• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Shi-tou WU, Chun-xue XU, Klaus Simon, Yi-lin XIAO, Ya-ping WANG. Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451-459. DOI: 10.15898/j.cnki.11-2131/td.201703290044
Citation: Shi-tou WU, Chun-xue XU, Klaus Simon, Yi-lin XIAO, Ya-ping WANG. Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451-459. DOI: 10.15898/j.cnki.11-2131/td.201703290044

Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis

More Information
  • Received Date: March 28, 2017
  • Revised Date: July 08, 2017
  • Accepted Date: July 14, 2017
  • Published Date: August 31, 2017
  • Highlights
    · Ablation behaviors of 193nm ArF excimer laser for silicate glasses, common minerals, and powder pellets were systematically investigated.
    · Except for quartz, glasses and most of minerals have the controllable ablation behaviors.
    · Powder pellets have worse ablation behaviors, while their ablation behaviors could be improved either by increasing the tableting pressure or by decreasing the particle grain size.
    · Ablation rate data of 43 different sample substrates were presented in this paper. In general, the ablation rates of powder pellets are larger than those of glasses and minerals, the ablation rates of carbonates and sulfides are larger than those of silicate minerals.
    Understanding laser ablation behaviors of different target materials is essential for optimum laser parameters, external reference materials selection, as well as for data quality assurance. In this study, ablation behaviors of a 193nm ArF excimer laser for silicate glasses, common minerals, and powder pellets were investigated. Ablation rates influenced by laser parameters (including spot size, energy density, and laser frequency) were evaluated. Topographic images of craters generated during ablation illustrate that glasses and most minerals have controllable ablation behaviors, except for quartz. The worse ablation behavior of quartz may be ascribed to the micro-fluid inclusions, which could result in the overheating effect in laser pits. In general, powder pellets have worse ablation behaviors, but the increase of tableting pressure or reducing the particle grain size could improve the ablation behaviors. Ablation rates gradually decrease if the ablation depth is larger than 1.5 times of the spot size. The maximum ablation depth can reach twice the spot size when the energy density is 3.0 J/cm2 for the RESOlution M-50 laser system). Ablation rates increase with the increase of laser energy density, but ablation rates are not affected by the laser frequency (2-20 Hz). Ablation rates are specific to the individual substrates. In conclusion, the ablation rate data of 43 substrates, in which ablation rates of powder pellets are larger than glasses and minerals, whereas those of carbonates and sulfides are larger than silicate minerals, and those of NIST glasses are larger than geological glasses.

  • Liu Y S, Hu Z C, Li M, et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(32):3863-3878. doi: 10.1007/s11434-013-5901-4
    Russo R E, Mao X, Gonzalez J J, et al.Laser ablation in analytical chemistry[J].Analytical Chemistry, 2013, 85(13):6162-6177. doi: 10.1021/ac4005327
    Li Z, Hu Z, Günther D, et al.Ablation characteristics of ilmenite using UV nanosecond and femtosecond lasers:Implications for non-matrix-matched quantification[J].Geostandards and Geoanalytical Research, 2016, 40(4):477-491. doi: 10.1111/ggr.2016.40.issue-4
    Flem B, Larsen R B, Grimstvedt A, et al.In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry[J].Chemical Geology, 2002, 182(2-4):237-247. doi: 10.1016/S0009-2541(01)00292-3
    Stead C V, Tomlinson E L, Kamber B S, et al.Rare earth element determination in olivine by laser ablation-quadrupole-ICP-MS:An analytical strategy and applications[J].Geostandards and Geoanalytical Research, 2017:DOI: 10.1111/ggr.12157.
    Chew D M, Donelick R A, Donelick M B, et al.Apatite chlorine concentration measurements by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2014, 38(1):23-35. doi: 10.1111/j.1751-908X.2013.00246.x
    Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3
    Li C Y, Zhang R Q, Ding X, et al.Dating cassiterite using laser ablation ICP-MS[J].Ore Geology Reviews, 2016, 72:313-322. doi: 10.1016/j.oregeorev.2015.07.016
    Yang Y H, Wu F Y, Li Y, et al.In situ U-Pb dating of bastnaesite by LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6):1017-1023. doi: 10.1039/C4JA00001C
    Zack T, Stockli D F, Luvizotto G L, et al.In situ U-Pb rutile dating by LA-ICP-MS:208Pb correction and pros-pects for geological applications[J].Contributions to Mineralogy and Petrology, 2011, 162(3):515-530. doi: 10.1007/s00410-011-0609-4
    Cruz-Uribe A M, Mertz-Kraus R, Zack T, et al.A new LA-ICP-MS method for Ti in quartz:Implications and application to high pressure rutile-quartz veins from the Czech Erzgebirge[J].Geostandards and Geoanalytical Research, 2016, 41(1):29-40. doi: 10.1111/ggr.12132/full
    Audétat A, Garbe-Schönberg D, Kronz A, et al.Charac-terisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge[J].Geostandards and Geoanalytical Research, 2015, 39(2):171-184. doi: 10.1111/ggr.2015.39.issue-2
    He Z, Huang F, Yu H, et al.A flux-free fusion tech-nique for rapid determination of major and trace elements in silicate rocks by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2016, 40(1):5-21. doi: 10.1111/ggr.2016.40.issue-1
    Peters D, Pettke T.Evaluation of major to ultra trace element bulk rock chemical analysis of nanoparticulate pressed powder pellets by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2017, 41(1):5-28. doi: 10.1111/ggr.12125
    Tang M, Arevalo Jr R, Goreva Y, et al.Elemental frac-tionation during condensation of plasma plumes generated by laser ablation:A ToF-SIMS study of condensate blankets[J].Journal of Analytical Atomic Spectrometry, 2015, 30(11):2316-2322. doi: 10.1039/C5JA00320B
    吴石头, 王亚平, 詹秀春, 等.CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究[J].岩矿测试, 2016, 35(6):612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007

    Wu S T, Wang Y P, Zhan X C, et al.Study on the elemental fractionation effect of CGSG reference materials and the related within-unit homogeneity of major and trace elements[J].Rock and Mineral Analysis, 2016, 35(6):612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007
    Hu Z C, Liu Y S, Chen L, et al.Contrasting matrix ind-uced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J].Journal of Analytical Atomic Spectrometry, 2011, 26(2):425-430. doi: 10.1039/C0JA00145G
    Jochum K P, Stoll B, Weis U, et al.Non-matrix-matched calibration for the multi-element analysis of geological and environmental samples using 200nm femtosecond LA-ICP-MS:A comparison with nanosecond lasers[J].Geostandards and Geoanalytical Research, 2014, 38(3):265-292. doi: 10.1111/ggr.2014.38.issue-3
    Sylvester P J.Matrix effects in laser ablation ICP-MS.Laser ablation ICP-MS in the earth sciences:Current practices and outstanding issues (Sylvester P, ed.)[J].Mineralogical Association of Canada, 2008, 40:67-78. http://www.worldcat.org/title/laser-ablation-icp-ms-in-the-earth-sciences-current-practices-and-outstanding-issues/oclc/253374987
    Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004
    Jackson S E.Calibration strategies for elemental analysis by LA-ICP-MS.Laser ablation ICP-MS in the earth sciences:Current practices and outstanding issues (Sylvester P, ed.)[J].Mineralogical Association of Canada, 2008, 40:169-188. doi: 10.1080/00032719.2016.1225305
    Paton C, Woodhead J D, Hellstrom J C, et al.Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J].Geochemistry, Geophysics, Geosystems, 2010, 11(3):1-36. doi: 10.1029/2009GC002618/abstract?globalMessage=0
    吴石头, 王亚平, 许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试, 2015, 34(5):503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

    Wu S T, Wang Y P, Xu C X.Research progress on reference mterials for in situ elemental analysis by laser ablation-inductive coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(5):503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002
    Yang Q C, Jochum K P, Stoll B, et al.BAM-S005 type A and B:New silicate reference glasses for microanalysis[J].Geostandards and Geoanalytical Research, 2012, 36(3):301-313. doi: 10.1111/ggr.2012.36.issue-3
    Jochum K P, Wilson S A, Becker H, et al.FeMnOx-1:A new microanalytical reference material for the investigation of Mn-Fe rich geological samples[J].Chemical Geology, 2016, 432:34-40. doi: 10.1016/j.chemgeo.2016.03.026
    Tabersky D, Luechinger N A, Rossier M, et al.Develop-ment and characterization of custom-engineered and compacted nanoparticles as calibration materials for quantification using LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6):955-962. doi: 10.1039/C4JA00054D
    Klemme S, Prowatke S, Münker C, et al.Synthesis and preliminary characterisation of new silicate, phosphate and titanite reference glasses[J].Geostandards and Geoanalytical Research, 2008, 32(1):39-54. doi: 10.1111/j.1751-908X.2008.00873.x
    Horn I, Guillong M, Günther D.Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles-Implications for LA-ICP-MS[J].Applied Surface Science, 2001, 182(1-2):91-102. doi: 10.1016/S0169-4332(01)00465-2
    Borisov O V, Mao X, Russo R E.Effects of crater develop-ment on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2000, 55(11):1693-1704. doi: 10.1016/S0584-8547(00)00272-X
    Mank A J G, Mason P R D.A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples[J].Journal of Analytical Atomic Spectrometry, 1999, 14(8):1143-1153. doi: 10.1039/a903304a
    Li X, Liu X, Liu Y, et al.Accuracy of LA-ICPMS zircon U-Pb age determination:An inter-laboratory comparison[J].Science China Earth Sciences, 2015, 58(10):1722-1730. doi: 10.1007/s11430-015-5110-x
    Horstwood M S, Košler J, Gehrels G, et al.Community-derived standards for LA-ICP-MS U-(Th-) Pb geochro-nology-uncertainty propagation, age interpretation and data reporting[J].Geostandards and Geoanalytical Research, 2016, 40(3):311-332. doi: 10.1111/ggr.2016.40.issue-3
    吴石头, 王亚平, 许春雪, 等.193nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J].分析化学, 2016, 44(7):1035-1041. doi: 10.11895/j.issn.0253-3820.151006

    Wu S T, Wang Y P, Xu C X, et al.Elemental fractionation studies of 193nm ArF excimer laser ablation system at high spatial resolution mode[J].Chinese Journal of Analytical Chemistry, 2016, 44(7):1035-1041. doi: 10.11895/j.issn.0253-3820.151006
    Günther D, Heinrich C A.Comparison of the ablation behaviour of 266nm Nd:YAG and 193nm ArF excimer lasers for LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9):1369-1374. doi: 10.1039/A901649J
    Jeffries T E, Jackson S E, Longerich H P.Application of a frequency quintupled Nd:YAG source (λ=213nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals[J].Journal of Analytical Atomic Spectrometry, 1998, 13(9):935-940. doi: 10.1039/A801328D
    Kuhn B K, Birbaum K, Luo Y, et al.Fundamental studies on the ablation behaviour of Pb/U in NIST 610 and zircon 91500 using laser ablation inductively coupled plasma mass spectrometry with respect to geochronology[J].Journal of Analytical Atomic Spectrometry, 2010, 25(1):21-27. doi: 10.1039/B917261K
    Garbe-Schonberg D, Müller S.Nano-particulate pressed powder tablets for LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6):990-1000. doi: 10.1039/C4JA00007B
    Zhang C, Hu Z, Zhang W, et al.A green and fast laser fusion technique for bulk silicate rock analysis by laser ablation ICP-MS[J].Analytical Chemistry, 2016, 88(20):10088-10094. doi: 10.1021/acs.analchem.6b02471
    Ubide T, McKenna C A, Chew D M, et al.High-resolution LA-ICP-MS trace element mapping of igneous minerals:In search of magma histories[J].Chemical Geology, 2015, 409:157-168. doi: 10.1016/j.chemgeo.2015.05.020
    Raimondo T, Payne J, Wade B, et al.Trace element mapping by LA-ICP-MS:Assessing geochemical mobility in garnet[J].Contributions to Mineralogy and Petrology, 2017, 172(4):17. doi: 10.1007/s00410-017-1339-z
    Bi M, Ruiz A M, Gornushkin I, et al.Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Applied Surface Science, 2000, 158(3-4):197-204. doi: 10.1016/S0169-4332(00)00027-1
    Müller W, Shelley M, Miller P, et al.Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell[J].Journal of Analytical Atomic Spectrometry, 2009, 24(2):209-214. doi: 10.1039/B805995K
    Steely A N, Hourigan J K, Juel E.Discrete multi-pulse laser ablation depth profiling with a single-collector ICP-MS:Sub-micron U-Pb geochronology of zircon and the effect of radiation damage on depth-dependent fractionation[J].Chemical Geology, 2014, 372:92-108. doi: 10.1016/j.chemgeo.2014.02.021
    Jackson S E, Günther D.The nature and sources of laser induced isotopic fractionation in laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2003, 18(3):205-212. doi: 10.1039/b209620j
    Gaboardi M, Humayun M.Elemental fractionation during LA-ICP-MS analysis of silicate glasses:Implications for matrix-independent standardization[J].Journal of Analytical Atomic Spectrometry, 2009, 24(9):1188-1197. doi: 10.1039/b900876d
    Mao X L, Russo R E.Invited paper observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles[J].Applied Physics A:Materials Science & Processing, 1996, 64(1):1-6. doi: 10.1007/s003390050437
    Russo R E, Mao X L, Liu C, et al.Laser assisted plasma spectrochemistry:Laser ablation[J].Journal of Analytical Atomic Spectrometry, 2004, 19(9):1084-1089. doi: 10.1039/b403368j
  • Cited by

    Periodical cited type(25)

    1. 牛俊龙,吴石头,杨岳衡,张超,王浩,龚庆杰. 石英和锆石Ti温度计在地学中的应用及其Ti含量的微区分析技术进展. 岩石学报. 2024(01): 323-337 .
    2. 范晨子,孙冬阳,赵令浩,袁继海,胡明月,赵明. 激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分. 岩矿测试. 2024(01): 87-100 . 本站查看
    3. 周伟,张嘉升,祁晓鹏,徐磊,杨杰. X射线衍射和TIMA研究陕南镇巴地区富锂黏土岩的矿物组成及锂的赋存状态. 岩矿测试. 2024(01): 76-86 . 本站查看
    4. 陈静雅,汪方跃,王建,周涛发,李全忠. LA-ICP-MS多脉冲短时间剥蚀法锆石超薄增生边定年研究. 岩石矿物学杂志. 2024(04): 1052-1065 .
    5. 高天恒,任同祥. 不同聚合物基质的LA-ICP-MS剥蚀行为探究. 计量科学与技术. 2023(04): 63-69 .
    6. 李会来,李凡,张鼎文,郭伟,靳兰兰,胡圣虹. 低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究. 岩矿测试. 2023(05): 970-982 . 本站查看
    7. Shitou WU,Yueheng YANG,Nick M.W.ROBERTS,Ming YANG,Hao WANG,Zhongwu LAN,Bohang XIE,Tianyi LI,Lei XU,Chao HUANG,Liewen XIE,Jinhui YANG,Fuyuan WU. In situ calcite U-Pb geochronology by high-sensitivity single-collector LA-SF-ICP-MS. Science China(Earth Sciences). 2022(06): 1146-1160 .
    8. 吴石头,杨岳衡,Nick M.W.ROBERTS,杨明,王浩,兰中伍,谢博航,李天义,许蕾,黄超,谢烈文,杨进辉,吴福元. 高灵敏度-单接收杯LA-SF-ICP-MS原位方解石U-Pb定年. 中国科学:地球科学. 2022(07): 1375-1390 .
    9. 胡欢,王汝成,车旭东,靳文楷,汤志敏,谢磊,陶湘媛. 关键金属元素铍的原位分析技术研究进展. 岩石学报. 2022(07): 1890-1900 .
    10. 胡志中,晏雄,杜谷,王冠,徐国栋,何佳乐,金鹭,兰明国,何袖辉. 方解石811N:一种可能的微区碳氧锶同位素分析标准. 沉积与特提斯地质. 2022(04): 542-555 .
    11. 张红雨,赵青青,赵刚,洪晶欣,刘家军,翟德高. 黄铁矿微量元素LA-ICP-MS原位微区分析方法及其在金矿床研究中的应用. 矿床地质. 2022(06): 1182-1199 .
    12. 张亮亮,朱弟成,谢锦程,王青,鲁瑶,徐若炎,齐宁远. 碳酸盐矿物激光原位U-Pb定年:进展与展望. 矿物岩石地球化学通报. 2022(06): 1120-1134 .
    13. 周帆,李明,柴辛娜,胡兆初,罗涛,胡圣虹. 非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成. 岩矿测试. 2021(01): 33-41 . 本站查看
    14. 李阳,邹灏,刘行,蒋修未,李蝶. SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用. 岩矿测试. 2020(02): 300-310 . 本站查看
    15. 胡志中,杨波,晏雄,杜谷. 硅酸盐矿物LA-ICP-MS元素分析研究. 矿产综合利用. 2020(04): 130-136 .
    16. 胡志中,李佩,蒋璐蔓,王通洋,杜谷,杨波. 古代玻璃材料LA-ICP-MS组分分析及产源研究. 岩矿测试. 2020(04): 505-514 . 本站查看
    17. 胡志中,杨波,杜谷,王坤阳. LA-ICP-MS在地质研究中的样品前处理方法与进展. 矿产综合利用. 2020(05): 52-57 .
    18. 胡志中,王坤阳,晏雄,杨波,杜谷. 锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究. 岩矿测试. 2020(06): 804-815 . 本站查看
    19. 张迪,陈意,毛骞,苏斌,贾丽辉,郭顺. 电子探针分析技术进展及面临的挑战. 岩石学报. 2019(01): 261-274 .
    20. 王辉,汪方跃,盛兆秋. LA-ICP-MS分析中不同莫氏硬度矿物激光剥蚀行为及剥蚀速率研究. 岩石矿物学杂志. 2019(01): 113-120 .
    21. 胡志中,杨波,杜谷. LA-ICP-MS在地质全岩样品元素分析中的应用. 四川地质学报. 2019(01): 164-168 .
    22. 竺成林,王华建,叶云涛,王晓梅,黄家旋,朱玉梅,杨瑞东. 基于原位多元素成像分析龙马溪组笔石成因及地质意义. 岩矿测试. 2019(03): 245-259 . 本站查看
    23. 吴石头,许春雪,陈宗定,王亚平,白金峰. LA-ICP-M S结合超高压粉末压片技术快速分析碳酸盐岩中Mg, Ca, Sr, Ba和轻稀土元素. 分析试验室. 2019(09): 1089-1094 .
    24. 王辉,汪方跃,关炳庭,盛兆秋. 激光能量密度对LA-ICP-MS分析数据质量的影响研究. 岩矿测试. 2019(06): 609-619 . 本站查看
    25. 肖益林,余成龙,王洋洋,陆一敢. 变质作用与流体包裹体:进展与展望. 矿物岩石地球化学通报. 2018(03): 424-440+561 .

    Other cited types(6)

Catalog

    Article views (14556) PDF downloads (97) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return