524−532. doi: 10.15898/j.ykcs.202306270081

    Wang Y, Li Z J, Liu L, et al. Optimization of Sulfur Determination in Vanadium-Titanium Magnetite Ore in the Panxi Area[J]. Rock and Mineral Analysis, 2024, 43(3): 524−532. doi: 10.15898/j.ykcs.202306270081
    [15]
    Yang S, Gu J, Qian B, et al. Facile Synthesis of Layered Spinel Ferrite from Fly Ash Waste as a Stable and Active Ketonisation Catalyst[J]. Chemical Engineering Journal, 2024, 502: 157797. doi: 10.1016/J.CEJ.2024.157797
    [16]
    李建红. 高频燃烧红外吸收法快速测定煤灰中三氧化硫研究[J]. 煤质技术, 2016, 5(3): 18−20. doi: 10.3969/j.issn.1007-7677.2016.03.007

    Li J H. Rapid Determination of Sulfur Trioxide in Coal Ash Using High Frequency Combustion Infrared Absorption Method[J]. Coal Quality Technology, 2016, 5(3): 18−20. doi: 10.3969/j.issn.1007-7677.2016.03.007
    [17]
    李华昌, 王东杰, 汤淑芳, 等. 基体稀释法控制RE xO y中REO及REX/REO标准样品的制备技术[J]. 稀有金属, 2024, 48(3): 448−456. doi: 10.13373/j.cnki.cjrm.XY22040016

    Li H C, Wang D J, Tang S F, et al. Preparation Technique for Reference Samples of REO and REX/REO in RE xO y Controlled by Matrix Dilution Method[J]. Chinese Journal of Rare Metals, 2024, 48(3): 448−456. doi: 10.13373/j.cnki.cjrm.XY22040016
    [18]
    游俊富, 孙希皎, 曹永明. 粉末样品中某些杂质元素的同位素稀释二次离子质谱定量分析方法的研究[J]. 质谱学报, 1992, 13(1): 40−43.

    You J F, Sun X J, Cao Y M. A Study on Quantitative Method for Analysis Some Impurities in Powder Samples with ID-SIMS[J]. Journal of Chinese Mass Spectrometry Society, 1992, 13(1): 40−43.
    [19]
    丁爱娟, 郑诗礼, 马淑花, 等. 循环流化床锅炉粉煤灰中硫的赋存状态研究[J]. 矿产综合利用, 2013(2): 58−62. doi: 10.3969/j.issn.1000-6532.2013.02.016

    Ding A J, Zheng S L, Ma S H, et al. Study on Occurrence of Sulfur in Fly Ash from Circulating Fluidized Bed Boiler[J]. Multipurpose Utilization of Mineral Resources, 2013(2): 58−62. doi: 10.3969/j.issn.1000-6532.2013.02.016
    [20]
    刘迪, 吴锁贞. 粉煤灰中硫形态的X射线荧光光谱法初探[J]. 常熟理工学院学报, 2006, 20(2): 94−101. doi: 10.16101/j.cnki.cn32-1749/z.2006.02.019

    Liu D, Wu S Z. The Introduction of Several X-ray Diffraction Techniques[J]. Journal of Changshu Institute of Technology, 2006, 20(2): 94−101. doi: 10.16101/j.cnki.cn32-1749/z.2006.02.019
    [21]
    肖超, 卢忠远, 徐迅, 等. 机械粉磨对固硫灰中 Ⅱ-CaSO4 晶体特性的影响[J]. 人工晶体学报, 2015, 44(5): 1277−1283. doi: 10.16553/j.cnki.issn1000-985x.2015.05.023

    Xiao C, Lu Z Y, Xu X, et al. Influence of Mechanical Grinding on Properties of Ⅱ-CaSO4 Crystal Residing in Circulating Fluidized Bed Combustion Fly Ashes[J]. Journal of Synthetic Crystals, 2015, 44(5): 1277−1283. doi: 10.16553/j.cnki.issn1000-985x.2015.05.023
    [22]
    郝慧聪, 杨帆, 张秀艳, 等. 高频燃烧红外吸收法测定氟化镨钕-氟化锂电解质中碳[J]. 冶金分析, 2024, 44(8): 53−58. doi: 10.13228/j.boyuan.issn1000-7571.012420

    Hao H C, Yang F, Zhang X Y, et al. Determination of Carbon in Praseodymium Neodymium Fluoride-Lithium Fluoride Electrolyte by High-Frequency Combustion Infrared Absorption Method[J]. Metallurgical Analysis, 2024, 44(8): 53−58. doi: 10.13228/j.boyuan.issn1000-7571.012420
    [23]
    殷艺丹, 李晖, 张健康, 等. 高频燃烧红外吸收光谱法测定高纯铝粉中碳含量[J]. 中国无机分析化学, 2021, 11(1): 68−72. doi: 10.3969/j.issn.2095-1035.2021.01.014

    Yin Y D, Li H, Zhang J K, et al. Determination of Carbon in High Purity Aluminum Powder by High-Frequency Combustion Infrared Absorption Spectro-metry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(1): 68−72. doi: 10.3969/j.issn.2095-1035.2021.01.014
    [24]
    常国梁, 刘攀, 张毅. 高频感应燃烧-红外吸收光谱法测定蒙乃尔镍铜合金中碳[J]. 冶金分析, 2020, 40(7): 16−21. doi: 10.13228/j.boyuan.issn1000-7571.010990

    Chang G L, Liu P, Zhang Y. Determination of Carbon in Monel Nickel-Copper Alloy by High Frequency Induction Combustion Infrared Absorption Spectroscopy[J]. Metallurgical Analysis, 2020, 40(7): 16−21. doi: 10.13228/j.boyuan.issn1000-7571.010990
    [25]
    张高庆, 王录锋. 高频燃烧红外吸收法测定钒钛高炉渣中硫[J]. 冶金分析, 2022, 42(4): 14−18. doi: 10.13228/j.boyuan.issn1000-7571.011603

    Zhang G Q, Wang L F. Determination of Sulfur in Vanadium-Titanium Bearing Slag by High Frequency Combustion Infrared Absorption Method[J]. Metallurgical Analysis, 2022, 42(4): 14−18. doi: 10.13228/j.boyuan.issn1000-7571.011603
    [26]
    冯丽丽, 宋飞, 张庆建, 等. 高频燃烧红外吸收光谱法测定铅精矿中的硫[J]. 中国无机分析化学, 2021, 11(6): 46−50. doi: 10.3969/j.issn.2095-1035.2021.06.008

    Feng L L, Song F, Zhang Q J, et al. Determination of Sulfur in Lead Concentrate by High Frequency Combustion Infrared Absorption Spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(6): 46−50. doi: 10.3969/j.issn.2095-1035.2021.06.008
    [27]
    刘林, 王勇. 高频燃烧红外吸收法测定攀西地区钛精矿中硫[J]. 冶金分析, 2024, 44(6): 74−80. doi: 10.13228/j.boyuan.issn1000-7571.012351

    Liu L, Wang Y. Determination of Sulfur in Titanium Concentrate from Panxi Area by High Frequency Combustion Infrared Absorption Method[J]. Metallurgical Analysis, 2024, 44(6): 74−80. doi: 10.13228/j.boyuan.issn1000-7571.012351
    [28]
    费发源, 马兴娟, 范志平, 等. 高频燃烧红外吸收光谱法测定一水硬铝石型高硫铝土矿中的硫[J]. 湿法冶金, 2022, 41(6): 558−561. doi: 10.13355/j.cnki.sfyj.2022.06.016

    Fei F Y, Ma X J, Fan Z P, et al. Determination of Sulfur in Diaspore Bauxite Containing Sulfur by High Frequency Combustion-Infrared Absorption Spectro-metry[J]. Hydrometallurgy of China, 2022, 41(6): 558−561. doi: 10.13355/j.cnki.sfyj.2022.06.016

Catalog

    Article views (8) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return