Citation: | HU Tingting,LI Zhixiong,CHEN Jiawei. Quantitative Investigation of the Size-dependent Aggregation of Nanoplastics[J]. Rock and Mineral Analysis,2024,43(1):101−113. DOI: 10.15898/j.ykcs.202305020058 |
The geochemical behavior of microplastics (MPs) and nanoplastics (NPs) in the environment has become a global hot topic. Aggregation effect is an important factor controlling the geochemical behavior of NPs, yet there is conflicting evidence regarding the dependence of aggregation on NPs size. Investigating the general patterns and dominant mechanisms governing the aggregation behavior of different-sized NPs under various environmental conditions, will provide help in understanding and predicting the fate of NPs with different sizes. The study has shown that NPs with the same chemical composition but different sizes have different stability and mobility under the same conditions. The critical coagulation concentration (CCC) for NPs increases with the decrease in particle size at a fixed surface
[1] |
Koelmans A A, Redondo-Hasselerharm P E, Nor N H M, et al. Risk assessment of microplastic particles[J]. Nature Reviews Materials, 2022, 7(2): 138−152. doi: 10.1038/s41578-021-00411-y
|
[2] |
McDevitt J P, Criddle C S, Morse M, et al. Addressing the issue of microplastics in the wake of the microbead-free waters act—A new standard can facilitate improved policy[J]. Environmental Science & Technology, 2017, 51(12): 6611−6617.
|
[3] |
Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838−838. doi: 10.1126/science.1094559
|
[4] |
Halle T A, Ladirat L, Gendre X, et al. Understanding the fragmentation pattern of marine plastic debris[J]. Environmental Science & Technology, 2016, 50(11): 5668−5675.
|
[5] |
Vethaak A D, Legler J. Microplastics and human health[J]. Science, 2021, 371(6530): 672−674. doi: 10.1126/science.abe5041
|
[6] |
刘沙沙, 梁绮彤, 陈诺, 等. 纳米塑料对生物的毒性效应及作用机制研究进展[J]. 生态毒理学报, 2022, 17(4): 99-108.
Liu S S, Liang Q T, Chen N, et al. Research progress on toxic effects and mechanisms of nanoplastics on organisms[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 99-108.
|
[7] |
Alimi O S, Farner B J, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704−1724.
|
[8] |
胡婷婷, 陈家玮. 土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展[J]. 岩矿测试, 2022, 41(3): 353−363. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203002
Hu T T, Chen J W. A review on adsorption and transport of microplastics in soil and the effect of ageing on environmental behavior of pollutants[J]. Rock and Mineral Analysis, 2022, 41(3): 353−363. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203002
|
[9] |
Halle T A, Jeanneau L, Martignac M, et al. Nanoplastic in the North Atlantic subtropical gyre[J]. Environmental Science & Technology, 2017, 51(23): 13689−13697.
|
[10] |
Gigault J, Halle A T, Baudrimont M, et al. Current opinion: What is a nanoplastic?[J]. Environmental Pollution, 2018, 235: 1030−1034. doi: 10.1016/j.envpol.2018.01.024
|
[11] |
Ni B J, Thomas K V, Kim E J. Microplastics and nanoplastics in urban waters[J]. Water Research, 2023, 229: 119473. doi: 10.1016/j.watres.2022.119473
|
[12] |
Liu L, Xu K X, Zhang B W, et al. Cellular internalization and release of polystyrene microplastics and nanoplastics[J]. Science of the Total Environment, 2021, 779: 146523. doi: 10.1016/j.scitotenv.2021.146523
|
[13] |
Gigault J, El Hadri H, Nguyen B, et al. Nanoplastics are neither microplastics nor engineered nanoparticles[J]. Nature Nanotechnology, 2021, 16(5): 501−507. doi: 10.1038/s41565-021-00886-4
|
[14] |
Liu Y J, Hu Y B, Yang C, et al. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments[J]. Water Research, 2019, 163: 114870. doi: 10.1016/j.watres.2019.114870
|
[15] |
Yuan B, Gan W H, Sun J, et al. Depth profiles of microplastics in sediments from inland water to coast and their influential factors[J]. Science of the Total Environment, 2023, 903: 166151.
|
[16] |
Praetorius A, Badetti E, Brunelli A, et al. Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments[J]. Environmental Science:Nano, 2020, 7(2): 351−367. doi: 10.1039/C9EN01016E
|
[17] |
Wang X J, Bolan N, Tsang D C W, et al. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications[J]. Journal of Hazardous Materials, 2021, 402: 123496. doi: 10.1016/j.jhazmat.2020.123496
|
[18] |
Wang J Y, Zhao X L, Wu A M, et al. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters[J]. Environmental Pollution, 2021, 268: 114240. doi: 10.1016/j.envpol.2020.114240
|
[19] |
Lee C H, Fang J K H. Effects of temperature and particle concentration on aggregation of nanoplastics in freshwater and seawater[J]. Science of the Total Environment, 2022, 817: 152562. doi: 10.1016/j.scitotenv.2021.152562
|
[20] |
Kim M J, Herchenova Y, Chung J, et al. Thermodynamic investigation of nanoplastic aggregation in aquatic environments[J]. Water Research, 2022, 226: 119286. doi: 10.1016/j.watres.2022.119286
|
[21] |
Mao Y F, Li H, Huangfu X L, et al. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations[J]. Environmental Pollution, 2020, 258: 113760. doi: 10.1016/j.envpol.2019.113760
|
[22] |
Liu L, Song J, Zhang M, et al. Aggregation and deposition kinetics of polystyrene microplastics and nanoplastics in aquatic environment[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 741−747. doi: 10.1007/s00128-021-03239-y
|
[23] |
Li X, He E, Xia B, et al. Protein corona induced aggregation of differently sized nanoplastics: Impacts of protein type and concentration[J]. Environmental Science: Nano, 2021, 8(6): 1560−1570. doi: 10.1039/D1EN00115A
|
[24] |
Quevedo I R, Tufenkji N. Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand[J]. Environmental Science & Technology, 2012, 46(8): 4449−4457.
|
[25] |
Gong Y Y, Bai Y, Zhao D Y, et al. Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: Structural characterization and theoretical calculation[J]. Water Research, 2022, 208: 117884. doi: 10.1016/j.watres.2021.117884
|
[26] |
Li J, Yang X J, Zhang Z Z, et al. Aggregation kinetics of diesel soot nanoparticles in artificial and human sweat solutions: Effects of sweat constituents, pH, and temperature[J]. Journal of Hazardous Materials, 2020, 403: 123614.
|
[27] |
Chen C Y, Huang W L. Aggregation kinetics of diesel soot nanoparticles in wet environments[J]. Environmental Science & Technology, 2017, 51(4): 2077−2086.
|
[28] |
Liu J J, Dai C, Hu Y D. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid[J]. Environmental Research, 2018, 161: 49−60. doi: 10.1016/j.envres.2017.10.045
|
[29] |
Petosa A R, Jaisi D P, Quevedo I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions[J]. Environmental Science & Technology, 2010, 44(17): 6532−6549.
|
[30] |
Cai L, Hu L L, Shi H H, et al. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics[J]. Chemosphere, 2018, 197: 142−151. doi: 10.1016/j.chemosphere.2018.01.052
|
[31] |
Lowry G V, Hill R J, Harper S, et al. Guidance to improve the scientific value of Zeta-potential measurements in nanoEHS[J]. Environmental Science:Nano, 2016, 3(5): 953−965. doi: 10.1039/C6EN00136J
|
[32] |
Yu S J, Shen M H, Li S S, et al. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes[J]. Environmental Pollution, 2019, 255: 113302. doi: 10.1016/j.envpol.2019.113302
|
[33] |
Lu S H, Zhu K R, Song W C, et al. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions[J]. Science of the Total Environment, 2018, 630: 951−959. doi: 10.1016/j.scitotenv.2018.02.296
|
[34] |
Tang H, Zhao Y, Yang X N, et al. New insight into the aggregation of graphene oxide using molecular dynamics simulations and extended Derjaguin-Landau-Verwey-Overbeek theory[J]. Environmental Science & Technology, 2017, 51(17): 9674−9682.
|
[35] |
董会军, 董建芳, 王昕洲, 等. pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J]. 岩矿测试, 2019, 38(5): 510−517. doi: 10.15898/j.cnki.11-2131/td.201808230096
Dong H J, Dong J F, Wang X Z, et al. Effect of pH on determination of various arsenic species in water by HPLC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(5): 510−517. doi: 10.15898/j.cnki.11-2131/td.201808230096
|
[36] |
孟瑞芳, 杨会峰, 白华, 等. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 2023, 42(2): 383−395.
Meng R F, Yang H F, Bai H, et al. Chemical characteristics and evolutionary patterns of groundwater in the Daqing River Plain area of Haihe Basin[J]. Rock and Mineral Analysis, 2023, 42(2): 383−395.
|
[37] |
曹寒, 张月, 金洁, 等. 土壤中碘的赋存形态及迁移转化研究进展[J]. 岩矿测试, 2022, 41(4): 521−530. doi: 10.15898/j.cnki.11-2131/td.202203170055
Cao H, Zhang Y, Jin J, et al. Iodine speciation, transportation, and transformation in soils: A critical review[J]. Rock and Mineral Analysis, 2022, 41(4): 521−530. doi: 10.15898/j.cnki.11-2131/td.202203170055
|
[38] |
Chen K L, Elimelech M. Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties[J]. Environmental Science & Technology, 2009, 43(19): 7270−7276.
|
[39] |
Hsu J P, Liu B T. Effect of particle size on critical coagulation concentration[J]. Journal of Colloid and Interface Science, 1998, 198(1): 186−189. doi: 10.1006/jcis.1997.5275
|
[40] |
Afshinnia K, Sikder M, Cai B, et al. Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics[J]. Journal of Colloid and Interface Science, 2017, 487: 192−200. doi: 10.1016/j.jcis.2016.10.037
|
[41] |
Xu C Y, Zhou T T, Wang C L, et al. Aggregation of polydisperse soil colloidal particles: Dependence of Hamaker constant on particle size[J]. Geoderma, 2020, 359: 113999. doi: 10.1016/j.geoderma.2019.113999
|
[42] |
Pochapski D J, Carvalho dos Santos C, Leite G W, et al. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: Effects of experimental conditions and electrokinetic models on the interpretation of results[J]. Langmuir, 2021, 37(45): 13379−13389. doi: 10.1021/acs.langmuir.1c02056
|
[43] |
Chowdhury I, Duch M C, Mansukhani N D, et al. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment[J]. Environmental Science & Technology, 2013, 47(12): 6288−6296.
|
[44] |
Dong Z Q, Qiu Y P, Zhang W, et al. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater[J]. Water Research, 2018, 143: 518−526. doi: 10.1016/j.watres.2018.07.007
|
1. |
侯将,肖传晶,姚阔为. 快速检测技术在水环境污染物检测中的应用研究进展. 实验室检测. 2024(07): 30-33 .
![]() | |
2. |
高启宇. SPE-UFLC-MS法测定医药废水中8种四环素类抗生素. 化学工程师. 2024(08): 30-34 .
![]() | |
3. |
赵静,侯静云,高超,包虹艳. 无机及分析化学实验的综合应用教学研究. 保山学院学报. 2024(05): 103-108 .
![]() | |
4. |
王宝丽,张逸君,张宇航,陈艳. 生物炭基材料及其在电化学传感领域的应用. 岩矿测试. 2024(06): 967-981 .
![]() |