Citation: | FANG Pengda, ZHANG Lijuan, WANG Jiasong, WEI Shuang, XU Tiemin. Preparation of Perlite Reference Material for Compositional Analysis[J]. Rock and Mineral Analysis, 2023, 42(2): 411-419. DOI: 10.15898/j.cnki.11-2131/td.202103290045 |
Perlite is a vitreous rock formed by rapid cooling of volcanic eruptive acidic lava. It is a very important non-metallic mineral, because of its brittleness, light weight, rapid expansion on heating, and other excellent characteristics, and is widely used in construction, water treatment, agriculture and other fields. However, according to the International Database for Certified Reference Materials (COMAR), there is no reference material for perlite composition analysis at home and abroad. So, in order to meet the research needs of perlite, it is necessary to develop one.
To develop a reference material for composition analysis of perlite. The reference material can basically cover the chemical composition needed by the market.
Perlite samples were collected from Shangcheng County, Henan Province. The collected samples were dried and picked out, the bulk ore was crushed and ground in a ball mill for 40h, then the samples were coarse crushed and discharged, and the debris was removed by 1mm sieve. The samples were dried at 105℃ for 24h, dehydrated and inactivated. After drying, the samples were crushed in a grinder containing high-alumina ceramic balls, and the grinding time was determined by the time required to meet the particle size requirements of the first class standard substance. The processed samples were stored temporarily in polyethylene plastic vats under constant temperature and clean conditions, then sub-packed at 70g per bottle for test. Random samples were taken for homogeneity and stability tests. Through nine collaborative laboratories, more targeted valuation methods such as the gravimetric method, volumetric method, inductively coupled plasma-mass spectrometry, and inductively coupled plasma-optical emission spectrometry were used to ensure the accuracy of the perlite valued components.
Fifteen items of 60 components were tested for uniformity and stability, including Ag, As, B, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Ga, Hf, Hg, In, Li, Mo, Nb, Ni, Pb, Rb, Sb, Sc, Sn, Sr, Ta, Th, U, V, W, Zn, Zr, SiO2, Al2O3, TFe2O3, FeO, MgO, CaO, Na2O, K2O, MnO, TiO2, P2O5, LOI, TC, and rare earth elements. The RSD of most of the components was less than 3%, and the
The certified reference material for perlite composition analysis developed in this paper has met the requirements of
[1] |
严育通, 贾宝剑, 周红升, 等. 珍珠岩矿床地质背景研究进展[J]. 信阳师范学院学报, 2016, 29(4): 645-649. doi: 10.3969/j.issn.1003-0972.2016.04.036
Yan Y T, Jia B J, Zhou H S, et al. The geological background research progress of perlite deposits[J]. Journal of Xinyang Normal University, 2016, 29(4): 645-649. doi: 10.3969/j.issn.1003-0972.2016.04.036
|
[2] |
杜鹏. 我国珍珠岩资源概况及开发利用现状[J]. 中国非金属矿工业导刊, 2016(4): 6-8. doi: 10.3969/j.issn.1007-9386.2016.04.003
Du P. Present situation of exploitation and utilization of perlite resources in China[J]. China Non-metallic Mineral Industry, 2016(4): 6-8. doi: 10.3969/j.issn.1007-9386.2016.04.003
|
[3] |
于永生, 葛灵, 武珂, 等. 我国珍珠岩矿产综合利用及其发展战略[J]. 矿产保护与利用, 2019, 39(6): 159-163. doi: 10.13779/j.cnki.issn1001-0076.2019.06.021
Yu Y S, Ge L, Wu K, et al. Comprehensive utilization and development strategy of perlite mineral resources in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 159-163. doi: 10.13779/j.cnki.issn1001-0076.2019.06.021
|
[4] |
张宪圆, 林克辉, 谢红波. 国内外珍珠岩概述及其在建筑领域的应用分析[J]. 广东建材, 2012, 28(2): 19-21. doi: 10.3969/j.issn.1009-4806.2012.02.022
Zhang X Y, Lin K H, Xie H B. Overview of perlite at home and abroad and analysis of its application in construction field[J]. Guangdong Building Materials, 2012, 28(2): 19-21. doi: 10.3969/j.issn.1009-4806.2012.02.022
|
[5] |
Lin Y F, Li X G, Huang Q H. Preparation and character-ization of expanded perlite/wood-magnesium composites as building insulation materials[J]. Energy and Buildings, 2021, 231: 1-9.
|
[6] |
Bageri B, Ahmed A. Effect of perlite particles on the properties of oil-well class G cement[J]. Journal of Petroleum Science and Engineering, 2021, 199: 1-8.
|
[7] |
Huang G P, Deepak P, Rajender G, et al. Thermal properties of calcium sulfoaluminate cement-based mortars incorporated with expanded perlite cured at cold temperatures[J]. Construction and Building Materials, 2021, 274: 1-13.
|
[8] |
Mohamed A, Basfar S, Elkatatny S, et al. Impact of perlite on the properties and stability of water-based mud in elevated-temperature applications[J]. ACS Omega, 2020, 5(50): 32573-32582. doi: 10.1021/acsomega.0c04853
|
[9] |
王世香, 邹法俊. 膨胀珍珠岩生产工艺及废气治理措施研究[J]. 环境科学与技术, 2015, 38(S2): 349-352. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2015S2070.htm
Wang S X, Zou F J. Research on swelling perlite production technology and control measures of exhaust gas[J]. Environment Science & Technology, 2015, 38(S2): 349-352. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2015S2070.htm
|
[10] |
马万征, 刘帅帅, 马万敏, 等. 改性硅藻土与珍珠岩联合处理氨氮废水的研究[J]. 应用化工, 2015, 44(11): 2030-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201511017.htm
Ma W Z, Liu S S, Ma W M, et al. Study on treatment of waste water containing ammonia nitrogen by modified diatomite and perlite[J]. Applied Chemistry Industry, 2015, 44(11): 2030-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201511017.htm
|
[11] |
胡雨彤, 时连辉, 刘登民, 等. 不同比例珍珠岩对污泥堆肥理化性状与孔雀草生长的影响[J]. 生态学杂志, 2014, 25(7): 1949-1954. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201407016.htm
Hu Y T, Shi L H, Liu D M, et al. Effects of different perlite additions on physical and chemical properties of sewage sludge compost and growth of Tagetes patula[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 1949-1954. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201407016.htm
|
[12] |
李坦平, 娄晓明, 李爱阳. 食品助滤剂珍珠岩中有害金属元素的质谱分析[J]. 食品与发酵工业, 2020, 46(10): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202010036.htm
Li T P, Lou X M, Li A Y. Determination of harmful metal elements in food filter aid perlite by inductively coupled plasma tandem mass spectrometry[J]. Food and Fermentation Industries, 2020, 46(10): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202010036.htm
|
[13] |
李晓兰, 于志龙. 浅析珍珠岩助滤剂的精深加工制备研究[J]. 冶金与材料, 2020, 40(6): 42-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYJ202006019.htm
Li X L, Yu Z L. Study on the deep processing and preparation of perlite filter aid[J]. Metallurgy and Materials, 2020, 40(6): 42-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYJ202006019.htm
|
[14] |
Ni S Y, Wang N N, Guo X, et al. Li4SiO4-based sorbents from expanded perlite for high-temperature CO2 capture[J]. Chemical Engineering Journal, 2021, 410: 1-11.
|
[15] |
Li R J, Zhao Y J. Enhanced thermal conductivity of com-posite phase change materials based on carbon modified expanded perlite[J]. Materials Chemistry and Physics, 2021, 124226.
|
[16] |
Babas H, Kaichouh G, Khachani M, et al. Equilibrium and kinetic studies for removal of antiviral sofosbuvir from aqueous solution by adsorption on expanded perlite: Experimental, modelling and optimization[J]. Surfaces and Interfaces, 2021, 100962.
|
[17] |
Sebestova P, Cerny V, Drochytka R. Study of calcium-silicate composite lightened by waste expanded perlite[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1039(1): 012014.
|
[18] |
Lapčík L, Vašina M, Lapčíková B, et al. Study of the material engineering properties of high-density poly(ethylene)/perlite nanocomposite materials[J]. Nanotechnology Reviews, 2020, 9(1): 1491-1499.
|
[19] |
曾美云, 刘金, 邵鑫, 等. 磷矿石化学成分分析标准物质研制[J]. 岩矿测试, 2017, 36(6): 633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082
Zeng M Y, Liu J, Shao X, et al. Preparation of phosphate ore reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2017, 36(6): 633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082
|
[20] |
刘妹, 顾铁新, 潘含江, 等. 泛滥平原沉积物标准物质研制[J]. 岩矿测试, 2018, 37(5): 558-571. doi: 10.15898/j.cnki.11-2131/td.201801080002
Liu M, Gu T X, Pan H J, et al. Preparation of seven reference materials for floodplain sediments[J]. Rock and Mineral Analysis, 2018, 37(5): 558-571. doi: 10.15898/j.cnki.11-2131/td.201801080002
|
[21] |
赵晓亮, 李志伟, 王烨, 等. 铌钽精矿标准物质研制[J]. 岩矿测试, 2018, 37(6): 90-97. doi: 10.15898/j.cnki.11-2131/td.201711230185
Zhao X L, Li Z W, Wang Y, et al. Preparation and certification of niobium-tantalum concentrate reference materials[J]. Rock and Mineral Analysis, 2018, 37(6): 90-97. doi: 10.15898/j.cnki.11-2131/td.201711230185
|
[22] |
田宗平, 彭君, 王干珍, 等. 石煤钒矿成分分析标准物质的研制[J]. 岩矿测试, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008
Tian Z P, Peng J, Wang G Z, et al. Preparation of standard materials for composition analysis of stone coal vanadium ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008
|
[23] |
杨榕, 顾铁新, 潘含江. GWB10010a大米标准物质复(研)制及数据特征[J]. 岩矿测试, 2020, 39(6): 866-877. doi: 10.15898/j.cnki.11-2131/td.202005210073
Yang R, Gu T X, Pan H J. Preparation of reference materials GBW10010a for rice component and data characteristics[J]. Rock and Mineral Analysis, 2020, 39(6): 866-877. doi: 10.15898/j.cnki.11-2131/td.202005210073
|
[24] |
全国标准物质管理委员会. 标准物质目录[M]. 北京: 中国质检出版社, 中国标准出版社, 2017.
National Administrative Committee for Certified Reference Materials. List of standard substances[M]. Beijing: Quality Inspection of China Press, Standards Press of China, 2017.
|
[25] |
戚学祥. 河南信阳珍珠岩矿床特征及其应用[J]. 矿物岩石地球化学通报, 1997(Z1): 102-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH7S1.062.htm
Qi X X. Characteristics and application of perlite deposit in Xinyang, Henan Province[J]. Bulletin of Minerals, Petrology and Geochemistry, 1997(Z1): 102-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH7S1.062.htm
|
[26] |
韩复兴, 杨大干, 黄晨. 信阳上天梯珍珠岩矿绿色建设思路分析[J]. 陶瓷, 2020(9): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TACI202009008.htm
Han F X, Yang D G, Huang C. Analysis on green construction of Shangtianti perlite mine in Xinyang[J]. Ceramics, 2020(9): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TACI202009008.htm
|
[27] |
张晗, 薛爱芳, 陈浩, 等. 轻质萃取剂的分散液液微萃取-石墨炉原子吸收光谱法测定生活用水中痕量Pb与Cd[J]. 光谱学与光谱分析, 2018, 38(10): 3264-3268. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201810053.htm
Zhang H, Xue A F, Chen H, et al. Low-density solvent based dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry for the determination of trace lead and cadmium in domestic water[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3264-3268. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201810053.htm
|
[28] |
刘香英, 袁建, 崔建勇, 等. 改进的原子吸收法测定土壤样品中的6种重金属元素[J]. 世界核地质科学, 2019, 36(2): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201902007.htm
Liu X Y, Yuan J, Cui J Y, et al. Determination of six heavy metal elements in soil samples by improved atomic absorption spectrometry[J]. World Nuclear Geoscience, 2019, 36(2): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201902007.htm
|
[29] |
赵小学, 位志鹏, 王建波, 等. 王水水浴消解/ICP-MS法测定土壤及水系沉积物中As、Se、Sb、Hg、Bi的适用性研究[J]. 中国测试, 2021, 47(9): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202109010.htm
Zhao X Y, Wei Z P, Wang J B, et al. Study on determination of As, Se, Sb, Hg and Bi in soil and sediment by ICP-MS with water bath[J]. China Measurement & Test, 2021, 47(9): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202109010.htm
|
[30] |
郑智慷, 王家松, 曾江萍, 等. 微波消解-原子荧光光谱法测定化探样品中的砷和锑[J]. 地质调查与研究, 2019, 42(4): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904006.htm
Zheng Z K, Wang J S, Zeng J P, et al. Determination of arsenic and antimony in geochemical samples by microwave digestion-atomic fluorescence spectrometry[J]. Geological Survey and Research, 2019, 42(4): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904006.htm
|
[31] |
刘宇, 魏双. 高压消解-电感耦合等离子体质谱法测定铌钽矿石中铌钽含量[J]. 地质调查与研究, 2018, 41(3): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201803012.htm
Liu Y, Wei S. Determination of niobium and tantalum content in Nb-Ta ore by high pressure digestion-inductively coupled plasma mass spectrometry[J]. Geological Survey and Research, 2018, 41(3): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201803012.htm
|
[32] |
方蓬达, 张莉娟, 王家松, 等. 熔融制样-波长色散X射线荧光光谱法同时测定砂岩型铀矿中主量及铀、钍成分[J]. 华北地质, 2021, 44(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102005.htm
Fang P D, Zhang L J, Wang J S, et al. Simultaneous determination of major elements, uranium and thorium in sandstone type uranium deposits by melting sample preparation wavelength dispersive X-ray fluorescence spectrometry[J]. North China Geology, 2021, 44(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102005.htm
|
[33] |
李洁. ICP-MS直接定量分析细粒岩石中的微量金属元素[J]. 世界有色金属, 2017(5): 138-139. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201705078.htm
Li J. Direct quantitative analysis of trace metal elements in fine rock by ICP-MS[J]. World Nonferrous Metals, 2017(5): 138-139. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201705078.htm
|