• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHAO Huizhen,CHEN Yong,TU Cong,et al. Geochemical Characteristics and Water Content of Melt Inclusions in the Tuff of the Tiaojishan Formation, Liujiang Basin[J]. Rock and Mineral Analysis,2025,44(1):88−101. DOI: 10.15898/j.ykcs.202404030074
Citation: ZHAO Huizhen,CHEN Yong,TU Cong,et al. Geochemical Characteristics and Water Content of Melt Inclusions in the Tuff of the Tiaojishan Formation, Liujiang Basin[J]. Rock and Mineral Analysis,2025,44(1):88−101. DOI: 10.15898/j.ykcs.202404030074

Geochemical Characteristics and Water Content of Melt Inclusions in the Tuff of the Tiaojishan Formation, Liujiang Basin

More Information
  • Received Date: April 02, 2024
  • Revised Date: July 30, 2024
  • Accepted Date: August 06, 2024
  • Available Online: September 07, 2024
  • Published Date: September 04, 2024
  • HIGHLIGHTS
    (1) The establishment of a calibration curve is crucial for the quantitative determination of water content in melt inclusions using laser Raman spectroscopy.
    (2) The water content of melt inclusions has a strong linear relationship with Raman spectroscopy parameters, allowing a calibration curve to be established with only a few standard samples.
    (3) The average water content of melt inclusions in the tuffaceous rocks from the Tiaojishan Formation in the Liujiang Basin is 2.62%, indicating an acidic, water-enriched magmatic system.

    Water, as the primary volatile component in magmatic systems, has a significant impact on the formation and evolution of magma. The Tiaojishan Formation igneous rocks in the Liujiang Basin are significant products of Yanshanian volcanic activity. Although previous studies have extensively explored their geochemical characteristics, the water content of the magma in the Liujiang Basin during Yanshanian volcanic activity remains unclear. Melt inclusions, which capture the original magmatic information, serve as the most direct samples for determining the water content of magma. Based on geochemical analysis, this study quantitatively determines the water content in melt inclusions using laser Raman spectroscopy with standard samples. The results show that the lower tuff samples of the Tiaojishan Formation are characterized by high Si and Al contents, enrichment in LILEs, depletion in HFSEs, enrichment in LREEs, and depletion in HREEs. The water content in melt inclusions reveals a range of 0.99% to 4.98%, with an average of 2.62%. These characteristics jointly indicate the water-enriched acidic magmatic activity during the early Tiaojishan period in this area. Combining the water content of melt inclusions with the large-scale volcanic eruptions in the stage, this study suggests that high water content in the magma enhanced the eruptive dynamics of the magmatic system, making it a contributing factor to the large-scale volcanic eruption. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202404030074.

  • [1]
    李福春, 朱金初, 金章东. 岩浆中主要挥发份含量——熔融包裹体和淬火玻璃证据[J]. 地质地球化学, 2000, 28(2): 8−13.

    Li F C, Zhu J C, Jin Z D. Contents of main volatiles in magma: Evidence from melt inclusions and quenched glasses[J]. Geology Geochemistry, 2000, 28(2): 8−13.
    [2]
    李霓, 孙嘉祥. 火山岩中熔体包裹体研究进展[J]. 矿物岩石地球化学通报, 2018, 37(3): 414−423. doi: 10.19658/j.issn.1007-2802.2018.37.091

    Li N, Sun J X. A review on research progress of melt inclusion in volcanic rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 414−423. doi: 10.19658/j.issn.1007-2802.2018.37.091
    [3]
    Forte P, Castro J M. H2O-content and temperature limit the explosive potential of rhyolite magma during Plinian eruptions[J]. Earth and Planetary Science Letters, 2019, 506: 157−167. doi: 10.1016/j.jpgl.2018.10.041
    [4]
    Roedder E. Origin and significance of magmatic inclusions[J]. Bulletin de Mineralogie, 1979, 102(5): 487−510. doi: 10.3406/bulmi.1979.7299
    [5]
    Roedder E. Fluid inclusions[M]//Ribhe P H, ed. Reviews in mineralogy (Vol. 12). Washington DC: Mineralogical Society of America, 1984.
    [6]
    王蝶, 卢焕章, 单强. 岩浆熔体包裹体研究进展[J]. 岩石学报, 2017, 33(2): 653−666.

    Wang D, Lu H Z, Shan Q. Advances on melt inclusion studies[J]. Acta Petrologica Sinica, 2017, 33(2): 653−666.
    [7]
    Bennett E N, Jenner F E, Millet M A, et al. Deep roots for mid-ocean-ridge volcanoes revealed by plagioclase-hosted melt inclusions[J]. Nature, 2019, 572(7768): 235−239. doi: 10.1038/s41586-019-1448-0
    [8]
    Metrich N, Wallace P J. Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 363−402. doi: 10.2138/rmg.2008.69.10
    [9]
    Esposito R, Hunter J, Schiffbauer J D, et al. An assessment of the reliability of melt inclusions as recorders of the pre-eruptive volatile content of magmas[J]. American Mineralogist, 2014, 99(5−6): 976−998. doi: 10.2138/am.2014.4574
    [10]
    丁一, 刘吉强, 宗统, 等. 熔体包裹体挥发份应用的研究进展[J]. 岩石矿物学杂志, 2019, 38(6): 897−913. doi: 10.3969/j.issn.1000-6524.2019.06.018

    Ding Y, Liu J Q, Zong T, et al. A review on the application of volatiles in melt inclusions[J]. Acta Petrologica Sinica, 2019, 38(6): 897−913. doi: 10.3969/j.issn.1000-6524.2019.06.018
    [11]
    高晓英, 涂聪, 孟子岳. 激光拉曼光谱仪定量测定硅酸盐熔体包裹体中水含量及其地质应用[J]. 地球科学, 2022, 47(10): 3616−3632.

    Gao X Y, Tu C, Meng Z Y. Geological application of Raman spectroscopy to quantify trace water concentrations in silicate glasses[J]. Earth Science, 2022, 47(10): 3616−3632.
    [12]
    王玉琪, 丁兴, 邸健, 等. 激光拉曼快速标定花岗质玻璃的水含量[J]. 地球化学, 2023, 52(2): 250−260. doi: 10.19700/j.0379-1726.2023.02.010

    Wang Y Q, Ding X, Di J, et al. Rapid analysis of water content in granitic glass using in situ Raman spectroscopy[J]. Geochimica, 2023, 52(2): 250−260. doi: 10.19700/j.0379-1726.2023.02.010
    [13]
    孟庆国, 刘昌岭, 李承峰, 等. X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征[J]. 岩矿测试, 2021, 40(1): 85−94. doi: 10.15898/j.cnki.11-2131/td.202005290077

    Meng Q G, Liu C L, Li C F, et al. Study on the structure and spectroscopic characteristics of methane-containing binary hydrates using X-ray powder diffraction-Raman spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 85−94. doi: 10.15898/j.cnki.11-2131/td.202005290077
    [14]
    杨春梅, 黄梓芸, 覃静雯, 等. 应用钻石观测仪-红外光谱仪-激光诱导击穿光谱仪鉴定无机材料充填翡翠[J]. 岩矿测试, 2022, 41(2): 281−290. doi: 10.15898/j.cnki.11-2131/td.202109170123

    Yang C M, Huang Z Y, Qin J W, et al. Identification of inorganic material-filled jadeite using diamond observation instrument-infrared spectrometer-laser-induced breakdown spectrometer[J]. Rock and Mineral Analysis, 2022, 41(2): 281−290. doi: 10.15898/j.cnki.11-2131/td.202109170123
    [15]
    范晨子, 孙冬阳, 赵令浩, 等. 激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分[J]. 岩矿测试, 2024, 43(1): 87−100. doi: 10.15898/j.ykcs.202305310072

    Fan C Z, Sun D Y, Zhao L H, et al. Micro-area in-situ quantitative analysis of chemical composition of lithium-beryllium minerals using laser ablation inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 87−100. doi: 10.15898/j.ykcs.202305310072
    [16]
    Thomas R. Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy[J]. American Mineralogist, 2000, 85(5−6): 868−872. doi: 10.2138/am-2000-5-631
    [17]
    Chabiron A, Pironon J, Massare D. Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy[J]. Contributions to Mineralogy and Petrology, 2004, 146: 485−492. doi: 10.1007/s00410-003-0510-x
    [18]
    陈勇. 流体包裹体激光拉曼光谱分析方法及应用[M]. 北京: 中国石油大学出版社, 2015.

    Chen Y. Raman spectroscopy for fluid inclusion analysis and applications[M]. Beijing: China University of Petroleum Press, 2015.
    [19]
    Tu C, Meng Z Y, Gao X Y, et al. Quantification of water content and speciation in synthetic rhyolitic glasses: Optimising the analytical method of confocal Raman spectrometry[J]. Geostandards and Geoanalytical Research, 2023, 47(3): 549−567. doi: 10.1111/ggr.12490
    [20]
    赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 2004, 11(3): 319−328. doi: 10.3321/j.issn:1005-2321.2004.03.030

    Zhao Y, Xu G, Zhang S H, et al. Yanshan movement and conversion of tectonic regimes in East Asia[J]. Earth Science Frontiers, 2004, 11(3): 319−328. doi: 10.3321/j.issn:1005-2321.2004.03.030
    [21]
    李伍平, 赵越, 李献华, 等. 燕山造山带中—晚侏罗世髫髻山期(蓝旗期)火山岩的成因及其动力学意义[J]. 岩石学报, 2007, 23(3): 557−564.

    Li W P, Zhao Y, Li X H, et al. Genesis and dynamic significance of the middle-late Jurassic Tiaojishan (Lanqi) volcanic rocks in the Yanshan orogenic belt[J]. Acta Petrologica Sinica, 2007, 23(3): 557−564.
    [22]
    段超, 毛景文, 谢桂青, 等. 太行山北段木吉村髫髻山组安山岩锆石 U-Pb 年龄和 Hf 同位素特征及其对区域成岩成矿规律的指示[J]. 地质学报, 2016, 90(2): 250−266.

    Duan C, Mao J W, Xie G Q, et al. Zircon U-Pb age and Hf isotopic characteristics of the Tiaojishan Formation andesite in Mujicun, Northern Taihang Mountains, and its implications for regional magmatism and metallogeny[J]. Acta Geologica Sinica, 2016, 90(2): 250−266.
    [23]
    于海飞, 张志诚, 帅歌伟, 等. 北京十三陵—西山髫髻山组火山岩年龄及其地质意义[J]. 地质论评, 2016, 62(4): 807−826. doi: 10.16509/j.georeview.2016.04.003

    Yu H F, Zhang Z C, Shuai G W, et al. Age and geological significance of the Tiaojishan Formation volcanic rocks in the Shisanling—Xishan area, Beijing[J]. Geological Review, 2016, 62(4): 807−826. doi: 10.16509/j.georeview.2016.04.003
    [24]
    李斌, 陈井胜, 刘淼, 等. 辽西髫髻山组的形成时代及地球化学特征[J]. 地质论评, 2019, 65(S1): 2. doi: 10.16509/j.georeview.2019.s1.029

    Li B, Chen J S, Liu M, et al. Formation age and geochemical characteristics of the Tiaojishan Formation in Western Liaoning[J]. Geological Review, 2019, 65(S1): 2. doi: 10.16509/j.georeview.2019.s1.029
    [25]
    赵瑞鹏, 陈亮, 刘道宏, 等. 河北秦皇岛石门寨中生代火山岩的地球化学特征和锆石LA-ICP-MS U-Pb年龄[J]. 地质论评, 2019, 65(4): 929−947. doi: 10.16509/j.georeview.2019.04.010

    Zhao R P, Chen L, Liu D H, et al. Geochemical characteristics and zircon LA-ICP-MS U-Pb age of Mesozoic volcanic rocks in Shimen Village, Qinhuangdao, Hebei[J]. Geological Review, 2019, 65(4): 929−947. doi: 10.16509/j.georeview.2019.04.010
    [26]
    吴孔友, 冀国盛. 秦皇岛地区地质认识实习指导书[M]. 北京: 中国石油大学出版社, 2007.

    Wu K Y, Ji G S. Field guide for geological understanding practice in the Qinhuangdao area[M]. Beijing: China University of Petroleum Press, 2007.
    [27]
    郑亚东, Davis G A, 王琮, 等. 燕山带中生代主要构造事件与板块构造背景问题[J]. 地质学报, 2000, 74(4): 289−302. doi: 10.3321/j.issn:0001-5717.2000.04.001

    Zheng Y D, Davis G A, Wang C, et al. Major Mesozoic tectonic events and plate tectonic background of the Yanshan belt[J]. Acta Geologica Sinica, 2000, 74(4): 289−302. doi: 10.3321/j.issn:0001-5717.2000.04.001
    [28]
    Mysen B O, Virgo D, Scarfe C M. Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study[J]. American Mineralogist, 1980, 65(7−8): 690−710.
    [29]
    Sharma S K, Mammone J F, Nicol M F. Raman investigation of ring configurations in vitreous silica[J]. Nature, 1981, 292(5819): 140−141. doi: 10.1038/292140a0
    [30]
    McMillan P. Structural studies of silicate glasses and melts—Applications and limitations of Raman spectroscopy[J]. American Mineralogist, 1984, 69(7−8): 622−644.
    [31]
    Matson D W, Sharma S K, Philpotts J A. Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins[J]. American Mineralogist, 1986, 71(5−6): 694−704.
    [32]
    Mysen B O, Virgo D, Seifert F A. The structure of silicate melts: Implications for chemical and physical properties of natural magma[J]. Reviews of Geophysics, 1982, 20(3): 353−383. doi: 10.1029/RG020i003p00353
    [33]
    McMillan P F, Remmele R L. Hydroxyl sites in SiO2 glass: A note on infrared and Raman spectra[J]. American Mineralogist, 1986, 71(5−6): 772−778.
    [34]
    Mysen B O, Holtz F, Pichavant M, et al. Solution mechanisms of phosphorus in quenched hydrous and anhydrous granitic glass as a function of peraluminosity[J]. Geochimica et Cosmochimica Acta, 1997, 61(18): 3913−3926. doi: 10.1016/S0016-7037(97)00193-2
    [35]
    Long D A. Raman spectroscopy[M]. New York: McGraw-Hill, 1977.
    [36]
    Irving A J, Frey F A. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis[J]. Geochimica et Cosmochimica Acta, 1984, 48(6): 1201−1221. doi: 10.1016/0016-7037(84)90056-5
    [37]
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society Special Publications, 1989, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
    [38]
    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[M]//Thorpe R S. Orogenic andesites and related rocks. John Wiley & Sons, 1982: 528−548.
    [39]
    McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3−4): 223−253. doi: 10.1016/0009-2541(94)00140-4
    [40]
    朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346−1356.

    Zhu R X, Xu Y G. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 49(9): 1346−1356.
    [41]
    牛俊杰. 下地壳埃达克质岩浆房的发现: 来自角闪石循环晶的证据[D].北京: 中国地质大学(北京), 2020.

    Niu J J. The hidden Adakitic magma reservoir in the lower crust revealed by amphibole antecrysts[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [42]
    卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004.

    Lu H Z, Fan H R, Ni P, et al. Fluid inclusions[M]. Beijing: Science Press, 2004.
    [43]
    李霓, 樊祺诚, 孙谦, 等. 熔体包裹体对长白山天池火山千年大喷发的指示意义[J]. 岩石学报, 2008, 24(11): 2604−2614.

    Li N, Fan Q C, Sun Q, et al. The implication of melt inclusion for the millennium eruption of Changbaishan Tianchi volcano[J]. Acta Petrologica Sinica, 2008, 24(11): 2604−2614.
    [44]
    张道涵, 魏俊浩, 付乐兵, 等. 熔体包裹体的形成、改造和分析方法及其矿床学应用[J]. 地球科学, 2017, 42(6): 990−1007.

    Zhang D H, Wei J H, Fu L B, et al. Formation, modification and analytical techniques of melt inclusion, and their applications in economic geology[J]. Earth Science, 2017, 42(6): 990−1007.
    [45]
    Bowen N L. The evolution of the igneous rocks[M]. Princeton: Princeton University Press, 1928.
    [46]
    Hartung E, Weber G, Caricchi L. The role of H2O on the extraction of melt from crystallising magmas[J]. Earth and Planetary Science Letters, 2019, 508: 85−96. doi: 10.1016/j.jpgl.2018.12.010
    [47]
    Cerpa N G, Wada I, Wilson C R. Effects of fluid influx, fluid viscosity, and fluid density on fluid migration in the mantle wedge and their implications for hydrous melting[J]. Geosphere, 2019, 15(1): 1−23. doi: 10.1130/ges01660.1
    [48]
    Rasmussen D J, Plank T A, Roman D C, et al. Magmatic water content controls the pre-eruptive depth of arc magmas[J]. Science, 2022, 375(6585): 1169−1172. doi: 10.1126/science.abm5174
  • Related Articles

    [1]PAN Meng, TONG Ling, TIAN Qin, SONG Shuling. Determination of 15 Organophosphate Ester Flame Retardants in Soils and Sediments by Gas Chromatography-Mass Spectrometry with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2023, 42(6): 1165-1176. DOI: 10.15898/j.ykcs.202305110065
    [2]TONG Ling, TIAN Qin, YANG Zhi-peng, PAN Meng. Research on the Determination of 14 Synthetic Musks in Sediment Samples by Gas Chromatography-Tandem Mass Spectrometry with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2020, 39(4): 587-596. DOI: 10.15898/j.cnki.11-2131/td.201906240089
    [3]TONG Ling, YANG Jia-jia, YAN Ni, WU Shu-qi. Simultaneous Analysis of Organochlorinated Pesticides and Polychlorinated Biphenyls from Animal Tissue using Gas Chromatography-Mass Spectrometry Combined with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2014, 33(2): 262-269.
    [4]Jiang-hua ZHAO, Zhong-yu LI, Jun HE, Min-qi ZHENG. Applications of Accelerated Solvent Extraction in Preparation of Poly-nuclear Aromatic Hydrocarbons in Oil and Gas Geochemical Exploration Samples[J]. Rock and Mineral Analysis, 2013, 32(5): 791-795.
    [5]Jia-jia YANG, Ling TONG, Shu-Qi WU, Ni YAN. Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Grains Using Gas Chromatography with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2013, 32(3): 487-494.
    [6]LI Jun, XIAO Ya-wen, WANG Zhen, ZHAO Wei-wu. Simultaneous Determination of 18 Pesticide Residues including Pyrethroids in Soils by Gas Chromatography-Mass Spectrometry with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2011, 30(5): 590-595.
    [7]CHEN Wei-ming, LI Qing-xia, ZHANG Fang, HE Xiao-hui, ZHANG Qin. Determination of 7 Polychlorinated Biphenyls in Soil Samples by Accelerated Solvent Extraction-Gas Chromatography/ Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 33-39.
    [8]RAO Zhu, HE Miao, CHEN Wei, LI Song, LIU Yan. Determination of Organophosphate Pesticides in Soil Samples by Accelerated Solvent Extraction-Gas Chromatography[J]. Rock and Mineral Analysis, 2010, 29(5): 503-507.
    [9]ZHANG Yan, ZHANG Jing-fa, CHEN Yan-mei, MENG Juan, HAN Cui-ying. Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Soils by Gas Chromatography with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2010, 29(5): 491-496.
    [10]GONG Yingli, SUN Weilin, WANG Shuangqing, SHEN Bin. A Comparative Study on Extraction of Organic Matters in Source Rocks by Accelerated Solvent Extraction and Soxhlet Extraction[J]. Rock and Mineral Analysis, 2009, 28(5): 416-422.

Catalog

    Article views (79) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return