• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Chao, WANG Deng-hong, QU Wen-jun, MENG Hui-ming, ZHOU Li-min, FAN Xing-tao, LI Xin-wei, ZHAO Hong, WEN Hong-li, SUN Peng-cheng. A Review and Perspective on Analytical Methods of Critical Metal Elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. DOI: 10.15898/j.cnki.11-2131/td.201907310115
Citation: LI Chao, WANG Deng-hong, QU Wen-jun, MENG Hui-ming, ZHOU Li-min, FAN Xing-tao, LI Xin-wei, ZHAO Hong, WEN Hong-li, SUN Peng-cheng. A Review and Perspective on Analytical Methods of Critical Metal Elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. DOI: 10.15898/j.cnki.11-2131/td.201907310115

A Review and Perspective on Analytical Methods of Critical Metal Elements

More Information
  • Received Date: July 30, 2019
  • Revised Date: January 10, 2020
  • Accepted Date: April 15, 2020
  • Published Date: August 31, 2020
  • HIGHLIGHTS
    (1) Critical metal elements present new challenges for analytical techniques due to their uncommon, unevenly distributed, and complex matrix characteristics.
    (2) Incomplete dissolving of minerals, extraction of elements, matrix effect between sample and standard solution, and interferences are main challenges in critical metal elements analysis.
    (3) The chemical preparation procedures for the different minerals such as silicate, carbonate, oxide and sulfide were summarized.
    (4) Microarea in situ analysis and field on-site analysis are the development trend of critical metal elements analysis.
    BACKGROUNDStrategic critical metal mineral resources including rare, dispersed, rare earth and platinum group elements play an increasingly critical role in emerging industries such as new materials, new energy and information technology. With the deepening of the geological survey of key mineral resources in China, the critical metal elements present new challenges to analytical techniques due to their complex matrix, large differences in different mineral contents, and unstable chemical properties.
    OBJECTIVESTo introduce recent analytical techniques and applications for critical metal elements in different types of geological samples.
    METHODSBased on different chemical composition, the main matrices of critical metal elements were classified, mainly divided into silicate, carbonate, sulfate, tungstate, phosphate, oxide, sulfide and halide. For different types of rocks and minerals, chemical digestion was largely carried out by traditional dissolution methods such as the acid dissolution method (nitric acid-hydrofluoric acid combination, aqua regia) or alkali fusion methods.
    RESULTSThe characteristics and application of commonly used instruments including electronic probe microanalyzer, inductively coupled plasma-mass spectrometry, inductively coupled plasma-optical emission spectroscopy, and X-ray fluorescence spectroscopy were reviewed. The problems during critical metal analysis including incomplete dissolution, low recovery, oxides and isobaric interference, inconsistency between samples and standard matrices were reviewed and corresponding solutions were proposed.
    CONCLUSIONSIn situ microanalysis with the advantages of high efficiency, low cost, and high spatial resolution, and field on-site geoanalysis with its simple, fast and close to field work features are the main trends in the development of critical metal elements analytical techniques.
  • 王登红, 王瑞江, 孙艳, 等.我国三稀(稀有稀土稀散)矿产资源调查研究成果综述[J].地球学报, 2016, 37(5):569-580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201605007

    Wang D H, Wang R J, Sun Y, et al.A review of achievements in the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) survey in China[J].Acta Geoscientia Sinica, 2016, 37(5):569-580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201605007
    王登红.关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J].地质学报, 2019, 93(6):1189-1209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201906003

    Wang D H.Study on critical mineral resources:Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J].Acta Geologica Sinica, 2019, 93(6):1189-1209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201906003
    毛景文, 杨宗喜, 谢桂青, 等.关键矿产——国际动向与思考[J].矿床地质, 2019, 38(4):689-698. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201904001

    Mao J W, Yang Z X, Xie G Q, et al.Critical minerals:International trends and thinking[J].Mineral Deposits, 2019, 38(4):689-698. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201904001
    翟明国, 吴福元, 胡瑞忠, 等.战略性关键金属矿产资源:现状与问题[J].中国科学基金, 2019, 33(2):106-111. http://www.cqvip.com/Main/Detail.aspx?id=7001720215

    Zhai M G, Wu F Y, Hu R Z, et al.Critical metal mineral resources:Current research status and scientific issues[J].Bulletin of National Natural Science Foundation of China, 2019, 33(2):106-111. http://www.cqvip.com/Main/Detail.aspx?id=7001720215
    蒋少涌, 温汉捷, 许成, 等.关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J].中国科学基金, 2019, 33(2):10-16. http://www.cqvip.com/QK/96984X/20192/7001720217.html

    Jiang S Y, Wen H J, Xu C, et al.Earth sphere cycling and enrichment mechanism of critical metals:Major scientific issues for future research[J].Bulletin of National Natural Science Foundation of China, 2019, 33(2):10-16. http://www.cqvip.com/QK/96984X/20192/7001720217.html
    程秀花, 唐南安, 张明祖, 等.稀有分散元素分析方法的研究进展[J].理化检验(化学分册), 2013, 49(6):757-764. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201306036

    Cheng X H, Tang N A, Zhang M Z, et al.Recent advances of researches on analytical methods for rare and dispersed elements[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2013, 49(6):757-764. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201306036
    屈文俊, 王登红, 朱云, 等.稀土稀有稀散元素现代仪器测试全新方法的建立[J].地质学报, 2019, 93(6):1514-1522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201906026

    Qu W J, Wang D H, Zhu Y, et al.Establishment of new method for critical elements determination using modern analytical instruments[J].Acta Geologica Sinica, 2019, 93(6):1514-1522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201906026
    皮桥辉, 胡瑞忠, 王登红, 等.广西大厂锡多金属矿田西矿带稀散元素铟的富集规律研究——来自矿石组构和闪锌矿地球化学的证据[J].矿床地质, 2015, 34(2):379-396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201502012

    Pi Q H, Hu R Z, Wang D H, et al.Enrichment of indium in west ore belt of Dachang orefield:Evidence from ore textures and sphalerite geochemistry[J].Mineral Deposits, 2015, 34(2):379-396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201502012
    Ye L, Cook N J, Ciobanu C L, et al.Trace and minor elements in sphalerite from base metal deposits in South China:A LA-ICPMS study[J].Ore Geology Reviews, 2011, 39(4):188-217. doi: 10.1016/j.oregeorev.2011.03.001
    杜安道, 屈文俊, 李超, 等.铼-锇同位素定年方法及分析测试技术的进展[J].岩矿测试, 2009, 28(3):288-304. http://www.ykcs.ac.cn/article/id/ykcs_20090318

    Du A D, Qu W J, Li C, et al.A review on the development of Re-Os isotopic dating methods and techniques[J].Rock and Mineral Analysis, 2009, 28(3):288-304. http://www.ykcs.ac.cn/article/id/ykcs_20090318
    王登红, 王瑞江, 李建康, 等.我国三稀矿产资源的基本特征与研究现状[J].矿床地质, 2012, 31(增刊1):41-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7895450

    Wang D H, Wang R J, Li J K, et al.Basic characteristics and research status of the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) in China[J].Mineral Deposits, 2012, 31(Supplement 1):41-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7895450
    王成辉, 杨岳清, 王登红, 等.江西九岭地区三稀调查发现磷锂铝石等锂铍锡钽矿物[J].岩矿测试, 2018, 37(1):108-110. doi: 10.15898/j.cnki.11-2131/td.201801030001

    Wang C H, Yang Y Q, Wang D H, et al.Discovery of amblygonite and Li-Be-Sn-Ta minerals in the Jiuling area, Jiangxi Province[J].Rock and Mineral Analysis, 2018, 37(1):108-110. doi: 10.15898/j.cnki.11-2131/td.201801030001
    Zhang S H, Zhao Y, Li Q L, et al.First identification of baddeleyite related/linked to contact metamorphism from carbonatites in the world's largest REE deposit, Bayan Obo in North China Craton[J].Lithos, 2017, 284-285:654-665. doi: 10.1016/j.lithos.2017.05.015
    李慧民, 李怀坤, 陈志宏, 等.基性岩斜锆石U-Pb同位素定年3种方法之比较[J].地质通报, 2007, 26(2):128-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200702002

    Li H M, Li H K, Chen Z H, et al.Comparison of three methods for baddeleyite U-Pb isotope dating of basic rocks[J].Geological Bulletin of China, 2007, 26(2):128-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200702002
    文田耀.电感耦合等离子体质谱法测定重晶石中的微量元素[J].理化检验(化学分册), 2016, 52(6):672-676. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016090100044619

    Wen T Y.ICP-MS determination of trace elements in barite[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(6):672-676. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016090100044619
    李艳玲, 熊采华, 方金东, 等.基体分离-电感耦合等离子体质谱测定重晶石中超痕量稀土元素[J].岩矿测试, 2005, 24(2):87-92. http://www.ykcs.ac.cn/article/id/ykcs_20050225

    Li Y L, Xiong C H, Fang J D, et al.Determination of ultra-trace rare earth elements in barite by ICP-MS after matrix separation[J].Rock and Mineral Analysis, 2005, 24(2):87-92. http://www.ykcs.ac.cn/article/id/ykcs_20050225
    唐索寒, 李津, 梁细荣, 等.钕同位素比值143Nd/144Nd标准溶液研制[J].岩矿测试, 2017, 36(2):163-170. doi: 10.15898/j.cnki.11-2131/td.2017.02.010

    Tang S H, Li J, Liang X R, et al.Reference material preparation of 143Nd/144Nd isotope ratio[J].Rock and Mineral Analysis, 2017, 36(2):163-170. doi: 10.15898/j.cnki.11-2131/td.2017.02.010
    王祎亚, 邓赛文, 王毅民, 等.磷矿石分析方法评述[J].冶金分析, 2013, 33(4):26-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201304004

    Wang Y Y, Deng S W, Wang Y M, et al.Review on analytical methods of phosphate ores[J].Metallurgical Analysis, 2013, 33(4):26-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201304004
    王蕾, 张保科, 马生凤, 等.封闭压力酸溶-电感耦合等离子体光谱法测定钨矿石中的钨[J].岩矿测试, 2014, 33(5):661-664. http://www.ykcs.ac.cn/article/id/3d672437-647e-4ea1-a94d-770e474fb11c

    Wang L, Zhang B K, Ma S F, et al.Determination of wolfram in tungsten ore by pressurized acid digestion-inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2014, 33(5):661-664. http://www.ykcs.ac.cn/article/id/3d672437-647e-4ea1-a94d-770e474fb11c
    喻祥芬, 张德琼, 杨启顺.锡石中铌钽赋存形式的研究[J].地球化学, 1976(1):73-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000257722

    Yu X F, Zhang D Q, Yang Q S.A study on the mode of occurrence of niobium and tantalum beared in cassiterite[J].Geochimica, 1976(1):73-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000257722
    文加波.电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较[J].岩矿测试, 2011, 30(4):481-485. http://www.ykcs.ac.cn/article/id/ykcs_20110418

    Wen J B.Quantification of gallium in bauxites by inductively coupled plasma-atomic emission spectrometry-Comparison of sample pretreatment methods between alkali fusion and aciddissolution[J].Rock and Mineral Analysis, 2011, 30(4):481-485. http://www.ykcs.ac.cn/article/id/ykcs_20110418
    Norman M, Robinson P, Clark D.Major- and trace-element analyses of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF:New data on international reference materials[J].The Canadian Mineralogist, 2003, 41:293-305. doi: 10.2113/gscanmin.41.2.293
    杨雪, 李超, 李欣尉, 等.半封闭硝酸溶解体系ICP-MS快速测定辉钼矿的Re-Os年龄及Re含量[J].岩矿测试, 2016, 35(1):24-31. doi: 10.15898/j.cnki.11-2131/td.2016.01.005

    Yang X, Li C, Li X W, et al.A rapid method to determine the Re-Os age and Re content of molybdenite by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2016, 35(1):24-31. doi: 10.15898/j.cnki.11-2131/td.2016.01.005
    代小吕, 董利明, 赵欣, 等.沉淀分离-电感耦合等离子体质谱法测定方铅矿中铊[J].分析试验室, 2016, 35(3):263-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201603004

    Dai X L, Dong L M, Zhao X, et al.Determination of thallium in galena by precipitation separation combined with inductively coupled plasma mass spectrometry[J].Chinese Journal of Analysis Laboratory, 2016, 35(3):263-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201603004
    朱健, 马程程, 赵磊, 等.高压密闭消解-电感耦合等离子体质谱法测定煤中17种金属元素[J].理化检验(化学分册), 2014, 50(8):960-963. http://d.wanfangdata.com.cn/Periodical_lhjy-hx201408008.aspx

    Zhu J, Ma C C, Zhao L, et al.ICP-MS determination of 17 metal elements in coal with high-pressure closed digestion[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2014, 50(8):960-963. http://d.wanfangdata.com.cn/Periodical_lhjy-hx201408008.aspx
    宋伟娇, 代世峰, 赵蕾, 等.微波消解-电感耦合等离子体质谱法测定煤中的硼[J].岩矿测试, 2014, 33(3):327-331. http://www.ykcs.ac.cn/article/id/578312dc-f30f-4dd0-94f7-ab986acd1de0

    Song W J, Dai S F, Zhao L, et al.Determination of boron in coal samples with microwave digestion by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(3):327-331. http://www.ykcs.ac.cn/article/id/578312dc-f30f-4dd0-94f7-ab986acd1de0
    Müller A, René M, Behr H J, et al.Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovsky Les Mts.Czech Republic)[J].Mineralogy & Petrology, 2003, 79(3-4):167-191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=58d680267990be3592ce9bb35b643ba9
    Batanova V, Sobolev A V, Kuzmin D V.Trace element analysis of olivine:High precision analytical method for JEOL JXA-8230 electron probe microanalyser[J].Chemical Geology, 2015, 419:149-157. doi: 10.1016/j.chemgeo.2015.10.042
    许涛, 崔爱端, 杜梅, 等.电感耦合等离子体发射光谱法测定稀土铌钽矿中稀土元素和钍量[J].岩矿测试, 2009, 28(6):549-552. http://www.ykcs.ac.cn/article/id/ykcs_20090610

    Xu T, Cui A D, Du M, et al.Determination of rare earth elements and thorium in Re-Nb-Ta ores by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2009, 28(6):549-552. http://www.ykcs.ac.cn/article/id/ykcs_20090610
    刘贵磊, 许俊玉, 温宏利, 等.动态反应池-电感耦合等离子体质谱法精确测定配分差异显著的重稀土元素[J].桂林理工大学学报, 2016, 36(1):176-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201601024

    Liu G L, Xu J Y, Wen H L, et al.Determination of heavy rare earth elements of special rare earth ores by inductively coupled plasma mass spectrometry with a dynamic reaction cell[J].Journal of Guilin University of Technology, 2016, 36(1):176-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201601024
    吴石头, 王亚平, 孙德忠, 等.电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素——四种前处理方法的比较[J].岩矿测试, 2014, 33(1):12-19. http://www.ykcs.ac.cn/article/id/2c32f0ea-719c-486f-aa0d-027493aec6da

    Wu S T, Wang Y P, Sun D Z, et al.Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry:A comparison of four different pretreatment methods[J].Rock and Mineral Analysis, 2014, 33(1):12-19. http://www.ykcs.ac.cn/article/id/2c32f0ea-719c-486f-aa0d-027493aec6da
    李冰, 杨红霞.电感耦合等离子体质谱技术最新进展[J].分析试验室, 2003, 22(1):94-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys200301029

    Li B, Yang H X.Recent advances in inductively coupled plasma mass spectrometry[J].Chinese Journal of Analysis Laboratory, 2003, 22(1):94-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys200301029
    刘勇胜, 胡兆初, 李明, 等.LA-ICP-MS在地质样品元素分析中的应用[J].科学通报, 2013, 58(36):3753-3769. http://www.cqvip.com/QK/94252X/201336/48324009.html

    Liu Y S, Hu Z C, Li M, et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(32):3863-3878. http://www.cqvip.com/QK/94252X/201336/48324009.html
    Zhang W, Zhao C H, Liu Y S, et al.Reassessment of HF/HNO3 decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS[J].Geostandards and Geoanalytical Research, 2012, 36(3):271-289. doi: 10.1111/j.1751-908X.2012.0156.x
    张保科, 许俊玉, 王蕾, 等.锂辉石样品中稀有稀散稀土等多元素的测定方法[J].桂林理工大学学报, 2016, 36(1):184-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201601025

    Zhang B K, Xu J Y, Wang L, et al.Multi-elements simultaneous determination methods for rare, scattered and rare earth elements in spodumene samples[J].Journal of Guilin University of Technology, 2016, 36(1):184-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201601025
    马圣钞, 王登红, 刘善宝, 等.川西可尔因锂矿田云母矿物化学及稀有金属成矿和找矿指示[J].矿床地质, 2019, 38(4):877-897. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201904013

    Ma S C, Wang D H, Liu S B, et al.Mineral chemistry of micas from Ke'eryin pegmatite type lithium orefield in western Sichuan and its indication for rare metal mineralization and prospecting[J].Mineral Deposits, 2019, 38(4):877-897. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201904013
    侯江龙, 李建康, 王登红, 等.四川甲基卡锂矿床花岗岩体中云母类矿物的元素组成对矿区成矿条件的指示[J].地球科学, 2018, 43(增刊2):123-138. http://www.cnki.com.cn/Article/CJFDTotal-DQKX2018S2010.htm

    Hou J L, Li J K, Wang D H, et al.The composition and metallogenic significance of micas from Jiajika two-mica granite, Sichuan Province[J].Earth Science, 2018, 43(Supplement 2):123-138. http://www.cnki.com.cn/Article/CJFDTotal-DQKX2018S2010.htm
    Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004
    蔺洁, 刘勇胜, 胡兆初, 等.MC-ICP-MS准确测定地质样品中锂同位素组成[J].矿物岩石地球化学通报, 2016, 35(3):458-464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201603008

    Lin J, Liu Y S, Hu Z C, et al.Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3):458-464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201603008
    Sun H, Xiao Y, Gao Y, et al.Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary[J].Proceedings of the National Academy of Sciences, 2018, 115(15):3782-3787. doi: 10.1073/pnas.1711862115
    Li C, Zhou L M, Zhao Z, et al.In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS[J].Journal of Asian Earth Sciences, 2018, 160:38-47. doi: 10.1016/j.jseaes.2018.03.025
    Zhou L M, Wang R, Hou Z Q, et al.Hot Paleocene-Eocene Gangdese arc:Growth of continental crust in southern Tibet[J].Gondwana Research, 2018, 62:178-197. doi: 10.1016/j.gr.2017.12.011
    赵悦, 侯可军, 田世洪, 等.常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究[J].岩矿测试, 2015, 34(1):28-39. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

    Zhao Y, Hou K J, Tian S H, et al.Study on measurements of lithium isotopic compositions for common standard reference materials using multi-collector inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(1):28-39. doi: 10.15898/j.cnki.11-2131/td.2015.01.004
    Lin J, Liu Y, Tong X, et al.Improved in situ Li isotopic ratio analysis of silicates by optimizing signal intensity, isotopic ratio stability and intensity matching using ns-LA-MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2017, 32(4):834-842. doi: 10.1039/C6JA00409A
    Wiedenbeck M, Rosner M, Halama R, et al.Tourmaline reference materials for the in situ determination of lithium isotope composition[J].Geochmica et Cosmochimica Acta, 2009, 73(13):40-62.
    Gao Y Y, Li X H, Griffin W L, et al.Extreme lithium isotopic fractionation in three zircon standards (Plešovice, Qinghu and Temora)[J].Scientific Reports, 2015, 5(1):16878. doi: 10.1038/srep16878
    Su B X, Gu X Y, Deloule E, et al.Potential orthopy-roxene, clinopyroxene and olivine reference materials for in situ lithium isotope determination[J].Geostandards and Geoanalytical Research, 2015, 39(3):357-369. doi: 10.1111/j.1751-908X.2014.00313.x
    苏本勋.锂同位素在地幔地球化学中的应用[J].矿物岩石地球化学通报, 2017, 36(1):6-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201701002

    Su B X.Applications of Li isotopes in mantle geo-chemistry[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(1):6-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201701002
    张欣, 许俊玉, 范凡, 等.断续流动氢化物发生-原子吸收光谱法测定地质样品中的硒[J].桂林理工大学学报, 2016, 36(1):191-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201601026

    Zhang X, Xu J Y, Fan F, et al.Determination of selenium in geological samples by intermittent-flow hydride generation atomic absorption spectrometry[J].Journal of Guilin University of Technology, 2016, 36(1):191-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201601026
    尹明.我国地质分析测试技术发展现状及趋势[J].岩矿测试, 2009, 28(1):37-52. http://www.ykcs.ac.cn/article/id/ykcs_20090109

    Yin M.Progress and prospect on geoanalytical techniques in China[J].Rock and Mineral Analysis, 2009, 28(1):37-52. http://www.ykcs.ac.cn/article/id/ykcs_20090109
    樊兴涛, 温宏利, 屈文俊, 等.一种快速分析离子吸附型稀土元素的方法[P].[2016-05-04].

    Fan X T, Wen H L, Qu W J, et al.A rapid method for the analysis of ion adsorbed rare earth elements[P].[2016-05-04].
    焦距, 杨啸涛, 袁继海, 等.便携式Li-K分析仪的研制及其在锂辉石中锂的分析应用[J].岩矿测试, 2016, 35(4):366-372. doi: 10.15898/j.cnki.11-2131/td.2016.04.005

    Jiao J, Yang X T, Yuan J H, et al.Development of a portable Li-K analyzer and its application in the determination of lithium in spodumene[J].Rock and Mineral Analysis, 2016, 35(4):366-372. doi: 10.15898/j.cnki.11-2131/td.2016.04.005
    Meisel T, Fellner N, Moser J.A simple procedure for the determination of platinum group elements and rhenium (Ru, Rh, Pd, Re, Os, Ir and Pt) using ID-ICP-MS with an inexpensive on-line matrix separation in geological and environmental materials[J].Journal of Analytical Atomic Spectrometry, 2003, 18:720-726. doi: 10.1039/b301754k
    李刚, 姚玉玲, 李婧祎, 等.铌钽元素分析技术新进展[J].岩矿测试, 2018, 37(1):1-14. doi: 10.15898/j.cnki.11-2131/td.201512030223

    Li G, Yao Y L, Li J Y, et al.Progress of niobium and tantalum analytical technology[J].Rock and Mineral Analysis, 2018, 37(1):1-14. doi: 10.15898/j.cnki.11-2131/td.201512030223
    Yuan H, Hu S, Tong J, et al.Preparation of ultra-pure water and acids and investigation of background of an ICP-MS laboratory[J].Talanta, 2000, 52(6):971-981. doi: 10.1016/S0039-9140(00)00439-2
    孙卫东, 李聪颖.元素的地球化学性质与关键金属成矿:前言[J].岩石学报, 2020, 36(1):1-4. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=YSXB202001001

    Sun W D, Li C Y.The geochemical behavior and mineralization of critical metals:Preface[J].Acta Petrologica Sinica, 2020, 36(1):1-4. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=YSXB202001001
    温汉捷, 周正兵, 朱传威, 等.稀散金属超常富集的主要科学问题[J].岩石学报, 2019, 35(11):3271-3291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201911001

    Wen H J, Zhou Z B, Zhu C W, et al.Critical scientific issues of super-enrichment of dispersed metals[J].Acta Petrologica Sinica, 2019, 35(11):3271-3291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201911001
  • Cited by

    Periodical cited type(25)

    1. 牛俊龙,吴石头,杨岳衡,张超,王浩,龚庆杰. 石英和锆石Ti温度计在地学中的应用及其Ti含量的微区分析技术进展. 岩石学报. 2024(01): 323-337 .
    2. 范晨子,孙冬阳,赵令浩,袁继海,胡明月,赵明. 激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分. 岩矿测试. 2024(01): 87-100 . 本站查看
    3. 周伟,张嘉升,祁晓鹏,徐磊,杨杰. X射线衍射和TIMA研究陕南镇巴地区富锂黏土岩的矿物组成及锂的赋存状态. 岩矿测试. 2024(01): 76-86 . 本站查看
    4. 陈静雅,汪方跃,王建,周涛发,李全忠. LA-ICP-MS多脉冲短时间剥蚀法锆石超薄增生边定年研究. 岩石矿物学杂志. 2024(04): 1052-1065 .
    5. 高天恒,任同祥. 不同聚合物基质的LA-ICP-MS剥蚀行为探究. 计量科学与技术. 2023(04): 63-69 .
    6. 李会来,李凡,张鼎文,郭伟,靳兰兰,胡圣虹. 低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究. 岩矿测试. 2023(05): 970-982 . 本站查看
    7. Shitou WU,Yueheng YANG,Nick M.W.ROBERTS,Ming YANG,Hao WANG,Zhongwu LAN,Bohang XIE,Tianyi LI,Lei XU,Chao HUANG,Liewen XIE,Jinhui YANG,Fuyuan WU. In situ calcite U-Pb geochronology by high-sensitivity single-collector LA-SF-ICP-MS. Science China(Earth Sciences). 2022(06): 1146-1160 .
    8. 吴石头,杨岳衡,Nick M.W.ROBERTS,杨明,王浩,兰中伍,谢博航,李天义,许蕾,黄超,谢烈文,杨进辉,吴福元. 高灵敏度-单接收杯LA-SF-ICP-MS原位方解石U-Pb定年. 中国科学:地球科学. 2022(07): 1375-1390 .
    9. 胡欢,王汝成,车旭东,靳文楷,汤志敏,谢磊,陶湘媛. 关键金属元素铍的原位分析技术研究进展. 岩石学报. 2022(07): 1890-1900 .
    10. 胡志中,晏雄,杜谷,王冠,徐国栋,何佳乐,金鹭,兰明国,何袖辉. 方解石811N:一种可能的微区碳氧锶同位素分析标准. 沉积与特提斯地质. 2022(04): 542-555 .
    11. 张红雨,赵青青,赵刚,洪晶欣,刘家军,翟德高. 黄铁矿微量元素LA-ICP-MS原位微区分析方法及其在金矿床研究中的应用. 矿床地质. 2022(06): 1182-1199 .
    12. 张亮亮,朱弟成,谢锦程,王青,鲁瑶,徐若炎,齐宁远. 碳酸盐矿物激光原位U-Pb定年:进展与展望. 矿物岩石地球化学通报. 2022(06): 1120-1134 .
    13. 周帆,李明,柴辛娜,胡兆初,罗涛,胡圣虹. 非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成. 岩矿测试. 2021(01): 33-41 . 本站查看
    14. 李阳,邹灏,刘行,蒋修未,李蝶. SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用. 岩矿测试. 2020(02): 300-310 . 本站查看
    15. 胡志中,杨波,晏雄,杜谷. 硅酸盐矿物LA-ICP-MS元素分析研究. 矿产综合利用. 2020(04): 130-136 .
    16. 胡志中,李佩,蒋璐蔓,王通洋,杜谷,杨波. 古代玻璃材料LA-ICP-MS组分分析及产源研究. 岩矿测试. 2020(04): 505-514 . 本站查看
    17. 胡志中,杨波,杜谷,王坤阳. LA-ICP-MS在地质研究中的样品前处理方法与进展. 矿产综合利用. 2020(05): 52-57 .
    18. 胡志中,王坤阳,晏雄,杨波,杜谷. 锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究. 岩矿测试. 2020(06): 804-815 . 本站查看
    19. 张迪,陈意,毛骞,苏斌,贾丽辉,郭顺. 电子探针分析技术进展及面临的挑战. 岩石学报. 2019(01): 261-274 .
    20. 王辉,汪方跃,盛兆秋. LA-ICP-MS分析中不同莫氏硬度矿物激光剥蚀行为及剥蚀速率研究. 岩石矿物学杂志. 2019(01): 113-120 .
    21. 胡志中,杨波,杜谷. LA-ICP-MS在地质全岩样品元素分析中的应用. 四川地质学报. 2019(01): 164-168 .
    22. 竺成林,王华建,叶云涛,王晓梅,黄家旋,朱玉梅,杨瑞东. 基于原位多元素成像分析龙马溪组笔石成因及地质意义. 岩矿测试. 2019(03): 245-259 . 本站查看
    23. 吴石头,许春雪,陈宗定,王亚平,白金峰. LA-ICP-M S结合超高压粉末压片技术快速分析碳酸盐岩中Mg, Ca, Sr, Ba和轻稀土元素. 分析试验室. 2019(09): 1089-1094 .
    24. 王辉,汪方跃,关炳庭,盛兆秋. 激光能量密度对LA-ICP-MS分析数据质量的影响研究. 岩矿测试. 2019(06): 609-619 . 本站查看
    25. 肖益林,余成龙,王洋洋,陆一敢. 变质作用与流体包裹体:进展与展望. 矿物岩石地球化学通报. 2018(03): 424-440+561 .

    Other cited types(6)

Catalog

    Article views (4108) PDF downloads (201) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return