• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHU Zhi-yong, ZHU Xiang-kun, YANG Tao. A Fully Automated Chemical Separation and Purification System and Its Application to Isotope Analysis[J]. Rock and Mineral Analysis, 2020, 39(3): 384-390. DOI: 10.15898/j.cnki.11-2131/td.201908120123
Citation: ZHU Zhi-yong, ZHU Xiang-kun, YANG Tao. A Fully Automated Chemical Separation and Purification System and Its Application to Isotope Analysis[J]. Rock and Mineral Analysis, 2020, 39(3): 384-390. DOI: 10.15898/j.cnki.11-2131/td.201908120123

A Fully Automated Chemical Separation and Purification System and Its Application to Isotope Analysis

More Information
  • Received Date: August 11, 2019
  • Revised Date: November 25, 2019
  • Accepted Date: January 14, 2020
  • Published Date: April 30, 2020
  • HIGHLIGHTS
    (1) The automated chemical separation and purification system could minimize the tailing effect of ions on the chromatographic column.
    (2) The combined chromatographic columns were applied to the automated chemical separation and purification system.
    (3) Reversed elution was achieved with the automated chemical separation and purification system.
    BACKGROUNDCritical problems such as ion diffusion and uncontrollable flow rate exist when applying the traditional natural flow chromatography column method to isotope analysis. The proposed automated chemical purification system improves the efficiency of isotope analysis, and reduces the time required for element purification.
    OBJECTIVESTo develop an automated chemical separation and purification system.
    METHODSThe automated chemical separation and purification system was composed of multi-way valves, plunger pump, autosampler, etc. All of the components were connected using a computer and each of them can be controlled independently. By combining two chromatographic columns multiple functions can be achieved, including reversed elution, which cannot be achieved by the traditional natural flow chromatography column method. In order to investigate the performance of the automated chemical separation and purification system, fresh seawater was purified with the proposed system and the traditional method simultaneously.
    RESULTSThe elution peak of boron had a width of 2.5mL to 3.0mL for the traditional method, but only ca. 1.0mL for the proposed system, if the loading volume of seawater was 1.0mL. The flow rate of the elution depended on the acidity using the traditional natural flow chromatography column method. However, the flow rate could be strictly controlled with the automated chemical separation and purification system.
    CONCLUSIONSThe precisely controlled flow rate of the system makes an easier prediction of the elution time and elution peak. The reversed column technology of the system can be applied to the separation and purification of elements for isotope analysis.
  • Ireland T J, Tissot F L H, Yokochi R, et al.Teflon-HPLC:A novel chromatographic system for application to isotope geochemistry and other industries[J].Chemical Geology, 2013, 357:203-214. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231544326/
    Romaniello S J, Field M P, Smith H B, et al.Fully automated chromatographic purification of Sr and Ca for isotopic analysis[J].Journal of Analytical Atomic Spectrometry, 2015, 30:1906-1912. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c099fd3cc1716bbc5990d4eb17e3f16d
    Retzmann A, Zimmermann T, Pröfrock D, et al.A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA resin for the isotopic analysis of marine sediments[J].Analytical and Bioanalytical Chemistry, 2017, 409:1-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4aa6185fb08d96d3114e957bc771d0c6
    Wuttig K, Townsend A T, van der Merwe P, et al.Critical evaluation of a sea FAST system for the analysis of trace metals in marine samples[J].Talanta, 2019, 197:653-668.
    Zhu Z Y, Yang T, Zhu X K.Achieving rapid analysis of Li isotopes in high- matrix and low-Li samples with MC-ICP-MS:New developments in sample preparation and mass bias behavior of Li in ICPMS[J].Journal of Analytical Atomic Spectrometry, 2019, 34:1503-1513. https://pubs.rsc.org/en/content/articlelanding/2019/ja/c9ja00076c#!
    Zhu Z Y, Jiang S Y, Yang T, et al.Improvements in Cu-Zn isotope analysis with MC-ICP-MS:A revisit of chemical purification, mass spectrometry measurement and mechanism of Cu/Zn mass bias decoupling effect[J].International Journal of Mass Spectrometry, 2015, 393:34-40.
    刘纯瑶, 苟龙飞, 邓丽, 等.离子交换过程中锂同位素分馏对锂同位素测试准确度的影响[J].岩矿测试, 2019, 38(1):35-44. doi: 10.15898/j.cnki.11-2131/td.201806060070

    Liu C Y, Gou L F, Deng L, et al.Effects of Li isotopic fractionation during ion exchange on the measurement accuracy of Li isotopes[J].Rock and Mineral Analysis, 2019, 38(1):35-44. doi: 10.15898/j.cnki.11-2131/td.201806060070
    濮魏, 高剑锋, 凌洪飞, 等.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法[J].南京大学学报(自然科学版), 2005, 41(2):445-450. http://d.old.wanfangdata.com.cn/Periodical/njdxxb200504017

    Pu W, Gao J F, Ling H F, et al.Separation method of Rb-Sr, Sm-Nd using DCTA and HIBA[J].Journal of Nanjing University (Natural Sciences), 2005, 41(2):445-450. http://d.old.wanfangdata.com.cn/Periodical/njdxxb200504017
    尹鹏, 何倩, 何会军, 等.离子交换树脂法分离沉积物中锶和钕的影响因素研究[J].岩矿测试, 2018, 37(4):379-387. doi: 10.15898/j.cnki.11-2131/td.201804170046

    Yin P, He Q, He H J, et al.Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J].Rock and Mineral Analysis, 2018, 37(4):379-387. doi: 10.15898/j.cnki.11-2131/td.201804170046
    唐索寒, 李津, 梁细荣, 等.钕同位素比值143Nd/144Nd标准溶液研制[J].岩矿测试, 2017, 36(2):163-170. doi: 10.15898/j.cnki.11-2131/td.2017.02.010

    Tang S H, Li J, Liang X R, et al.Reference material preparation of 143Nd/144Nd isotope ratio[J].Rock and Mineral Analysis, 2017, 36(2):163-170. doi: 10.15898/j.cnki.11-2131/td.2017.02.010
    张乐, 任钟元, 丁相礼, 等.微钻取样-TIMS/MC-ICPMS和LA-MC-ICPMS分析矿物岩石87Sr/86Sr比值的技术比较[J].岩矿测试, 2014, 33(5):615-624. http://www.ykcs.ac.cn/article/id/6c79f5d0-4923-40da-8965-4e2bcd8be542

    Zhang L, Ren Z Y, Ding X L, et al.A comparison of microdrilling-TIMS/MC-ICPMS and LA-MC-ICPMS for micro-sample Sr isotope measurement[J].Rock and Mineral Analysis, 2014, 33(5):615-624. http://www.ykcs.ac.cn/article/id/6c79f5d0-4923-40da-8965-4e2bcd8be542
    Glennon K J, Osborn J M, Burns J D, et al.Measuring key Sm isotope ratios in irradiated UO2 for use in plutonium discrimination nuclear forensics[J].Journal of Radioanalytical and Nuclear Chemistry, 2019, 320(2):405-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=715e4b04ca9efce70b3b7d219758eaad
    Garcia-Valls R, Hrdlicka A, Perutka J, et al.Separation of rare earth elements by high performance liquid chromatography using a covalent modified silica gel column[J]. Analytica Chemica Acta, 2001, 439:247-253. https://www.sciencedirect.com/science/article/pii/S0003267001010443
    李立武, 刘艳, 王先彬, 等.高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J].岩矿测试, 2017, 36(3):222-230. doi: 10.15898/j.cnki.11-2131/td.201609080137

    Li L W, Liu Y, Wang X B, et al.Development of a combined device with high vacuum and pulsed discharge gas chromatography and its application in chemical analysis of gases from rock samples[J].Rock and Mineral Analysis, 2017, 36(3):222-230. doi: 10.15898/j.cnki.11-2131/td.201609080137
    Schwantes J M, Rundberg R S, Taylor W A, et al.Rapid, high-purity, lanthanide separations using HPLC[J].Journal of Alloys and Compounds, 2006, 418(1-2):189-194. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028502003/
    Datta A, Sivaraman N, Srinivasan T G, et al.Single- stage dual-column HPLC technique for separation and determination of lanthanides in uranium matrix:Application to burnup measurement on nuclear reactor fuel[J].Nuclear Technology, 2013, 182(1):84-97.
    Liu X M, Li W S.Optimization of lithium isotope analysis in geological materials by quadrupole ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2019, 34(8):1708-1717. https://pubs.rsc.org/en/content/articlelanding/2019/ja/c9ja00175a
    Brugger J, McPhail D C, Black J, et al.Complexation of metal ions in brines:Application of electronic spectroscopy in the study of the Cu(Ⅱ)-LiCl-H2O system between 25℃ and 90℃[J].Geochimica et Cosmochimica Acta, 2001, 65(16):2691-2708.
    Bjerrum J, Lukes I.The iron(Ⅲ)-chloride system.A study of the stability constants and of the distribution of the tetrachloro species between organic solvents and aqueous chloride solutions[J].Acta Chemica Scandinavica, 1986, A40:31-40.
    Lee S G, Tanaka T.Determination of Eu isotopic ratio by multi-collector inductively coupled plasma mass spectrometry using a Sm internal standard[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2019, 156:42-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=113c0d2ad8155f68cfb267d5f02bed63
    Lee S G, Asahara Y, Tanaka T, et al.La-Ce and Sm-Nd isotopic systematics of Early Proterozoic leucogranite with tetrad REE pattern[J].Chemical Geology, 2010, 276(3-4):360-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbe57b7049bf919cc523112be017a1aa
    Panigrahi M, Grabda M, Kozak D, et al.Liquid-liquid extraction of neodymium ions from aqueous solutions of NdCl3 by phosphonium-based ionic liquids[J].Separation and Purification Technology, 2016, 171:263-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33100a023b28a56254faab40f2e29e52
    Tanaka T, Lee S G, Kim T, et al.Precise determination of 14 REEs in GSJ/AIST geochemical reference materials JCp-1(coral) and JCt-1(giant clam) using isotope dilution ICP-quadrupole mass spectrometry[J].Geochemical Journal, 2018, 52(1):75-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_1410877
    Colim A N, do Nascimento P C, Wiethan B A, et al.Reversed-phase high-performance liquid chromatography for the determination of 15 rare earth elements in surface water sample collected in a mining area from Lavras do Sul/RS, Brazil[J].Chromatographia, 2019, 82(5):843-856. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66c76f76242bac5b88d9fa8377007e39
    Amr M A, Dawood N D A, Helal A I, et al.Rare earth elements and 143Nd/144Nd isotope ratio measurements using tandem ICP-CRC-MS/MS:Characterization of date palm (Phoenix dactylifera L.)[J].Journal of Analytical Atomic Spectrometry, 2017, 32(8):1554-1565.
    Lei H L, Yang T, Jiang S Y, et al.A simple two-stage column chromatographic separation scheme for strontium, lead, neodymium and hafnium isotope analyses in geological samples by thermal ionization mass spectrometry or multi-collector inductively coupled plasma mass spectrometry[J].Journal of Separation Science, 2019, 42(20):3261-3275. http://d.old.wanfangdata.com.cn/Periodical/zpxb201603003
    Golloch A.Handbook of rare earth elements[M].De Gruyter Press, 2017.
    Small H, Stevens T S, Bauman W C.Novel ion exchange chromatographic method using conductimetric detection[J].Analytical Chemistry, 1975, 47:1801-1809. doi: 10.1021/ac60361a017
    Horwitz E P, Bloomquist C A.Chemical separations for super-heavy element searches in irradiated uranium targets[J].Journal of Inorganic and Nuclear Chemistry, 1975, 37:425-434. https://www.sciencedirect.com/science/article/pii/0022190275803502
    Pin C, Zalduegui J.Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography:Application to isotopic analyses of silicate rocks[J].Analytica Chimica Acta, 1997, 339:79-89. doi: 10.1007-s12144-011-9125-y/
    Strelow F W E.Distribution coefficients and ion exchange behavior of 46 elements with a macroreticular cation exchange resin in hydrochloric acid[J].Analytical Chemistry, 1984, 56:1053-1056. doi: 10.1021/ac00270a045
    Strelow F W E.An ion exchange selectivity scale of cations based on equilibrium distribution coefficients[J].Analytical Chemistry, 1960, 32:1185-1188.
  • Related Articles

    [1]PAN Meng, TONG Ling, TIAN Qin, SONG Shuling. Determination of 15 Organophosphate Ester Flame Retardants in Soils and Sediments by Gas Chromatography-Mass Spectrometry with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2023, 42(6): 1165-1176. DOI: 10.15898/j.ykcs.202305110065
    [2]TONG Ling, TIAN Qin, YANG Zhi-peng, PAN Meng. Research on the Determination of 14 Synthetic Musks in Sediment Samples by Gas Chromatography-Tandem Mass Spectrometry with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2020, 39(4): 587-596. DOI: 10.15898/j.cnki.11-2131/td.201906240089
    [3]TONG Ling, YANG Jia-jia, YAN Ni, WU Shu-qi. Simultaneous Analysis of Organochlorinated Pesticides and Polychlorinated Biphenyls from Animal Tissue using Gas Chromatography-Mass Spectrometry Combined with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2014, 33(2): 262-269.
    [4]Jiang-hua ZHAO, Zhong-yu LI, Jun HE, Min-qi ZHENG. Applications of Accelerated Solvent Extraction in Preparation of Poly-nuclear Aromatic Hydrocarbons in Oil and Gas Geochemical Exploration Samples[J]. Rock and Mineral Analysis, 2013, 32(5): 791-795.
    [5]Jia-jia YANG, Ling TONG, Shu-Qi WU, Ni YAN. Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Grains Using Gas Chromatography with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2013, 32(3): 487-494.
    [6]LI Jun, XIAO Ya-wen, WANG Zhen, ZHAO Wei-wu. Simultaneous Determination of 18 Pesticide Residues including Pyrethroids in Soils by Gas Chromatography-Mass Spectrometry with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2011, 30(5): 590-595.
    [7]CHEN Wei-ming, LI Qing-xia, ZHANG Fang, HE Xiao-hui, ZHANG Qin. Determination of 7 Polychlorinated Biphenyls in Soil Samples by Accelerated Solvent Extraction-Gas Chromatography/ Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 33-39.
    [8]RAO Zhu, HE Miao, CHEN Wei, LI Song, LIU Yan. Determination of Organophosphate Pesticides in Soil Samples by Accelerated Solvent Extraction-Gas Chromatography[J]. Rock and Mineral Analysis, 2010, 29(5): 503-507.
    [9]ZHANG Yan, ZHANG Jing-fa, CHEN Yan-mei, MENG Juan, HAN Cui-ying. Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Soils by Gas Chromatography with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2010, 29(5): 491-496.
    [10]GONG Yingli, SUN Weilin, WANG Shuangqing, SHEN Bin. A Comparative Study on Extraction of Organic Matters in Source Rocks by Accelerated Solvent Extraction and Soxhlet Extraction[J]. Rock and Mineral Analysis, 2009, 28(5): 416-422.

Catalog

    Article views (2905) PDF downloads (41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return