• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHAO Xin, YAN Hui, YU Lian-ling, TANG Xing, LIU Zhao. Determination of High Content of Titanium in Ilmenite by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2020, 39(3): 459-466. DOI: 10.15898/j.cnki.11-2131/td.201911020150
Citation: ZHAO Xin, YAN Hui, YU Lian-ling, TANG Xing, LIU Zhao. Determination of High Content of Titanium in Ilmenite by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2020, 39(3): 459-466. DOI: 10.15898/j.cnki.11-2131/td.201911020150

Determination of High Content of Titanium in Ilmenite by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion

More Information
  • Received Date: November 01, 2019
  • Revised Date: February 22, 2020
  • Accepted Date: April 15, 2020
  • Published Date: April 30, 2020
  • HIGHLIGHTS
    (1) The effect of aqua regia, four acid, alkali fusion methods on the result of determination of TiO2 was compared. The method involving sodium peroxide alkali fusion, hot water extraction and hydrochloric acidification was chosen.
    (2) The salt content in the solution was reduced by optimizing the quality of sodium peroxide, and the matrix influence of the sodium matrix was eliminated by diluting the standard solution with blank test solution in the whole procedure.
    (3) The method had complete dissolution, fast analysis and a wide linear range of ICP-OES determination.
    BACKGROUNDThe main types of ilmenite resources are ilmenite ore, ilmenite placer, and rutile ore. Ilmenite is a mineral that is difficult to be digested, and generally insoluble in nitric acid, hydrochloric acid or an aqua system. For high-grade ilmenite, even if the sample is dissolved by hydrochloric acid-nitric acid-hydrofluoric acid-perchloric acid mixture, titanium element is also easy to hydrolyze to form insoluble partial titanic acid precipitation, which often causes great difficulties in analysis. However, the traditional methods such as volumetric and spectrophotometry have the problems of long operation process, many steps and low efficiency.
    OBJECTIVESTo improve the accuracy of the analysis of titanium in ilmenite and test efficiency by choosing the appropriate pretreatment combined with large-scale instrument analysis methods.
    METHODSUsing 2.0g sodium peroxide as flux, the samples were melted in a corundum crucible at 700℃ for 15min. The resulted melts were soaked in hot water of 40-50℃, and then acidified with hydrochloric acid. The high content of titanium in the sample was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The effect of the sodium matrix was eliminated by diluting the standard solution with a blank test solution. The sample was decomposed completely by optimizing the melting temperature and time. The salt content in the solution was reduced by optimizing the quality of sodium peroxide to ensure the stability of the determination. The spectral interference was eliminated by optimizing the spectral lines and using the background deduction method.
    RESULTSThe detection limit of this method was 0.0035%, the analytical ranges were from 0.0066% to 62.50% (both were calculated by TiO2 content). The relative standard deviations (RSD, n=12) were 1.1%-2.1% and the relative errors were -1.69%-1.11%, which was verified by the national standard materials (GBW07839, GBW07841) of ilmenite. For actual sample analysis, the relative standard deviations of the method (RSD, n=12) were less than 4%. The analytical results were consistent, compared with the national standard method (ferric ammonium sulfate volumetric method).
    CONCLUSIONSThis method is used to effectively solve the problems of incomplete digestion of ilmenite and easy hydrolysis of high content ilmenite, and achieve rapidly quantitative analysis of titanium content in different ilmenite samples by ICP-OES.

  • 高阳, 刘雨晴, 李冠玉, 等.四川钛产业现状及可持续发展建议[J].四川有色金属, 2016(4):7-9. http://d.old.wanfangdata.com.cn/Periodical/scysjs201604001

    Gao Y, Liu Y Q, Li G Y, et al.Situation analysis and sustainable development suggestions of titanium industry in Sichuan[J]. Sichuan Nonferrous Metals, 2016(4):7-9. http://d.old.wanfangdata.com.cn/Periodical/scysjs201604001
    孙赛军, 廖仁强, 丛亚楠, 等.钛的地球化学性质与成矿[J].岩石学报, 2020, 36(1):68-76. http://d.old.wanfangdata.com.cn/Periodical/ysxb98202001008

    Sun S J, Liao R Q, Cong Y N, et al.Geochemistry and mineralization of titanium[J]. Acta Petrologica Sinica, 2020, 36(1):68-76. http://d.old.wanfangdata.com.cn/Periodical/ysxb98202001008
    吴贤, 张健.中国的钛资源分布及特点[J].钛工业进展, 2006(6):8-12. http://d.old.wanfangdata.com.cn/Periodical/tgyjz200606004

    Wu X, Zhang J.Geographical distribution and chara-cteristics of titanium resources in China[J]. Titanium Industry Progress, 2006(6):8-12. http://d.old.wanfangdata.com.cn/Periodical/tgyjz200606004
    《岩石矿物分析》编委会.岩石矿物分析(第四版第二分册)[M].北京:地质出版社, 2011:753-763.

    The editorial committee of < Rock and mineral analysis>. Rock and mineral analysis (The fourth edition:Vol.Ⅱ)[M]. Beijing:Geological Publishing House, 2011:753-763.
    刘冠龙, 许俊鸿.重铬酸钾滴定法快速测定钛铁矿中钛铁含量[J].冶金分析, 2012, 32(3):74-76. http://d.old.wanfangdata.com.cn/Periodical/yjfx201203016

    Liu G L, Xu J H.Rapid determination of titaniumand iron in ilmenite by potassium dichromate titrimetry[J]. Metallurgical Analysis, 2012, 32(3):74-76. http://d.old.wanfangdata.com.cn/Periodical/yjfx201203016
    刘艳花, 孙湘莉.莫桑比克某重砂矿选冶流程样品中钛和铬的联合测定[J].冶金分析, 2017, 37(7):37-44. http://d.old.wanfangdata.com.cn/Periodical/yjfx201707007

    Liu Y H, Sun X L.Combined determination of titanium and chromium in the samples from the flotation- metallurgy process of heavy placer in Mozambique[J]. Metallurgical Analysis, 2017, 37(7):37-44. http://d.old.wanfangdata.com.cn/Periodical/yjfx201707007
    许宁辉, 于红燕, 郝文婷.硫酸铁铵滴定法测定低密度铌合金中钛元素[J].材料开发与应用, 2019, 34(3):41-45. http://d.old.wanfangdata.com.cn/Periodical/clkfyyy201903007

    Xu N H, Yu H Y, Hao W T.Determination of titanium in low density niobium alloy by ammonium ferric sulfate titration[J]. Development and Application of Materials, 2019, 34(3):41-45. http://d.old.wanfangdata.com.cn/Periodical/clkfyyy201903007
    豆卫全, 高明, 夏培民, 等.分光光度法分步测定高纯硅铁中铝钛磷[J].冶金分析, 2019, 39(7):71-76. http://d.old.wanfangdata.com.cn/Periodical/yjfx201907011

    Dou W Q, Gao M, Xia P M, et al.Determination of aluminium, titanium and phosphorus in high purity ferrosilicon by spectrophotometry[J]. Metallurgical Analysis, 2019, 39(7):71-76. http://d.old.wanfangdata.com.cn/Periodical/yjfx201907011
    Duchesne J C, Bologne G.XRF major and trace element determination in Fe-Ti oxide minerals[J]. Geologica Belgica, 2009, 12(3-4):205-212.
    卜兆杰, 王晓旋, 黄健强, 等.粉末压片制样-X射线荧光光谱(XRF)法测定钛铁矿中TFe、TiO2、SiO2、Al2O3、CaO、MgO的含量[J].中国无机分析化学, 2018, 8(1):17-20. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201801005

    Bu Z J, Wang X X, Huang J Q, et al.Determination of TFe, TiO2, SiO2, Al2O3, CaO and MgO content in ilmenite by XRF with powder press method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(1):17-20. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201801005
    Morgan N K, Scholey D V, Burton E J.A comparison of two methods for determining titanium dioxide marker content in broiler digestibility studies[J]. Animal, 2014, 8(4):529-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3621596d44aa759af8f12071c85f14ef
    沈春春.等离子体发射光谱仪测定钛铁矿中钛含量[J].化工时刊, 2016, 30(4):30-32. http://d.old.wanfangdata.com.cn/Periodical/hgsk201604013

    Shen C C.The determination of titanium content in the ilmenite by ICP-AES[J]. Chemical Industry Times, 2016, 30(4):30-32. http://d.old.wanfangdata.com.cn/Periodical/hgsk201604013
    赵伟, 王卿, 张会堂, 等.电感耦合等离子体发射光谱法测定钛铁矿中主、微量元素[J].山东国土资源, 2018, 34(5):107-110. http://d.old.wanfangdata.com.cn/Periodical/sddz201805014

    Zhao W, Wang Q, Zhang H T, et al.Determination of main and trace elements in ilmenite by using inductively coupled plasma atomic emission spectrometry method[J]. Shandong Land and Resources, 2018, 34(5):107-110. http://d.old.wanfangdata.com.cn/Periodical/sddz201805014
    巨力佩, 季伟, 张旺强.电感耦合等离子体发射光谱法测定钒钛铁矿中二氧化钛[J].分析测试技术与仪器, 2013, 19(2):88-91. http://d.old.wanfangdata.com.cn/Periodical/fxcsjsyyq201302005

    Ju L P, Ji W, Zhang W Q.Determination of TiO2 in sefstromite by inductively coupled plasma atomic emission spectrometry[J]. Analysis and Testing Technology and Instruments, 2013, 19(2):88-91. http://d.old.wanfangdata.com.cn/Periodical/fxcsjsyyq201302005
    陈玉秀, 闫月娥, 马小文, 等.ICP-OES测定钒钛铁精矿中钛、镁、钒、锰和铬的含量[J].广州化工, 2019, 47(16):109-111. http://d.old.wanfangdata.com.cn/Periodical/gzhg201916041

    Chen Y X, Yan Y E, Ma X W, et al.Determination of titanium, magnesium, vanadium, manganese and chromium content in vanadium-titanium-iron concentrates by ICP-OES[J]. Guangzhou Chemical Industry, 2019, 47(16):109-111. http://d.old.wanfangdata.com.cn/Periodical/gzhg201916041
    王延芹.电感耦合等离子体原子发射光谱法测定钛铁中Ti, Si, P, Al, Mn, Cu[J].世界有色金属, 2019(7):132, 134.

    Wang Y Q.Inductively coupled plasma atomic emission spectrometry for the determination of Ti, Si, P, Al, Mn, Cu in ferrotitanium[J]. World Nonferrous Metals, 2019(7):132, 134.
    郑浩.试论钒钛磁铁矿中二氧化钛的测定[J].世界有色金属, 2019(8):217-218. http://d.old.wanfangdata.com.cn/Periodical/sjysjs201908125

    Zheng H.Discussion on the determination of titanium dioxide in vanadium-titanium magnetite[J]. World Nonferrous Metals, 2019(8):217-218. http://d.old.wanfangdata.com.cn/Periodical/sjysjs201908125
    史健泽, 曲凤娇, 曹阳, 等.电感耦合等离子体发射光谱法测定铝合金中钛含量[J].有色金属加工, 2020, 49(2):63-66. http://d.old.wanfangdata.com.cn/Periodical/ysjsjg202002018

    Shi J Z, Qu F J, Cao Y, et al.Determination of titanium in aluminum alloy by inductively coupled plasma atomic emission spectrometry[J]. Nonferrous Metals Processing, 2020, 49(2):63-66. http://d.old.wanfangdata.com.cn/Periodical/ysjsjg202002018
    Francisco L F S, Thalita A O D, Luciana S M.Development of a wet digestion method for paints for the determination of metals and metalloids using inductively coupled plasma optical emission spectrometry[J]. Talanta, 2016, 146:188-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c996feba04a311aa34c343d461b9d64a
    Daniel L, Laird D W, Hefter G T.Sodium peroxide fusion for reliable determination of gold in ores and metallurgical samples[J]. International Journal of Mineral Processing, 2017, 168:35-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e7f9d2b1a0a75223ec22999663999aa
    Wei X J, Tian Z Q.Simultaneous determination of ruthenium and zinc in catalysts for hydrogenation of benzene to cyclohexene using sodium peroxide fusion sample digestion and ICP-OES[J]. Advanced Materials Research, 2014, 1004-1005:1281-1284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.1004-1005.1281
    肖柳婧, 汤行, 吴玉华, 等.碱熔-电感耦合等离子体原子发射光谱(ICP-AES)法测定锡矿石中锡[J].中国无机分析化学, 2018, 8(5):38-40. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201805008

    Xiao L J, Tang X, Wu Y H, et al.Determination of tin in tin ore by inductively coupled plasma-atomic emission spectrometry with alkali fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(5):38-40. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201805008
    黄超冠, 蒙义舒, 郭焕花, 等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J].岩矿测试, 2018, 37(1):30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065

    Huang C G, Meng Y S, Guo H H, et al.Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1):30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065
    雷占昌, 韩斯琴图, 蒋常菊, 等.过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J].岩矿测试, 2019, 38(3):326-332. doi: 10.15898/j.cnki.11-2131/td.201812030127

    Lei Z C, Han S Q T, Jiang C J, et al.Determination of tin in primary ores by inductively coupled plasma-mass spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2019, 38(3):326-332. doi: 10.15898/j.cnki.11-2131/td.201812030127
    王小强, 夏辉, 秦九红, 等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分[J].岩矿测试, 2017, 36(1):52-58. doi: 10.15898/j.cnki.11-2131/td.2017.01.008

    Wang X Q, Xia H, Qin J H, et al.Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma-optical emission spectrometry with sodium peroxide fusion[J]. Rock and Mineral Analysis, 2017, 36(1):52-58. doi: 10.15898/j.cnki.11-2131/td.2017.01.008
    姜云军, 李星, 姜海伦, 等.四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J].岩矿测试, 2018, 37(2):152-158. doi: 10.15898/j.cnki.11-2131/td.201704010048

    Jiang Y J, Li X, Jiang H L, et al.Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J]. Rock and Mineral Analysis, 2018, 37(2):152-158. doi: 10.15898/j.cnki.11-2131/td.201704010048
    侯莎, 段玉宇, 马怡飞, 等.四酸溶解-电感耦合等离子体发射光谱法测定镍精矿中12种主次元素[J].化学分析计量, 2019, 28(3):96-99. http://d.old.wanfangdata.com.cn/Periodical/hxfxjl201903025

    Hou S, Duan Y Y, Ma Y F, et al.Determination of 12 principal and secondary elements in nickel ore concentrate by four acids solution-inductively coupled plasma atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2019, 28(3):96-99. http://d.old.wanfangdata.com.cn/Periodical/hxfxjl201903025
    仝晓红, 刘攀, 聂富强.碱熔-电感耦合等离子体原子发射光谱法测定高碳铬铁中铬[J].冶金分析, 2015, 35(9):36-41. http://d.old.wanfangdata.com.cn/Periodical/yjfx201509007

    Tong X H, Liu P, Nie F Q.Determination of chromium in high-carbon ferrochrome by alkali fusion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(9):36-41. http://d.old.wanfangdata.com.cn/Periodical/yjfx201509007
    董学林, 何海洋, 储溱, 等.碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J].岩矿测试, 2019, 38(6):620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004

    Dong X L, He H Y, Chu Q, et al.Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6):620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004
    赵庆令, 李清彩.电感耦合等离子体发射光谱法测定锆钛砂矿中铪钛锆[J].岩矿测试, 2013, 32(6):883-886. http://www.ykcs.ac.cn/article/id/c47cff27-d31e-48fb-a4cd-b7b8df6b5f6f

    Zhao Q L, Li Q C.Determination of Hf, Ti and Zr in zirconium-titanium placer by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6):883-886. http://www.ykcs.ac.cn/article/id/c47cff27-d31e-48fb-a4cd-b7b8df6b5f6f
    聂富强, 杜丽丽, 李景滨, 等.碱熔-电感耦合等离子体发射光谱法(ICP-OES)测定高碳高硅钢中的硅含量[J].中国无机分析化学, 2015, 5(4):74-78. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201504017

    Nie F Q, Du L L, Li J B, et al.Determination of silicon content in high carbon and high silicon steel by inductively coupled plasma optical emission spectrometry with sodium peroxide fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4):74-78. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201504017
    邝安宏, 胡家明.偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定透辉石中的SiO2、CaO、MgO、Al2O3、Fe2O3[J].分析测试技术与仪器, 2018, 24(3):173-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxcsjsyyq201803008

    Kuang A H, Hu J M.Determination of SiO2, CaO, MgO, Al2O3, Fe2O3 in diopside by inductively coupled plasma atomic emission spectrometry with lithium metaborate fusion sample pretreatment[J]. Analysis and Testing Technology and Instruments, 2018, 24(3):173-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxcsjsyyq201803008
  • Related Articles

    [1]YANG Lin, SHI Zhen, YU Huimin, HUANG Fang. Determination of Silicon Isotopic Compositions of Rock and Soil Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(1): 136-145. DOI: 10.15898/j.cnki.11-2131/td.202112060195
    [2]LIU Wan, LI Dan-dan, LIU Sheng-ao. Determination of Copper Isotope Composition of Soil Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(4): 561-569. DOI: 10.15898/j.cnki.11-2131/td.202012130163
    [3]LI Zi-xia, LU Hai. One-step Ion-exchange Separation and Measurement of Boron Isotope Ratios in High Calcium Biological Samples with by MC-ICP-MS[J]. Rock and Mineral Analysis, 2020, 39(3): 417-424. DOI: 10.15898/j.cnki.11-2131/td.201909290141
    [4]Suo-han TANG, Xiang-kun ZHU, Jin LI, Bin YAN, Shi-zhen LI, Zhi-hong LI, Yue WANG, Jian SUN. New Standard Solutions for Measurement of Iron, Copper and Zinc Isotopic Compositions by Multi-collector Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2016, 35(2): 127-133. DOI: 10.15898/j.cnki.11-2131/td.2016.02.003
    [5]Yue ZHAO, Ke-jun HOU, Shi-hong TIAN, Dan YANG, Ai-na SU. Study on Measurements of Lithium Isotopic Compositions for Common Standard Reference Materials Using Multi-Collector Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 28-39. DOI: 10.15898/j.cnki.11-2131/td.2015.01.004
    [6]Ke-jun HOU, Yan QIN, Yan-he LI, Chang-fu FAN. In situ Sr-Nd Isotopic Measurement of Apatite Using Laser Ablation Multi-collector Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(4): 547-554.
    [7]GAO Bo, LIANG Xi-rong, LIU Ying, HU Guang-qian, ZENG Wen, TU Xiang-lin. Measurement of Cadmium Isotopic Composition of Standard Solutions by Multi-collector Inductively Coupled Plasma Mass Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(5): 321-324.
    [8]Determination of Iron in High Purity Indium by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 193-196.
    [9]New Application of Multiple Collector ICPMS[J]. Rock and Mineral Analysis, 2007, 26(1): 55-60.
    [10]Accurate Measurement for the Concentration and Isotopic Abundance of Rhenium Using Multi-Collector Inductively Coupled Plasma Mass Spectrometer[J]. Rock and Mineral Analysis, 2005, (1): 1-6.
  • Cited by

    Periodical cited type(9)

    1. 李光一,马景治,李策,汪岸,贾正勋,董学林. 电弧分馏富集-发射光谱法测定含铌钽矿石中铌钽. 冶金分析. 2025(02): 49-55 .
    2. 兰明国,李飞,陈贵仁,何袖辉,郭家泽,石友昌. 交流电弧光电直读发射光谱法测定有机土壤中银锡硼. 冶金分析. 2024(09): 45-52 .
    3. 王冠,董俊,徐国栋,胡志中. 偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜-能谱测定锡矿石中锡钨锌铜铁锰. 岩矿测试. 2023(01): 114-124 . 本站查看
    4. 黄海波,袁静,凌波,白晓,李民敬,刘建坤. 电弧发射光谱技术发展及其在地质领域的应用. 华东地质. 2023(01): 103-117 .
    5. 蒿艳飞,陈璐,辜洋建,李云龙,毕建玲,高玉花. 石墨消解-电感耦合等离子体光谱法测定土壤中全硼. 化学分析计量. 2023(06): 57-60 .
    6. 肖细炼,刘杰,魏立,陈燕波,杨小丽,杨红梅. 微波消解—电感耦合等离子体发射光谱法同时测定生物样品中12种元素的方法. 物探与化探. 2023(03): 739-746 .
    7. 刘向磊,孙文军,文田耀,王腾飞,王凯凯,刘宗超. 地质样品中贵金属分析方法现状及展望. 冶金分析. 2022(12): 23-35 .
    8. 马景治,曲少鹏,李光一,董学兵,吴萌,吴俊,李策,董学林. 固体进样-发射光谱法同时测定地球化学样品中铜铅锌镍. 岩矿测试. 2022(06): 1007-1016 . 本站查看
    9. 祁雨凡. 交流电弧原子发射光谱测定地质样品中银、硼、锡效果研究. 世界有色金属. 2021(21): 123-124 .

    Other cited types(0)

Catalog

    Article views (2619) PDF downloads (60) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return