• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
FAN Chenzi,SUN Dongyang,ZHAO Linghao,et al. In situ Quantitative Analysis of Chemical Composition of Lithium and Beryllium Minerals by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis,2024,43(1):87−100. DOI: 10.15898/j.ykcs.202305310072
Citation: FAN Chenzi,SUN Dongyang,ZHAO Linghao,et al. In situ Quantitative Analysis of Chemical Composition of Lithium and Beryllium Minerals by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis,2024,43(1):87−100. DOI: 10.15898/j.ykcs.202305310072

In situ Quantitative Analysis of Chemical Composition of Lithium and Beryllium Minerals by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

More Information
  • Received Date: May 30, 2023
  • Revised Date: August 29, 2023
  • Accepted Date: September 16, 2023
  • Available Online: November 07, 2023
  • HIGHLIGHTS
    (1) Helium gas flow rate has great influence on the accuracy of quantitative analysis of spodumene and beryl chemical composition by LA-ICP-MS.
    (2) The increase of beam spot diameter is helpful for the precision of quantitative analysis of spodumene and beryl chemical composition by LA-ICP-MS.
    (3) The matrix and content matching calibration materials are more conducive to quantitative calibration of lithium and beryllium by LA-ICP-MS.

    Lithium and beryllium are the strategic key metals and the minerals such as spodumene and beryl are the main raw materials for extracting lithium and beryllium elements. In order to accurately analyze the minerals by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), the quantitative analytical procedure needs to be improved to reduce the matrix effect caused by non-matrix matching calibration. In the research, a New Wave 193nm ArF excimer laser and an Element Ⅱ high resolution inductively coupled plasma-mass spectrometer were used and the working parameters of the instrument optimized. The analytical results show that Li and Be light elements can quantitatively be determined by the suggested method. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202305310072.

    BRIEF REPORT
    Significance: Lithium and beryllium are strategic key metals worldwide. Minerals such as spodumene and beryl are the main raw materials containing lithium and beryllium elements. The electron probe method commonly used in micro-areas cannot accurately quantify light elements with low energy. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) needs to be improved to reduce the matrix effect caused by non-matrix matching calibration and improve the accuracy and precision of analysis. We developed an in situ quantitative analysis method of lithium and beryllium elements in natural mineral samples by LA-ICP-MS in order to give analytical technical support for the efficient utilization of lithium and beryllium resources. Our results indicate that LA-ICP-MS can be used to determine Li and Be light elements quantitatively in minerals by optimizing the working parameters of the instrument, especially the flow rate of He and the quantitative calibration method. It provides strong technical support for the study of the occurrence state and metallogenic enrichment mechanism of strategic lithium and beryllium resources.
    Methods: A New Wave 193nm ArF excimer laser and an Element Ⅱ inductively coupled plasma high resolution mass spectrometer were used. The laser ablation system used in the comparison experiment was UP213 Nd:YAG garnet solid laser. The samples used here included beryl C12 and spodumene K32 calibration samples, the content values of which were provided by the Electron Probe Microbeam Analysis Laboratory of Mineral Resources Institute, Chinese Academy of Geological Sciences. In addition, the minerals beryl B1 and spodumene L1 with high purity and large crystal size were collected for experimental analysis. The chemical constituents Si, Al and Be of beryl B1 were determined by X-ray fluorescence spectrometry (XRF), electron probe microanalysis (EPMA) and alkali fusion inductively coupled plasma-optical mass spectrometry (ICP-OES), respectively. The chemical composition of Li, Si and Al in spodumene L1 were determined by XRF and atmospheric pressure liquid cathode glow discharge spectrometer. The external reference materials used for LA-ICP-MS were NIST610, GSE-1G and CGSG-4.
    Data and Results: The effects of LA-ICP-MS instrument working conditions (isotope selection and counting mode, He flow rate, Ar flow rate, beam spot diameter, energy density) and data processing methods (external reference material, internal standard element) on the precision and accuracy of Li and Be quantitative analysis results were discussed. The experimental results show that the flow rate of He and Ar gas not only affects the signal intensity of Li and Be, but also the relative error can be reduced by appropriately reducing the flow rate of He (0.6L/min). The ionization energy of Li (first ionization energy of Li 520.2kJ/mol) is lower than that of Si (786.5kJ/mol). The effect of mass loading would make the relative sensitivity factor of Li/Si in the standard material and samples vary, with the airflow inconsistent due to different contents. Although increasing the beam spot diameter can increase the data precision by more than 10%, it has little effect on the accuracy. However, the size of the beam spot diameter often affects the uniformity of aerosol particles and the amount of sample introduced into the ICP, which may reduce the effects of elemental fractionation and instrument drift. For transparent minerals with high hardness such as beryl, the energy density (relative strength >75%, fluence >2.7J/cm2) should be increased to ensure effective ablation. GSE-1G, which has a higher content in existing standards, was selected for calibration of 7Li, and NIST610 was selected for calibration of 9Be, and Al was used as the internal standard compensation element. However, the content of Al is less than Si in these standard samples. So, it is necessary to use Al as the internal standard element when the instrument is running stably.
  • [1]
    张苏江, 张彦文, 张立伟, 等. 中国锂矿资源现状及其可持续发展策略[J]. 无机盐工业, 2020, 52(7): 1−7.

    Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China’s lithium resources[J]. Inorganic Chemicals Industry, 2020, 52(7): 1−7.
    [2]
    邓伟, 颜世强, 谭洪旗, 等. 我国铍矿资源概况及选矿技术研究现状[J]. 矿产综合利用, 2023(1): 148−154.

    Deng W, Yan S Q, Tan H Q, et al. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023(1): 148−154.
    [3]
    李晓峰, 韦星林. 稀有金属锂铍矿床研究中的几个关键科学问题——代序[J]. 岩石学报, 2022, 38(7): 1843−1847. doi: 10.18654/1000-0569/2022.07.01

    Li X F, Wei X L. The key scientific problems for the research on the rare metal lithium-beryllium deposits[J]. Acta Petrologica Sinica, 2022, 38(7): 1843−1847. doi: 10.18654/1000-0569/2022.07.01
    [4]
    陈振宇, 李建康, 周振华, 等. 硬岩型锂-铍-铌-钽资源工艺矿物学评价指标体系[J]. 岩石学报, 2023, 39(7): 1887−1907. doi: 10.18654/1000-0569/2023.07.02

    Chen Z Y, Li J K, Zhou Z H, et al. Study on process mineralogical evaluation index system of hard rock lithium-beryllium-niobium-tantalum mineral resources[J]. Acta Petrologica Sinica, 2023, 39(7): 1887−1907. doi: 10.18654/1000-0569/2023.07.02
    [5]
    肖仪武, 叶小璐, 冯凯, 等. “四稀”金属矿工艺矿物学研究技术现状与展望[J]. 矿冶, 2022, 31(3): 6−13. doi: 10.3969/j.issn.1005-7854.2022.03.002

    Xiao Y W, Ye X L, Feng K, et al. Current situation and prospect of “Four Rare” process mineralogy research technology[J]. Mining and Metallurgy, 2022, 31(3): 6−13. doi: 10.3969/j.issn.1005-7854.2022.03.002
    [6]
    张凤英, 黄巧燕. 电子探针在工艺矿物学研究中的应用[J]. 地质论评, 2023, 69(S1): 457−460.

    Zhang F Y, Huang Q Y. Application of electron probe in technological mineralogy[J]. Geological Review, 2023, 69(S1): 457−460.
    [7]
    张文兰, 车旭东, 王汝成, 等. 超轻元素铍的电子探针定量分析最佳条件探索: 以绿柱石为例[J]. 科学通报, 2020, 65(28-29): 3205−3216. doi: 10.1360/TB-2020-0316

    Zhang W L, Che X D, Wang R C, et al. Optimum conditions for quantitative analysis of beryllium by electron probe microanalysis: A case study of beryl[J]. Chinese Science Bulletin, 2020, 65(28-29): 3205−3216. doi: 10.1360/TB-2020-0316
    [8]
    吴润秋, 饶灿, 王琪, 等. 关键金属铍的电子探针分析[J]. 科学通报, 2020, 65(20): 2161−2168. doi: 10.1360/TB-2020-0082

    Wu R Q, Rao C, Wang Q, et al. Electron probe microanalysis of the key metal beryllium[J]. Chinese Science Bulletin, 2020, 65(20): 2161−2168. doi: 10.1360/TB-2020-0082
    [9]
    赵同新, 陈文迪, 殷婷, 等. 电子探针对含Be矿物绿柱石的定量分析[J]. 矿物学报, 2020, 40(2): 169−175. doi: 10.16461/j.cnki.1000-4734.2019.39.105

    Zhao T X, Chen W D, Yin T, et al. EMPA quantitative analysis of beryllium mineral beryl[J]. Acta Mineralogica Sinica, 2020, 40(2): 169−175. doi: 10.16461/j.cnki.1000-4734.2019.39.105
    [10]
    王梦琴, 蔡克大, 李展平. 飞行时间二次离子质谱(TOF-SIMS)在矿物包裹体研究中的应用[J]. 岩石矿物学杂志, 2023, 42(3): 451−464.

    Wang M Q, Cai K D, Li Z P. Application of time-of-flight secondary ion mass spectrometry (TOS-SIMS) in the study of mineral inclusions[J]. Acta Petrologica et Mineralogica, 2023, 42(3): 451−464.
    [11]
    Otto S K, Moryson Y, Krauskopf T, et al. In-depth characterization of lithium-metal surfaces with XPS and TOF-SIMS: Toward better understanding of the passivation layer[J]. Chemistry of Materials, 2021, 33(3): 859−867. doi: 10.1021/acs.chemmater.0c03518
    [12]
    Ottolini L, Cámara F, Hawthorne F C, et al. SIMS matrix effects in the analysis of light elements in silicate minerals: Comparison with SREF and EMPA data[J]. American Mineralogist, 2002, 87: 1477−1485. doi: 10.2138/am-2002-1025
    [13]
    Zhou C, Yang Z, Sun H, et al. LA-ICP-MS trace element analysis of sphalerite and pyrite from the Beishan Pb-Zn ore district, South China: Implications for ore genesis[J]. Ore Geology Reviews, 2022, 150: 105128. doi: 10.1016/j.oregeorev.2022.105128
    [14]
    Abmadjan A, Kitawaki H. Applications of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to gemology[J]. Gems and Gemology, 2006, 42(2): 98−118. doi: 10.5741/GEMS.42.2.98
    [15]
    Chew D, Drost K, Marsh J H, et al. LA-ICP-MS imaging in the geosciences and its applications to geochronology[J]. Chemical Geology, 2021, 559: 119917. doi: 10.1016/j.chemgeo.2020.119917
    [16]
    Chen J, Wang R, Ma M, et al. Laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS)–based strategies applied for the analysis of metal-binding protein in biological samples: An update on recent advances[J]. Analytical and Bioanalytical Chemistry, 2022, 414(24): 7023−7033. doi: 10.1007/s00216-022-04185-2
    [17]
    Harte P, Evertz M, Schwieters T, et al. Adaptation and improvement of an elemental mapping method for lithium ion battery electrodes and separators by means of laser ablation-inductively coupled plasma-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2019, 411: 581−589. doi: 10.1007/s00216-018-1351-9
    [18]
    Conrey R M, Bailey D G, Singer J W, et al. Combined use of multiple external and internal standards in LA-ICP-MS analysis of bulk geological samples using lithium borate fused glass[J]. Geochemistry: Exploration, Environment, Analysis, 2023, 23(2): geochem2023-001.
    [19]
    Tiepolo M, Zanetti A, Vannucci R. Determination of lithium, beryllium and boron at trace levels by laser ablation-inductively coupled plasma-sector field mass spectrometry[J]. Geostandards and Geoanalytical Research, 2005, 29(2): 211−224. doi: 10.1111/j.1751-908X.2005.tb00893.x
    [20]
    Tan X, Koch J, Günther D, et al. In situ element analysis of spodumenes by fs-LA-ICPMS with non-matrix-matched calibration: Signal beat and accuracy[J]. Chemical Geology, 2021, 583: 120463. doi: 10.1016/j.chemgeo.2021.120463.
    [21]
    Monarumit N, Lhuaamporn T, Sakkaravej S, et al. The color center of beryllium-treated yellow sapphires[J]. Journal of Physics Communications, 2020, 4(10): 105018. doi: 10.1088/2399-6528/abc7ea
    [22]
    Monarumit N, Lhuaamporn T, Satitkune S, et al. Effect of beryllium heat treatment in synthetic ruby[J]. Journal of Applied Spectroscopy, 2019, 86: 486−492. doi: 10.1007/s10812-019-00845-x
    [23]
    Kent A, Ungerer C. Analysis of light lithophile elements (Li, Be, B) by laser ablation ICP-MS: Comparison between magnetic sector and quadrupole ICP-MS[J]. American Mineralogist, 2006, 91(8-9): 1401−1411. doi: 10.2138/am.2006.2030
    [24]
    胡明月, 何红蓼, 詹秀春, 等. 基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用[J]. 分析化学, 2008, 36(7): 947−953. doi: 10.3321/j.issn:0253-3820.2008.07.016

    Hu M Y, He H L, Zhan X C, et al. Matrix normalization for in-situ multi-element quantitative analysis of zircon in laser ablation-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2008, 36(7): 947−953. doi: 10.3321/j.issn:0253-3820.2008.07.016
    [25]
    Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(32): 3863−3878. doi: 10.1007/s11434-013-5901-4
    [26]
    孟久灵. 纳秒激光剥蚀行为影响剥蚀过程中基体效应和元素分馏效应物理机制[D]. 武汉: 中国地质大学(武汉), 2023: 1-8.

    Meng J L. Nanosecond laser ablation behavior affecting the physical mechanism of matrix effect and element fractionation effect during ablation[D]. Wuhan: China University of Geoscience (Wuhan), 2023: 1-8.
    [27]
    Jochum K P, Nohl U, Herwig K, et al. GeoReM: A new geochemical database for reference materials and isotopic standards[J]. Geostandards and Geoanalytical Research, 2005, 29(3): 333−338. doi: 10.1111/j.1751-908X.2005.tb00904.x
    [28]
    谭细娟, 郭超, 凤永刚, 等. 激光剥蚀系统气体流速变化对LA-ICP-MS锆石U-Pb定年精度的影响[J]. 岩矿测试, 2022, 41(4): 554−563. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204004

    Tan X J, Guo C, Feng Y G, et al. Effect of gas flow rates in laser ablation system on accuracy and precision of zircon U-Pb dating analysis by LA-ICP-MS[J]. Rock and Mineral Analysis, 2022, 41(4): 554−563. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204004
    [29]
    周亮亮, 魏均启, 王芳, 等. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350−359. doi: 10.15898/j.cnki.11-2131/td.201701160007

    Zhou L L, Wei J Q, Wang F, et al. Optimization of the working parameters of LA-ICP-MS and its application to zircon U-Pb dating[J]. Rock and Mineral Analysis, 2017, 36(4): 350−359. doi: 10.15898/j.cnki.11-2131/td.201701160007
    [30]
    Luo T, Hu Z, Zhang W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193 nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655−1663. doi: 10.1039/C8JA00163D
    [31]
    吴石头, 许春雪, Klaus Simon, 等. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451−459.

    Wu S T, Xu C X, Simon K, et al. Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451−459.
    [32]
    王辉, 汪方跃, 关炳庭, 等. 激光能量密度对LA-ICP-MS分析数据质量的影响研究[J]. 岩矿测试, 2019, 38(6): 609−619.

    Wang H, Wang F Y, Guan B T, et al. Effect of laser energy density on data quality during LA-ICP-MS measurement[J]. Rock and Mineral Analysis, 2019, 38(6): 609−619.
    [33]
    Kimura J I, Chang Q, Ishikawa T, et al. Influence of laser parameters on isotope fractionation and optimisation of lithium and boron isotope ratio measurements using laser ablation-multiple Faraday collector-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(11): 2305−2320. doi: 10.1039/C6JA00283H
    [34]
    Míková J, Košler J, Wiedenbeck M. Matrix effects during laser ablation MC-ICP-MS analysis of boron isotopes in tourmaline[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(5): 903−914. doi: 10.1039/c3ja50241d
    [35]
    Diwakar P K, Gonzalez J J, Harilal S S, et al. Ultrafast laser ablation ICP-MS: Role of spot size, laser fluence, and repetition rate in signal intensity and elemental fractionation[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(2): 339−346. doi: 10.1039/C3JA50315A
    [36]
    胡子奇, 张德贤, 刘磊. 束斑直径和能量密度对锆石U-Pb定年准确度的影响研究[J]. 现代地质, 2023, 37(3): 722−732.

    Hu Z Q, Zhang D X, Liu L. Discussion on spot size and energy density affecting zircon U-Pb dating precision[J]. Geoscience, 2023, 37(3): 722−732.
    [37]
    袁继海, 詹秀春, 孙冬阳, 等. 激光剥蚀电感耦合等离子体质谱分析硅酸盐矿物基体效应的研究[J]. 分析化学, 2011, 39(10): 1582−1588. doi: 10.1016/S1872-2040(10)60477-X

    Yuan J H, Zhan X C, Sun D Y, et al. Investigation on matrix effects in silicate minerals by laser ablation-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(10): 1582−1588. doi: 10.1016/S1872-2040(10)60477-X
  • Related Articles

    [1]GONG Liqiang, LI Zhihong, ZHOU Bo, ZHOU Zhengyuan. Research Progress on the Preparation and Analytical Methods of Per- and Polyfluoroalkyl Substances in Groundwater[J]. Rock and Mineral Analysis. DOI: 10.15898/j.ykcs.202412310279
    [2]WANG Baoli, ZHANG Yijun, ZHANG Yuhang, CHEN Yan. Research Progress of Biochar Based Materials and Their Applications Using Electrochemical Sensors[J]. Rock and Mineral Analysis, 2024, 43(6): 967-981. DOI: 10.15898/j.ykcs.202403170058
    [3]Development of a Portable Extinction Photometer and Its Application to in situ Rapid Detection of Adulterated Milk[J]. Rock and Mineral Analysis, 2008, 27(3): 169-173.
    [4]Discussion on the Definition and Classification of Detection Limit[J]. Rock and Mineral Analysis, 2008, 27(2): 155-157.
    [5]Hydride Generation and Its Application in Analysis and Detection Field[J]. Rock and Mineral Analysis, 2008, 27(1): 55-59.
    [6]A View of the Present Status and Development Trends on Geoanalytical Instrumentation in China and Abroad[J]. Rock and Mineral Analysis, 2007, 26(6): 472-476.
    [7]An Interface Program for Data Processing in AAS Analysis[J]. Rock and Mineral Analysis, 2006, 25(3): 291-293.
    [8]Discussion on the Detection Limit in X-Ray Fluorescence Spectrometric Analysis[J]. Rock and Mineral Analysis, 2003, (4): 291-296.
    [9]The Software for Tackling the Export Data in Instrument Analysis[J]. Rock and Mineral Analysis, 2003, (1): 49-54.
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. 侯将,肖传晶,姚阔为. 快速检测技术在水环境污染物检测中的应用研究进展. 实验室检测. 2024(07): 30-33 .
    2. 高启宇. SPE-UFLC-MS法测定医药废水中8种四环素类抗生素. 化学工程师. 2024(08): 30-34 .
    3. 赵静,侯静云,高超,包虹艳. 无机及分析化学实验的综合应用教学研究. 保山学院学报. 2024(05): 103-108 .
    4. 王宝丽,张逸君,张宇航,陈艳. 生物炭基材料及其在电化学传感领域的应用. 岩矿测试. 2024(06): 967-981 . 本站查看

    Other cited types(2)

Catalog

    Article views (363) PDF downloads (82) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return