Progress of in situ U-Th/He Isotopic Dating Technique and Its Application to Low Temperature Deposits
-
摘要: 应用传统单颗粒方法对目标矿物进行定年具有较高要求(如U、Th等母体同位素均匀分布),需要耗时的酸溶过程,同时还需进行α粒子射出效应校正。原位U-Th/He同位素定年技术是近年发展起来的一种定年技术,其主要原理是采用激光加热目标矿物,并通过与激光系统连接的稀有气体质谱(Alphachron)和电感耦合等离子体质谱(ICP-MS)分别完成4He和U、Th等母体同位素分析,将4He和U、Th分析结果代入年龄公式计算即可获得目标矿物的U-Th/He年龄。本文阐述了原位U-Th/He同位素定年技术的主要原理、实验测试流程、适用矿物等,重点对原位U-Th/He同位素定年的技术难点和低温矿床学应用前景进行了分析。相对于传统单颗粒方法,原位测试方法解决了两个关键问题:①无需进行α粒子射出效应的校正,提高了定年结果的可靠性和准确度;②能完成母体同位素分布不均匀样品的测试,扩展了U-Th/He同位素定年的应用范围。尽管原位U-Th/He同位素定年技术在侧向加热效应、剥蚀坑体积测定以及标准矿物等方面尚存在一些亟待解决的问题,但已在硅酸盐、磷酸盐、钛铁氧化物等矿物的年代学研究方面展示了良好的应用前景。随着原位U-Th/He同位素定年技术的发展和进步,尤其是硫化物的U-Th/He同位素定年的发展,将为解决低温矿床的年代学问题提供一种新的思路。
-
关键词:
- 原位U-Th/He定年 /
- 单颗粒U-Th/He定年 /
- 原位分析 /
- 低温矿床定年
Abstract: The traditional single-grain U-Th/He isotopic dating method a uses time-consuming acid dissolution, correction for α-ejection and more requirements on target minerals (euhedral, transparent, no cracks or inclusions). in situ U-Th/He isotopic dating is a newly developed dating technique, which uses extracted 4He from target mineral by laser ablation system and analyzes the 4He and U, Th and other parent isotopes via the Noble Gas Mass Spectrum (Alphachron) coupled with laser system and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The U-Th/He age of the deposits can be acquired by an age calculation formula using the analytical results of 4He, U, and Th isotopes. The principles, analytical processes, and minerals suitable for dating, technique difficulty and application prospect in low-temperature mineral deposits, are presented in this paper. In situ U-Th/He dating technique solved two key problems compared to traditional single-grain method: (1) Correction of α-ejection is unnecessary, improving the reliability and accuracy of dating results, and (2) Overcoming the bias from heterogeneous distribution of parent isotopes (U, Th), enlarging the range of U-Th/He isotopic dating. Although the in situ U-Th/He isotopic dating technique still needs to address issues such as collateral heating, precise measurement of pit volume and standard materials, it has shown itself to be a promising prospect for silicates, phosphates and Fe-Ti oxides. With the improvement of the in situ U-Th/He isotopic dating technique, particularly the U-Th/He isotopic dating of hydrothermal sulfides, this technique will provide a better way to date low-temperature mineralization. -
天然气水合物是一种新型能源资源,是在低温高压条件下由气体分子和水分子形成的一种非化学计量的笼型水合物,具有不同的晶体结构及晶胞参数[1-2]。天然气水合物常见的晶体结构类型有三种:Ⅰ型、Ⅱ型和H型[3-4],它们分别包容数目不等的水分子和气体分子[5]。生成何种类型的水合物,主要取决于客体分子的种类和大小。已发现的天然水合物样品主要为Ⅰ型结构甲烷水合物[6],简单立方晶系,单位晶胞由2个小笼(512)和6大笼(51262)组成,包含46个水分子,空间群为Pm3n。水合物结构特征研究是水合物基础研究的重要内容,对于水合物形成机理、资源评价、开发利用及储运等研究都具有重要的意义。
粉晶X射线衍射(PXRD)技术具有制样简单、对样品无损、分析速度快、分析范围广等优点,已广泛应用于岩石学和矿物学研究领域中结晶样品的物相定性、定量分析和结晶度测定以及晶胞参数测定等[7-9],亦是研究水合物微观结构的常用谱学手段之一,与固体核磁共振波谱技术(NMR)和拉曼光谱技术[10]获取有效信息方面有明显的互补性,同时在测试方法难易程度、分析成本等方面具有显著优势。NMR和拉曼光谱技术是通过测定水合物中气体分子的化学位移或拉曼位移确定气体种类进而通过频移间接确定水合物的结构信息,还可获取关于水合物气体分子状态信息[11-15];而粉晶X射线衍射可通过谱图数据直接确定晶体所属空间群和晶体类型,还可进一步确定水合物的晶粒大小和晶胞参数[16-18]。刘昌岭等[7]系统评述了X射线衍射技术应用于水合物结构特征研究、水合物生成分解动力学过程原位观测以及野外水合物样品晶体结构的直接测定等方面的研究进展。Luzi等[14]利用拉曼光谱原位监测探究不同体系中多元气体水合物生成分解机理并利用粉晶X射线衍射技术分析其客体结构信息。粉晶X射线衍射技术在水合物基础研究中应用较多,但对其测试条件的选取及优化等方面尚缺乏系统的研究。
天然气水合物作为一种特殊的矿产资源,粉晶X射线衍射技术是测试其结构的重要手段,通过测定天然气水合物的粉晶X射线衍射谱图,对衍射数据进行基本处理和指标化后即可确定水合物所属晶系,进而可以确定水合物的结构类型和晶胞参数[19],该法的关键是确保水合物在测定过程中不会发生分解。本文采用Bruker D8 Advance型粉晶衍射仪,以实验合成的甲烷水合物样品为对象,通过探究步长、扫描速度、累加次数以及测试温度等参数[20-21]对粉晶X射线衍射谱图峰位、半峰宽以及峰强度这三个衍射峰基本要素[22]的影响,选择了适用的粉晶X射线衍射测试条件,建立了天然气水合物粉晶X射线衍射测试方法,并成功应用于测试实际天然气水合物样品的结构。
1. 实验部分
1.1 仪器及测试条件
采用德国Bruker公司的D8 Advance型粉晶衍射仪,配有陶瓷X光管,Cu靶,光管功率2.2 kW,测试电压40 kV,测试电流40 mA;X射线源为长细焦斑,尺寸0.4 mm×12 mm;采用LynxEye半导体一维阵列探测器,检测器线性检测范围为1×107 cps;测角仪采用步进马达驱动和光学编码器技术,扫描方式θ/θ或θ/2θ,最小步进角度0.0001°,角度重现性0.0001°,扫描角度范围2θ=-110°~168°,最高定位速度≥1500°/min。
由于水合物样品有常温易分解的特性,测量水合物样品时须保持在低温环境中操作,以确保测量过程中水合物能保持稳定。因此,除常规的基本仪器条件外,该仪器还配有适用于水合物测试的低温样品台,尺寸12 mm×12 mm×0.5 mm,通过液氮或冷氮气最低可达77 K的低温,确保天然气水合物样品在测试过程中保持稳定。
1.2 实验过程
(1) 水合物样品的来源、制备与处理
本实验使用的水合物样品为实验室人工合成的甲烷水合物样品及南海珠江口盆地天然气水合物样品。
实验采用甲烷气体(纯度99.9%,南京特种气体厂)与去离子水(实验室自制)在压力8.0 MPa、温度275.2 K条件下制备甲烷水合物样品。制备完成后,放置在液氮中(77 K)保存。南海珠江口盆地天然气水合物样品取自08号钻孔,在沉积物中有多块豆粒大小的块状水合物,取样后将含水合物的沉积物岩心样品保存在液氮中。
由于水合物样品颗粒较大,难以满足粉晶X射线衍射测试的需求,在测试前应先对样品进行处理。首先把耐低温的陶瓷研钵与研磨棒放入液氮中降温预冷,然后从液氮罐中分取适量天然气水合物样品放入研钵中,用研磨棒将其磨成均匀的粉末。整个样品处理过程需在液氮保护下操作,应尽量缩短研磨时间,以减少空气中的水蒸气冷凝混入样品中。
(2) 粉晶X射线衍射测试方法
为了确保天然气水合物样品在测试过程中的稳定性,样品室的温度控制在150 K。测试前先打开冷氮气管路和温度控制器,在XRD Commander软件中设置实验温度及降温速率;打开真空泵,将样品室抽真空,以防止样品台结霜。待样品台温度降至150 K,关闭真空泵,打开防护门和样品台金属外罩,将研磨好的甲烷水合物样品用预冷过的药匙填装进样品台凹槽内,用平铲将样品压平后迅速旋紧样品台金属外罩,打开真空泵抽真空1 min左右。设置测试参数,包括选择测试方法(scan type);设置2θ角范围、步长(increment)、扫描速度(scan speed)、累加次数(accumulation);设置测试电压(40 kV)和电流(40 mA)。参数设置完毕后,开始扫描。扫描结束后,及时保存测量数据,采用EVA软件进行数据处理,并利用TOPAS软件中的Rietveld结构精修功能对水合物晶体结构进行精修,以准确获取晶胞参数。
2. 结果与讨论
2.1 不同参数对测试结果的影响
通过选择测量条件参数可以获得高准确度的衍射谱图。粉晶X射线衍射仪测量条件参数的优化主要考虑以下几个方面的因素:步长、扫描速度(每步时间)、累加次数等[20-21]。针对天然气水合物常温易分解的性质,实验中还需考虑其测试温度[15]。
(1) 步长
粉晶X射线衍射谱线实际由一定数量的数据点(2θ及其对应的衍射强度)组成,每个相邻数据点的间距即为步长。采用德国Bruker公司制造的D8 Advance型粉晶衍射仪,为提高实验效率,在扫描速度为0.3 s/step,温度为150 K的测试条件下,分别取步长为0.02°、0.05°、0.15°和0.2°。截取2θ为15.5°~17.5°范围内甲烷水合物的PXRD谱图,如图 1所示,不同步长对峰形和分辨率有很大影响:步长越小,数据点越多,谱图分辨率越高;反之,步长越大,数据点越少,衍射谱线的细节刻画能力越弱[23-25]。统计2θ为5°~70°范围内的谱图所包含的数据点,截取d(2θ)=5.32处的衍射峰,在相同的2θ范围内,步长越小,谱图中包含的数据点越多。图 2a描述了不同步长条件下,衍射峰峰位、半峰宽及峰强度[22]的变化。从数据上看,随着步长的增大,该峰逐渐向低角度偏移,半峰宽并无明显变化规律。但从衍射谱图上可以看出,步长大小对峰的强度和分辨率影响显著。吴斗峰等[23]选用五种不同步长参数测试标准样(Al2O3),同样发现不同步长值对峰形及分辨率有很大的影响,并建议步长参数值的选择以半高宽值的1/5或1/4为宜。所以,针对天然气水合物样品,建议选择步长为0.05°左右,这样既可以保证高分辨率,又不会导致峰强度过低。实际测试时,当样品中水合物含量较少或对谱图的精确度要求较高时,可选用更小的步长。
(2) 扫描速度
扫描速度是指探测器在测角仪圆周上均匀转动的角速度。在步长为0.05°,温度为150 K的测试条件下,改变扫描速度[21, 26-27],探究其影响。图 2b为不同扫描速度下,甲烷水合物PXRD谱图中d(2θ)=5.32处的衍射峰的峰位、半峰宽以及峰强度的变化。由图 2b不难看出,扫描速度由0.1 s/step、0.3 s/step、1 s/step、2 s/step、5 s/step逐渐降低时,该峰位置未出现明显变化,半峰宽出现不规律变化,而其衍射峰强度明显增强。杨有利等[26]利用X射线衍射法的研究结果也表明较高或较低的扫描速度都会影响半峰宽值。此外,当扫描速度过快时,不仅导致衍射强度下降,还会对峰的形状造成影响,甚至掩盖了一些弱峰,与汤云晖[24]采用不同扫描速度测试氧化钛样品所得结果一致。由于天然气水合物样品在形成和处理过程中难免混入冰相或含有沉积物等其他杂相,建议在实际操作过程中适当降低扫描速度,在获得较高衍射峰强度的同时,提高测试谱图的分辨率和结果的准确性。此外,较慢的扫描速度将大大延长测试时间,鉴于5 s/step已能够保证样品测试效果,同时考虑到水合物样品的特殊性,实验中未采用更低的扫描速度进行测试。
(3) 累加次数
在保证其他测试条件不变的前提下,改变累加次数,探究其变化对峰位置、半峰宽以及峰强度[22]的影响。图 2c描述了累加次数从1增加到4时,甲烷水合物PXRD谱图在d(2θ)=5.32处的衍射峰的峰位、半峰宽以及峰强度的变化趋势。从图中可以看出,与扫描速度条件相似,改变累加次数对峰位和半峰宽影响不大,对衍射峰强度影响较大。随着累加次数的增加,峰强度逐渐增大。在不改变其他条件的前提下,通过增加累加次数,可以增大衍射峰强度,但同时会加倍延长测试时间,增加水合物分解的风险。因此,在水合物样品测试中,累加次数通常选择为1次[1]。在确保样品稳定的前提下,可根据测试效果来设置累加次数。
(4) 测试温度
天然气水合物由于具有在常温常压下易分解的特性,其测试过程须在低温条件下进行。在水合物样品处理过程中难免会混入冰,而冰相的存在可能会影响水合物的晶相分布,从而在一定程度上影响衍射效果[28]。
本实验分别以甲烷水合物样品中的水合物相和冰相的特征衍射峰作为参考,设定实验参数:步长0.05°, 扫描速度为0.3 s/step,累加1次,改变测试温度,考察两相衍射峰峰位、半峰宽和峰强度的变化规律。由图 3a可知,随着温度的升高,水合物相的特征衍射峰的峰位逐渐向低角度迁移;由图 3b可以看出,冰相的特征衍射峰峰位置随温度的变化规律与水合物相同。这可能是由于温度升高,构成晶格的各原子混乱度增大,倾向于偏离其所在晶格空间位置,导致各晶面有效间距在一定程度上增大[29]。由布拉格公式可知,各晶面间距d增大,将导致衍射谱线向低角度移动。在升温过程中,水合物相和冰相衍射峰的半峰宽均未发生显著的变化,这说明温度对衍射峰的半峰宽影响不大。但随着温度的升高,水合物相的衍射峰强度逐渐减弱,这主要是由于升高温度使晶格中原子振动增强,点阵中原子排列的周期性和晶体的衍射条件受到部分破坏,导致峰强度降低;而冰相的衍射峰强度随温度的升高逐渐增强[30],这可能是由于在升温过程中冰相发生了晶格转换,导致其晶格参数、空间群都发生了变化。王海震等[31]在高温条件下对一种无铅压电陶瓷材料Bi0.5Na0.5TiO3粉体(简称“BNT粉体”)进行X射线衍射实验,也发现温度变化会影响晶粒大小,进而影响半峰宽和峰强度,与本实验结论相似。综合考虑水合物与冰的衍射峰位置、强度随温度的变化规律,建议水合物样品的PXRD测试温度应不高于150 K[15, 23],这样既可以保证水合物不分解,又能获取质量较好的谱图。
2.2 测试参数的选择
在探讨不同参数对测试结果的影响时,假设以上所研究的四个因素(步长、扫描速度、累加次数、测试温度)相互独立,采用单因素重复性实验方法,保持其他参数不变,仅控制单一变量进行实验。但实际上,由于粉晶X射线衍射仪工作原理的复杂性,测试效果是各个参数共同作用的结果,选取单因素重复实验中的最优参数可获得最优效果的谱图。鉴于水合物样品的特殊性,必须严格设置扫描温度,合理控制样品的测试时间,以保证测试过程中样品稳定。Kim等[6]对ODP204航次水合物脊的样品进行粉晶X射线衍射测试时,采用5 s/step的扫描速度及0.05°的步长,测试谱图效果良好,成功获取了该水合物的结构类型和晶胞参数。本实验系统地讨论各参数对测试谱图效果的影响,得出适用于水合物粉晶X射线衍射的最优测试参数,建议选取的测试参数为:步长0.05°,扫描速度5 s/step,温度不高于150 K,累加次数为1次。此外,若比较不同水合物样品之间的异同,需确保实验测试的温度是一致的。
2.3 天然气水合物样品结构分析
利用上述测试方法,设置测试步长为0.05°,扫描速度为5 s/step,测试温度为150 K,累加1次,对人工合成的甲烷气体水合物和我国南海珠江口盆地天然气水合物样品进行了测定。将测试获得的PXRD谱图利用TOPAS软件中的Rietveld结构精修功能进行数据处理和指标化后,得到了样品中水合物的晶面指数(h,k,l),并在此基础上获得晶胞参数。
图 4a为实验室人工合成甲烷水合物的粉晶X射线衍射谱图。经分析确定,该甲烷水合物样品属于简单立方晶系,空间群为Pm3n,晶格参数为11.9135×10-10 m,与Takeya等[33]对甲烷水合物PXRD测试结论相似,均为典型的Ⅰ型结构水合物[3-4]。图 4b为南海珠江口盆地天然气水合物样品所测的PXRD谱图。分析表明所测的南海水合物样品与人工合成的甲烷水合物样品结构相同,均属立方晶系,空间群为Pm3n,晶胞参数为11.9309×10-10 m,是典型的Ⅰ型结构水合物[3-4],与拉曼光谱测试结果一致[34]。天然样品中除了水合物相外,还含有冰相、石英等。此外,实验合成与天然样品PXRD谱图中都含有冰的衍射峰,这是由于在水合物样品制备、保存及处理各个环节都很难避免冰晶的混入。
3. 结论
本文建立了针对天然气水合物的粉晶X射线衍射测试及分析方法,研究了不同步长、扫描速度、累加次数和测试温度对水合物X射线衍射峰峰位、半峰宽、峰强度的影响,优化并确定了水合物样品的基本测试参数为:步长0.05°,扫描速度为5 s/step,温度不高于150 K,累加次数为1次,与Kim等对ODP204航次水合物脊样品粉晶X射线衍射测试参数的选择一致。采用该参数,成功测定了人工甲烷气体水合物和我国南海珠江口盆地天然气水合物实物样品。分析表明,两者均属简单立方晶系,空间群为Pm3n,为Ⅰ型结构水合物,晶胞参数分别为11.9135×10-10 m和11.9309×10-10 m。
该技术可有效应用于天然水合物样品的结构分析,为我国天然气水合物资源评价及开发方案的制定提供必要的关键参数和技术支持。
-
图 1 矿物颗粒内U-Th分布特征及其对定年结果的影响 (据文献[46]修改)
矿物内U-Th四种可能的分布特征对α粒子射出效应的校正影响:(a) 均匀分布,准确年龄;(b) 边部富集、核部均匀,年龄偏小;(c) 边部亏损、核部均匀,年龄偏老;(d) 分布复杂,年龄意义不定。
Figure 1. Possible distributions of U-Th elements within mineral grain and its effects on dating results (Modified after Reference [46])
Four possible U-Th distributions on α-correction: (a) complete homogeneity resulting an accurate age; (b) enriched rims and homogenous core resulting in a "too young" age; (c) depleted rim and homogenous core resulting in a "too old" age, and (d) complex distribution resulting a "uncertain" age.
-
Hurley P M.Alpha ionization damage as a cause of low helium ratios[J].Transactions American Geophysical Union, 1952, 33(2):174-183. doi: 10.1029/TR033i002p00174
Hurley P M, Larsen Jr E S, Gottfried D.Comparison of radiogenic helium and lead in zircon[J].Geochimica et Cosmochimica Acta, 1956, 9(1-2):98-102. doi: 10.1016/0016-7037(56)90060-6
Cox S E, Farley K A, Hemming S R.Insights into the age of the Mono Lake Excursion and magmatic crystal residence time from (U-Th)/He and 230Th dating of volcanic allanite[J].Earth and Planetary Science Letters, 2012, 319-320:178-184. doi: 10.1016/j.epsl.2011.12.025
Blackburn T J, Stockli D F, Walker J D.Magnetite (U-Th)/He dating and its application the geochronology of intermediate to mafic volcanic rocks[J].Earth and Planetary Science Letters, 2007, 259(3-4):360-371. doi: 10.1016/j.epsl.2007.04.044
Blackburn T J, Stockli D F, Carlson R W, et al.(U-Th)/He dating of kimberlites-A case study from North-Eastern Kansas[J].Earth and Planetary Science Letters, 2008, 275(1-2):111-120. doi: 10.1016/j.epsl.2008.08.006
邱楠生, Reiners P W, 梅庆华, 等.(U-Th)/He年龄在沉积盆地构造-热演化研究中的应用--以塔里木盆地KQ1井为例[J].地球物理学报, 2009, 52(7):1825-1835. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907018.htm Qiu N S, Reiners P W, Mei Q H, et al.Application of the (U-Th)/He thermochronometry to the tectono-thermal evolution of sedimentary basin-A case history of Well KQ1 in the Tarim Basin[J].Chinese Journal of Geophysics, 2009, 52(7):1825-1835. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907018.htm
俞顺, 陈文, 吕修祥, 等.(U-Th)/He技术约束下库车盆地北缘构造热演化--以吐孜2井为例[J].地球物理学报, 2014, 57(1):62-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401007.htm Yu S, Chen W, Lü X X, et al.(U-Th)/He thermochronometry constraints on the Mesozoic-Cenozoic tectono-thermal evolution of Kuqa Basin:A case study of well TZ2[J].Chinese Journal of Geophysics, 2014, 57(1):62-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401007.htm
孙敬博, 孙腾飞, 陈文, 等.新疆东天山红云滩地区构造-热演化探讨:来自Ar-Ar和 (U-Th)/He热年代学的约束[J].岩石学报, 2015, 31(12):3732-3742. Sun J B, Sun T F, Chen W, et al.Thermo-tectono evolution history of Hongyuntan area, Eastern Tianshan, Xinjiang:Constrained from Ar-Ar and (U-Th)/He dating[J].Acta Petrologica Sinica, 2015, 31:3732-3742.
Dai J G, Wang C S, Hourigan J, et al.Multi-stage tectono-magmatic events of the Eastern Kunlun Range, Northern Tibet:Insights from U-Pb geochronology and (U-Th)/He thermochronology[J].Tectonophysics, 2013, 599:97-106. doi: 10.1016/j.tecto.2013.04.005
Wolff R, Dunkl I, Lange J M, et al.Superposition of burial and hydrothermal events:Post-Variscan thermal evolution of the Erzgebirge, Germany[J].Terra Nova, 2015, 27(4):292-299. doi: 10.1111/ter.12159
周祖翼, 许长海, Reiners P W, 等.大别山天堂寨地区晚白垩世以来剥露历史的 (U-Th)/He和裂变径迹分析证据[J].科学通报, 2003, 48(6):598-602. doi: 10.1360/03tb9127 Zhou Z Y, Xu C H, Reiners P W, et al.Evidence of (U-Th)/He & fission track analysis on denudation history after Late Cretaceous in the Tiantangzhai area of the Dabieshan Mountain[J].Chinese Science Bulletin, 2003, 48(6):598-602. doi: 10.1360/03tb9127
Qiu N S, Jiang G, Mei Q H, et al.The Paleozoic tectonothermal evolution of the Bachu Uplift of the Tarim Basin, NW China:Constraints from (U-Th)/He ages, apatite fission track and vitrinite reflectance data[J].Journal of Asian Earth Sciences, 2011, 41(6):551-563. doi: 10.1016/j.jseaes.2011.02.008
Wang E, Kirby E, Furlong K P, et al.Two-phase growth of high topography in eastern Tibet during the Cenozoic[J].Nature Geoscience, 2012, 5:640-645. doi: 10.1038/ngeo1538
Yu S, Chen W, Evans N J, et al.Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U-Th)/He thermochronometry[J].Tectonophysics, 2014, 630:166-182. doi: 10.1016/j.tecto.2014.05.021
Sobczyk A, Danisik M, Aleksandrowski P, et al.Post-Variscan cooling history of the central Western Sudetes (NE Bohemian Massif, Poland) constrained by apatite fission-track and zircon (U-Th)/He thermochronology[J].Tectonophysics, 2015, 649:47-57. doi: 10.1016/j.tecto.2015.02.021
Ehlers T A, Farley K A.Apatite (U-Th)/He thermo-chronometry:Methods and applications to problems in tectonic and surface processes[J]. Earth and Planetary Science Letters, 2003, 206(1-2):1-14. doi: 10.1016/S0012-821X(02)01069-5
Ehlers T A, Farley K A, Rusmore M E.Apatite (U-Th)/He signal of large-magnitude accelerated glacial erosion, Southwest British Columbia[J].Geology, 2006, 34(9):765-768. doi: 10.1130/G22507.1
Campbell I H, Reiners P W, Allen C M, et al.He-Pb double dating of detrital zircons from the Ganges and Indus Rivers:Implications for quantifying sediments recycling and provenance studies[J].Earth and Planetary Science Letters, 2005, 237(3-4):402-432. doi: 10.1016/j.epsl.2005.06.043
Rahl J M, Ehlers T A, van der Pluijm B A.Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits[J].Earth and Planetary Science Letters, 2007, 256(1-2):147-161. doi: 10.1016/j.epsl.2007.01.020
Pi T, Sole J, Taran Y.(U-Th)/He dating of fluorite:Application to the La Azul fluorspar deposit in the Taxco mining district, Mexico[J].Mineralium Deposita, 2005, 39(8):976-982. doi: 10.1007/s00126-004-0443-y
Cabral A R, Eugster O, Brauns M, et al.Direct dating of gold by radiogenic helium:Testing the method on gold from Diamantina, Minas Gerais, Brazil[J].Geology, 2013, 41(2):163-166. doi: 10.1130/G33751.1
Wolff R, Dunkl I, Kempe U, et al.The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany:Constraints from fluorite (U-Th-Sm)/He thermochronology[J].Economic Geology, 2015, 110(8):2025-2040. doi: 10.2113/econgeo.110.8.2025
保增宽, 袁万明, 王世成, 等.磷灰石 (U-Th)/He定年技术及应用简介[J].岩石矿物学杂志, 2005, 24(2):126-132. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200502005.htm Bao Z K, Yuan W M, Wang S C, et al.Apatite (U-Th)/He dating and its application[J].Acta Petrologica et Mineralogica, 2005, 24(2):126-132. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200502005.htm
陈文, 何学贤, 张彦, 等.金属矿床年龄测定新技术--(U-Th)/He同位素定年方法[J].矿床地质, 2010, 29(增刊):821-822. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1412.htm Chen W, He X X, Zhang Y, et al.A new dating technique for metallic mineral deposit-(U-Th)/He isotopic dating[J].Mineral Deposits, 2010, 29(Supplement):821-822. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1412.htm
蒋毅, 常宏.磷灰石 (U-Th)/He定年方法综述[J].岩石矿物学杂志, 2012, 31(5):757-766. Jiang Y, Chang H.Apatite (U-Th)/He dating:A review[J].Acta Petrologica et Mineralogica, 2012, 31(5):757-766.
Evans N J, Byrne J, Keegan J, et al.Determination of uranium and thorium in zircon, apatite, and fluorite:Application to laser (U-Th)/He thermochronology[J].Journal of Analytical Chemistry, 2005, 60(12):1159-1165. doi: 10.1007/s10809-005-0260-1
Boyce J W, Hodges K V, Olszewski W J, et al.Laser microprobe (U-Th)/He geochronology[J].Geochimica et Cosmochimica Acta, 2006, 70(12):3031-3039. doi: 10.1016/j.gca.2006.03.019
Boyce J W, Hodges K V, King D, et al.Improved confidence in (U-Th)/He thermochronology using the laser microprobe:An example from a Pleistocene leucogranite, Nanga Parbat, Pakistan[J].Geochemistry Geophysics Geosystems, 2009, 10(9):1-13.
van Soest M C, Monteleone B D, Boyce J W, et al.Advances in laser microprobe (U-Th)/He geochronology[R].American Geophysical Union (Fall Meeting), 2008.
Tripathy-Lang A, Monteleone B D, van Soest M C, et al.In situ detrital zircon (U-Th)/He thermochronology[R].American Geophysical Union (Fall Meeting), 2010.
Tripathy-Lang A, Hodges K V, Monteleone B D, et al.Laser (U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments[J].Journal of Geophysical Research:Earth Surface, 2013, 118(3):1333-1341. doi: 10.1002/jgrf.20091
Vermeesch P, Sherlock S C, Roberts N M W, et al.A simple method for in-situ U-Th-He dating[J].Geochimica et Cosmochimica Acta, 2012, 79:140-147. doi: 10.1016/j.gca.2011.11.042
Evans N J, McInnes B I A, McDonald B, et al.An in situ technique for (U-Th-Sm)/He and U-Pb double dating[J].Journal of Analytical Atomic Spectrometry, 2015, 30:1636-1645. doi: 10.1039/C5JA00085H
Horne A M, van Soest M C, Hodges K V, et al.Integrated single crystal ablation U/Pb and (U-Th)/He dating of detrital accessory minerals-proof-of-concept studies of titanites and zircons from the Fish Canyon Tuff[J].Geochimica et Cosmochimica Acta, 2016, 178:106-123. doi: 10.1016/j.gca.2015.11.044
Farley K A.(U-Th)/He dating:Techniques, calibrations, and applications[J].Reviews in Mineralogy and Geochemistry, 2002, 47(1):819-844. doi: 10.2138/rmg.2002.47.18
吴堑红, 刘厚昌.(U-Th)/He定年--低温热年代学研究的一种新技术[J].地球科学进展, 2002, 17(1):126-131. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200201019.htm Wu Q H, Liu H C.(U-Th)/He dating-A new method of low-temperature thermochronometry[J].Advance in Earth Sciences, 2002, 17(1):126-131. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200201019.htm
Boyce J W, Hodges K V.U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite:Insights regarding the impact of recoil redistribution of radiogenic 4He on (U-Th)/He thermochronology[J].Chemical Geology, 2005, 219(1-4):261-274. doi: 10.1016/j.chemgeo.2005.02.007
Dobson K J, Stuart F M, Dempster T J, et al.U and Th zonation in Fish Canyon Tuff zircons:Implications for a zircon (U-Th)/He standard[J].Geochimica et Cosmochimica Acta, 2008, 72(19):4745-4755. doi: 10.1016/j.gca.2008.07.015
Ault A K, Flowers R M.Is apatite U-Th zonation information necessary for accurate interpretation of apatite (U-Th)/He thermochronometry data[J].Geochimica et Cosmochimica Acta, 2011, 79:60-78.
Farley K A, Shuster D L, Ketcham R A.U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U-Th)/He system[J].Geochimica et Cosmochimica Acta, 2011, 75(16):4515-4530. doi: 10.1016/j.gca.2011.05.020
Hourigan J K, Reiners P W, Brandon M T.U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry[J].Geochimica et Cosmochimica Acta, 2005, 69(13):3349-3365. doi: 10.1016/j.gca.2005.01.024
Farley K A, Wolf R A, Fallick A E.The effects of long alpha-stopping distances on (U-Th)/He ages[J].Geochimica et Cosmochimica Acta, 1996, 60(21):4223-4229. doi: 10.1016/S0016-7037(96)00193-7
Ketcham R A, Gautheron C, Tassan-Got L.Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology:Refinement of the baseline case[J].Geochimica et Cosmochimica Acta, 2011, 75(24):7779-7791. doi: 10.1016/j.gca.2011.10.011
Gautheron C, Tassan-Got L, Ketcham R R A, et al.Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology:3D modeling of diffusion, zoning, implantation, and abrasion[J].Geochimica et Cosmochimica Acta, 2012, 96:44-56. doi: 10.1016/j.gca.2012.08.016
Meesters A G C A, Dunai T J.Solving the production-diffusion equation for finite diffusion domains of various shapes Part Ⅱ.Application to cases with α-ejection and nonhomogeneous distribution of the source[J].Chemical Geology, 2002, 186(3-4):57-73. https://www.researchgate.net/publication/223572432_Solving_the_production-diffusion_equation_for_finite_diffusion_domains_of_various_shapes_Part_II_Application_to_cases_with_a-ejection_and_nonhomogeneous_distribution_of_the_source
Bargnesi E A, Stockli D F, Hourigan J K, et al.Improved accuracy of zircon (U-Th)/He ages by rectifying parent nuclide zonation with practical methods[J].Chemical Geology, 2016, 426:158-169. doi: 10.1016/j.chemgeo.2016.01.017
Zeitler P K, Herczeg A L, McDougall I, et al.U-Th-He dating of apatite-A potential thermochronometer[J].Geochimica et Cosmochimica Acta, 1987, 51(10):2865-2868. doi: 10.1016/0016-7037(87)90164-5
Lippolt H J, Leitz M, Wernicke R S, et al.(Uranium+thorium)/helium dating of apatite:Experience with samples from different geochemical environments[J].Chemical Geology, 1994, 112(1-2):179-191. doi: 10.1016/0009-2541(94)90113-9
Wolf R A, Farley K A, Silver L T.Helium diffusion and low-temperature thermochronometry of apatite[J].Geochimica et Cosmochimica Acta, 1996, 60(21):4231-4240. doi: 10.1016/S0016-7037(96)00192-5
House M A, Farley K A, Stockli D F.Helium chronometry of apatite and titanite using Nd-YAG laser heating[J].Earth and Planetary Science Letters, 2000, 183(3-4):365-368. doi: 10.1016/S0012-821X(00)00286-7
Foeken J P, Stuart F M, Dobson K J, et al.A diode laser system for heating minerals for (U-Th)/He chronometry[J].Geochemistry, Geophysics, Geosystems, 2006, 7(4):1-9.
Kelly S P, Cherniak D J, Farley K A, et al.Testing the limits to high spatial resolution laser analysis of noble gases in natural and experimental samples[J].Goldschmidt Conference Abstracts, 2009:A636.
Reiners P W.Zircon (U-Th)/He thermochronometry[J].Reviews in Mineralogy and Geochemistry, 2005, 58(1):151-179. doi: 10.2138/rmg.2005.58.6
Stockli D F, Farley K A.Empirical constraints on the titanite (U-Th)/He partial retention zone from the KTB drill hole[J].Chemical Geology, 2004, 207(3-4):223-236. doi: 10.1016/j.chemgeo.2004.03.002
Aciego A, Kennedy B M, DePaolo D J, et al.U-Th/He age of phenocrystic garnet from the 79AD eruption of Mt.Vesuvius[J].Earth and Planetary Sciences Letters, 2003, 219(1-2):209-219.
Farley K A, Stockli D F.(U-Th)/He dating of phosphates:Apatite, monazite, and xenotime[J].Reviews in Mineralogy and Geochemistry, 2002, 48(1):559-577. doi: 10.2138/rmg.2002.48.15
Min K, Farley K A, Renne P R, et al.Single grain (U-Th)/He ages from phosphates in Acapulco meteorite and implications for thermal history[J].Earth and Planetary Science Letters, 2003, 209(3-4):323-336. doi: 10.1016/S0012-821X(03)00080-3
Min K, Reiners P W, Shuster D L.(U-Th)/He ages of phosphates from St.S verin LL6 chondrite[J].Geochimica et Cosmochimica Acta, 2013, 100:282-296. doi: 10.1016/j.gca.2012.09.042
Boyce J W, Hodges K V, Olszewski W J, et al.He diffusion in monazite:Implications for (U-Th)/He thermochronometry[J].Geochemistry, Geophysics, Geosystems, 2005, 6(12):1-12.
Evans N J, Wilson N S F, Cline J S, et al.Fluorite (U-Th)/He thermochronology:Constraints on the low temperature history of Yucca Mountain, Nevada[J].Applied Geochemistry, 2005, 20(6):1099-1105. doi: 10.1016/j.apgeochem.2005.02.008
Copeland P, Watson E B, Urizar S C, et al.Alpha thermochronology of carbonates[J].Geochimica et Cosmochimica Acta, 2007, 71(18):4488-4511. doi: 10.1016/j.gca.2007.07.004
Cros A, Gautheron C, Pagel M, et al.4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies[J].Geochimica et Cosmochimica Acta, 2014, 125:414-432. doi: 10.1016/j.gca.2013.09.038
Stockli D F, Wolfe M R, Blackburn T J, et al.He diffusion and (U-Th)/He thermochronometry of rutile[J].American Geophysical Union Fall Meeting, 2007:1548.
Meinhold G.Rutile and its applications in earth sciences[J].Earth-Science Reviews, 2010, 102(1-2):1-28. doi: 10.1016/j.earscirev.2010.06.001
Shuster D L, Vasconcelos P M, Heim J A, et al.Weathering geochronology by U-Th/He dating of goethite[J].Geochimica et Cosmochimica Acta, 2005, 69(3):659-673. doi: 10.1016/j.gca.2004.07.028
Wernicke R S, Lippolt H J.(U-Th)-He evidence of Jurassic continuous hydrothermal activity in the Schwarzwald basement, Germany[J].Chemical Geology, 1997, 138(3-4):273-285. doi: 10.1016/S0009-2541(97)00020-X
Shukolyukov Y A, Yakubovich O V, Rytsk Y A.About possibility of isotope dating of native gold by the (U-Th)/He method[J].Doklady Earth Sciences, 2010, 430(1):90-94. doi: 10.1134/S1028334X10010204
Yakubovich O V, Shukolyukov Y A, Kotov A B, et al.U-Th-He dating of native gold:First results, problems and outlooks[J].Petrology, 2014, 22(5):429-437. doi: 10.1134/S0869591114050075
LeHarzic R, Valette S, Huot N, et al.TEM Investigations of Thermal Effects on Material Structure Induced by Femtosecond and Nanosecond Laser Processing[C]//Sugioka K, Gower M C, Haglund R F, et al.Photon Processing in Microelectronics and Photonics:Proceedings of SPIE, Vol.4637.Bellingham, 2002:148-158.
Yao Y L, Chen H Q, Zhang W W.Time scale effects in laser material removal:A review[J].International Journal of Advanced Manufacturing Technology, 2005, 26(5):598-608.
van Soest M C, Monteleone B D, Boyce J W, et al.Laser depth profiling studies of helium diffusion in Durango fluorapatite[J].Geochimica et Cosmochimica Acta, 2011, 75(9):2409-2419. doi: 10.1016/j.gca.2011.02.008
Liu W L, Xia H R, Wang X Q, et al.Characterization of deuterated potassium dihydrogen phosphate single crystals grown by circulating method[J].Journal of Crystal Growth, 2006, 293(2):387-393. doi: 10.1016/j.jcrysgro.2006.05.040
Santos E A F, Silva W F, de Araújo M T, et al.Quantum efficiencies and thermo-optical properties of Er3+-, Nd3+-, and P3+-single doped lead-indium-phosphate glasses[J].Journal of Applied Physics, 2009, 106:1-6.
Hodapp T W, Fleming P R.Modeling topology formation during laser ablation[J].Journal of Applied Physics, 1998, 84(1):577-583. doi: 10.1063/1.368063
Usoskin A, Freyhardt H C, Krebs H U.Influence of light scattering on the development of laser-induced ridge-cone structures on target surfaces[J].Applied Physics A:Materials Science & Processing, 1999, 69:S823-S826.
Woodhead J, Hergt J, Meffre S, et al.In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector and quadrupole) ICPMS[J].Chemical Geology, 2009, 262(3-4):344-354. doi: 10.1016/j.chemgeo.2009.02.003
Wolf R A, Farley K A, Kass D M.Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer[J].Chemical Geology, 1998, 148(1-2):105-114. doi: 10.1016/S0009-2541(98)00024-2
Reiners P W, Spell T L, Nicolescu S, et al.Zircon (U-Th)/He thermochronometry:He diffusion and comparisons with 40Ar/39Ar dating[J].Geochimica et Cosmochimica Acta, 2004, 68(8):1857-1887. doi: 10.1016/j.gca.2003.10.021
Siebel W, Hann H P, Danisik M, et al.Age constraints on faulting and fault reactivation:A multi-chronological approach[J].International Journal of Earth Science, 2010, 99(6):1187-1197. doi: 10.1007/s00531-009-0474-9
Crowhurst P, Farley K A, Ryan C, et al.Potential of rutile as a U-Th-He thermochronometer[J].Geochimica et Cosmochimica Acta, 2002(Supplement 1), 66:A158.
Stockli D F, Farley K A, Walker J D, et al.Helium diffusion and (U-Th)/He thermochronometry of monazite and rutile[J].Geochimica et Cosmochimica Acta, 2005, 69(10):A8.
Wolfe M R, Stockli D F, Shuster D L, et al.Assessment of the rutile (U-Th)/He thermochronometry on the KTB drill hole, Germany[R].American Geophysical Union (Fall Meeting), 2007.
Peterman E M, Hourigan J K, Grove M.Experimental and geologic evaluation of monazite (U-Th)/He thermochronometry:Catnip Sill, Catalina core complex, Tucson, AZ[J].Earth and Planetary Science Letters, 2014, 403:48-55. doi: 10.1016/j.epsl.2014.06.020
McInnes B I A, Evans N J, Fu F Q, et al.Thermal History Analysis of Selected Chilean, Indonesian and Iranian Porphyry Cu-Mo-Au Deposits[M]//Porter T M.Super Porphyry Copper & Gold Deposits:A Global Perspective.Adelaide:PGC Publishing, 2005:1-16.
McInnes B I A, Evans N J, Fu F Q, et al.Application of thermochronology to hydrothermal ore deposits[J].Reviews in Mineralogy and Geochemistry, 2005, 58(1):467-498. doi: 10.2138/rmg.2005.58.18
Harris A, Dunlap W J, Reiners P W, et al.Multimillion year thermal history of a porphyry copper deposit:Application of U-Pb, 40Ar/39Ar and (U-Th)/He chrono-meters, Bajo de la Alumbrera copper-gold deposit, Argentina[J].Mineralium Deposita, 2008, 43(3):295-314. doi: 10.1007/s00126-007-0151-5
Betsi T B, Lentz D, McInnes B I A, et al.Emplacement ages and exhumation rates for intrusion-hosted Cu-Mo-Sb-Au mineral systems at Freegold Mountain (Yukon, Canada):Assessment from U-Pb, Ar-Ar, and (U-Th)/He geochronometer[J].Canada Journal of Earth Sciences, 2012, 49(5):653-670. doi: 10.1139/e2012-009
Li G M, Cao M J, Qin K Z, et al.Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U-Pb, biotite Ar/Ar and zircon/apatite (U-Th)/He dating[J].Journal of Asian Earth Sciences, 2014, 79(Part B):741-758.
Li J X, Qin K Z, Li G M, et al.Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet:Insights from U-Pb and U-Th/He dating, and zircon Hf isotopes and trace element analysis[J].Mineralogy and Petrology, 2012, 105(3):201-221.
Liu X, Fan H R, Evans N J, et al.Cooling and exhumation of the mid-Jurassic porphyry copper systems in Dexing City, SE China:Insights from geo-and thermochronology[J].Mineralium Deposita, 2014, 49(7):809-819. doi: 10.1007/s00126-014-0536-1
Arehart G B, Chakurian A M, Tertbar D R, et al.Evaluation of radioisotope dating of Carlin-type deposits in the Great Basin, Western North America, and implications for deposit genesis[J].Economic Geology, 2003, 98(2):235-248.
Zeng Q T, Evans N J, McInnes B I A, et al.Geological and thermochronological studies of the Dashui gold deposit, West Qinling Orogen, Central China[J].Mineralium Deposita, 2013, 48(3):397-412. doi: 10.1007/s00126-012-0433-4
Eugster O, Hofmann B, Krahenbuhl U, et al.Noble gases in alpine gold:U/Th-He dating and excesses of radiogenic He and Ar[J].Meteoritics, 1992, 27(3):219-220.
Eugster O, Niedermann S, Thalmann C, et al.Noble gases, K, U, Th, and Pb in native gold[J]. Journal of Geophysical Research, 1995, 100(B12):24677-24689. doi: 10.1029/95JB02843
Niedermann S, Eugster O, Frei R, et al.Formation of alpine Au~30Ma ago:Further results of the develop-ment of a dating method for native Au[J].Meteoritics, 1993, 28(3):411-412.
Pettke T, Frei R, Kramers J D, et al.Isotope systematics in vein gold from Brusson, Vald'Ayas (NW Italy):2.(U+Th)/He and K/Ar in native Au and its fluid inclusions[J].Chemical Geology, 1997, 135(3-4):173-187. doi: 10.1016/S0009-2541(96)00114-3
Shukolyukov Y A, Yakubovich O V, Yakovleva S Z, et al.Geothermochronology based on noble gases:Ⅲ.Migration of radiogenic He in the crystal structure of native metals with applications to their isotopic dating[J].Petrology, 2012, 20(1):1-20. doi: 10.1134/S0869591112010043
Heim J A, Vasconcelos P M, Shuster D L, et al.Dating paleochannel iron ore by (U-Th)/He analysis of supergene goethite, Hamersley Province, Australia[J].Geology, 2006, 34(3):173-176. doi: 10.1130/G22003.1
Farley K A, Flowers R M.(U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from Eastern Grand Canyon[J].Earth and Planetary Science Letters, 2012, 359-360:131-140. doi: 10.1016/j.epsl.2012.10.010
Danisik M, Evans N J, Ramanaidou E R, et al.(U-Th)/He chronology of the Robe River channel iron deposits, Hamersley Province, Western Australia[J].Chemical Geology, 2013, 354:150-162. doi: 10.1016/j.chemgeo.2013.06.012
Burnard P G, Polya D A.Importance of mantle derived fluids during granite associated hydrothermal circulation:He and Ar isotopes of ore minerals from Panasqueira[J].Geochimica et Cosmochimica Acta, 2004, 68(7):1607-1615. doi: 10.1016/j.gca.2003.10.008
Jean-Baptiste P H, Fouquet Y.Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N[J].Geochimica et Cosmochimica Acta, 1996, 60(1):87-93. doi: 10.1016/0016-7037(95)00357-6
-
期刊类型引用(7)
1. 刘文博,陶霓,孙敬博,温汉捷. 锆石激光原位微区U-Th-Pb-He双定年分析方法进展. 矿物岩石地球化学通报. 2025(01): 162-177 . 百度学术
2. 朱光有,艾依飞,李婷婷,王萌,陈玮岩,张志遥,赵坤,李茜,张岩,段鹏珍,石军. 非常规同位素在石油地质学中的应用与油气地球化学新进展. 石油学报. 2024(04): 718-754 . 百度学术
3. 李一闪,刘红,孙凤霞,刘雷. 碳酸盐(U-Th)/He同位素定年研究进展与展望. 地震地质. 2024(03): 723-738 . 百度学术
4. 涂家润,周红英,崔玉荣,李国占,耿建珍,张健. 磷灰石ID-TIMS高精度U-Pb定年方法. 岩矿测试. 2024(04): 533-545 . 本站查看
5. 黄勇,付山岭,赵成海,高伟. 低温热年代学方法及其在矿床学研究中的应用. 矿物岩石地球化学通报. 2021(04): 958-973 . 百度学术
6. 万秋,李延河,王利民,段超,施珂,谭德兴. 北淮阳晓天火山岩盆地片麻状花岗岩成岩年代学及地球化学特征. 岩矿测试. 2020(04): 620-630 . 本站查看
7. 张硕,简星,张巍. 碎屑磷灰石对沉积物源判别的指示. 地球科学进展. 2018(11): 1142-1153 . 百度学术
其他类型引用(2)