A High-Precision ID-TIMS U-Pb Dating Method of Apatite
-
摘要:
磷灰石晶体结构呈六方晶系,具有相对高的封闭温度(350~550℃),能够容纳多种元素置换进入晶格内部,是火成岩、沉积岩、变质岩和矿床研究的重要定年矿物。然而,由于磷灰石通常具有较低铀含量和高普通铅含量,精准测定其年龄仍是当前U-Pb测年技术的一大挑战。本文基于208Pb-235U混合稀释剂,通过优化样品清洗、溶解以及柱色谱分离纯化U和Pb等化学前处理流程,建立了磷灰石同位素稀释-热电离质谱(ID-TIMS)高精度U-Pb定年方法,并准确测定了磷灰石标样MAD2和MAP-3的年龄,其 206Pb/238U年龄加权平均值分别为474.6±1.7Ma和800.7±1.2Ma,单点定年精度优于0.4%,为磷灰石微区原位标样研发以及样品年龄精准测定提供技术支撑。采用MAP-3作为微区原位校正标样,对磷灰石Durango和Otter Lake进行LA-ICP-MS U-Pb测年分析,通过Tera-Wasserburg谐和图图解法扣除普通铅,获得下交点年龄分别为32.1±0.6Ma(MSWD=1.3,n=36)和910±13Ma(MSWD=1.6,n=36),与前人研究结果在误差范围内一致,进一步证实普通铅含量极低的MAP-3,是一个理想的磷灰石微区原位测年标样。与高普通铅的磷灰石标样相比,使用MAP-3作为外标能直接在数据处理软件中进行数据校正,有效地简化了数据处理过程,提高磷灰石微区原位U-Pb测年结果的可靠性。
-
关键词:
- 同位素稀释-热电离质谱法 /
- U-Pb定年 /
- 稀释剂 /
- 普通铅 /
- 标样
Abstract:Apatite belongs to the hexagonal crystal system and has a relatively high (350-550℃) closure temperature, which can accommodate multiple element substitutions into the crystal lattice. It is an important dating mineral for the study of igneous rocks, sedimentary rocks, metamorphic rocks and ore deposits. However, due to the low uranium content and high common lead content of apatite, accurate age determination remains a major challenge for current U-Pb dating techniques. Based on the 208Pb-235U mixed spike, a high-precision isotope dilution-thermal ionization mass spectrometry (ID-TIMS) U-Pb dating method of apatite was established by optimizing the chemical pre-treatment process of sample cleaning, dissolution, and column chromatography separation and purification of U and Pb. The proposed method accurately determined the ages of apatite MAD2 and MAP-3, with 206Pb/238U weighted average ages of 474.6±1.7Ma and 800.7±1.2Ma, respectively. The precision of single-point analysis was better than 0.4%, providing technical support for accurately and precisely dating apatite and development of apatite standards. Moreover, taking MAP-3 as a calibration standard, LA-ICP-MS U-Pb dating was performed on apatite in Durango and Otter Lake, resulting in lower intercept ages of 32.1±0.6Ma (MSWD=1.3, n=36) and 910±13Ma (MSWD=1.6, n=36) in a Tera-Wasserburg diagram, which were consistent with the previous research results within error. This gives further evidence that MAP-3, with extremely low common lead content, is an ideal apatite in situ U-Pb dating standard. Compared with high common lead apatite standards, MAP-3 as an external standard can directly calibrate the isotopic data, effectively simplifying the data analysis process and improving the reliability of in situ apatite U-Pb dating results.
-
-
表 1 磷灰石ID-TIMS U-Pb定年结果
Table 1 ID-TIMS U-Pb dating results of apatite
MAD2样品 元素含量
(μg/g)同位素比值 年龄(Ma) Rho Pb U 206Pb/204Pb 206Pb/238U 误差
(%)207Pb/235U 误差
(%)207Pb/206Pb 误差
(%)206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1 9.8 22.4 92.8 0.07646 0.26 0.5975 1.36 0.05668 1.19 475.0 1.2 475.7 6.5 479 26 0.716 2 9.2 21.6 93.3 0.07634 0.26 0.5961 1.37 0.05663 1.20 474.3 1.2 474.8 6.5 477 26 0.700 MAP-3样品 元素含量
(μg/g)同位素比值 年龄(Ma) Rho Pb U 206Pb/204Pb 206Pb/238U 误差
(%)207Pb/235U 误差
(%)207Pb/206Pb 误差
(%)206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1 3.9 16.0 106.9 0.1321 0.29 1.200 1.05 0.06593 0.90 799.9 2.3 800.8 8.4 803 38 0.623 2 4.2 16.3 100.5 0.1321 0.27 1.206 0.91 0.06622 0.72 799.9 2.2 803.2 7.3 812 30 0.794 3 3.1 16.3 274.9 0.1323 0.11 1.202 0.55 0.06589 0.49 801.1 0.9 801.3 4.4 802 20 0.635 4 3.4 16.0 187.8 0.1322 0.15 1.200 0.55 0.06588 0.47 800.3 1.2 800.6 4.4 802 20 0.678 5 4.3 17.0 105.5 0.1322 0.25 1.196 0.89 0.06564 0.71 800.6 2.0 798.9 7.1 794 30 0.792 6 4.5 16.2 87.61 0.1325 0.34 1.185 1.11 0.06487 0.86 802.1 2.8 793.5 8.8 769 36 0.790 表 2 磷灰石LA-ICP-MS U-Pb定年结果
Table 2 LA-ICP-MS U-Pb dating results of apatite
MAP-3
样品元素含量(μg/g) 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 0.05 46.2 30.1 0.0648 0.0025 1.1805 0.0440 0.1318 0.0013 769 84 792 20 798 8 2 0.07 43.8 29.2 0.0663 0.0018 1.2173 0.0340 0.1334 0.0013 817 53 809 16 807 7 3 0.10 42.5 29.5 0.0652 0.0019 1.1789 0.0372 0.1311 0.0014 789 63 791 17 794 8 4 0.05 44.1 30.7 0.0649 0.0019 1.1792 0.0357 0.1323 0.0013 772 64 791 17 801 7 5 0.05 39.0 29.1 0.0666 0.0021 1.2170 0.0416 0.1322 0.0014 833 61 808 19 801 8 6 0.08 41.8 30.3 0.0671 0.0021 1.2135 0.0382 0.1309 0.0014 839 63 807 18 793 8 7 0.05 32.8 24.7 0.0644 0.0024 1.1828 0.0435 0.1336 0.0018 755 78 793 20 809 10 8 0.06 28.4 21.3 0.0666 0.0026 1.2091 0.0461 0.1321 0.0017 833 81 805 21 800 10 9 0.05 30.1 22.7 0.0649 0.0024 1.1871 0.0449 0.1324 0.0018 772 78 795 21 802 10 10 0.06 33.5 26.8 0.0673 0.0021 1.2221 0.0402 0.1316 0.0015 850 69 811 18 797 9 11 0.07 34.7 27.8 0.0641 0.0021 1.1741 0.0416 0.1329 0.0017 746 69 789 19 805 9 12 0.07 35.4 27.8 0.0655 0.0022 1.1893 0.0409 0.1315 0.0014 791 70 796 19 797 8 13 0.05 26.8 24.9 0.0659 0.0024 1.2069 0.0454 0.1329 0.0015 806 78 804 21 805 9 14 0.06 26.5 23.3 0.0659 0.0024 1.2034 0.0447 0.1326 0.0018 806 76 802 21 803 11 15 0.07 31.9 26.3 0.0656 0.0023 1.1928 0.0429 0.1319 0.0016 791 74 797 20 799 9 16 0.07 31.7 26.4 0.0640 0.0023 1.1545 0.0415 0.1312 0.0017 740 78 779 20 795 10 17 0.09 36.4 26.5 0.0675 0.0023 1.2417 0.0448 0.1332 0.0016 854 68 820 20 806 9 18 0.06 37.7 27.9 0.0648 0.0021 1.1770 0.0381 0.1319 0.0015 766 67 790 18 798 8 19 0.08 32.3 26.3 0.0667 0.0022 1.2193 0.0401 0.1326 0.0015 829 69 809 18 803 8 20 0.07 38.5 32.3 0.0641 0.0033 1.1835 0.0586 0.1340 0.0029 746 107 793 27 811 17 21 0.04 33.6 26.6 0.0646 0.0021 1.1695 0.0382 0.1314 0.0015 763 67 786 18 796 9 22 0.02 37.5 30.1 0.0668 0.0025 1.2268 0.0469 0.1331 0.0019 831 78 813 21 806 11 23 0.06 37.7 27.4 0.0672 0.0025 1.2194 0.0470 0.1318 0.0018 844 78 810 22 798 11 24 0.07 41.5 30.2 0.0643 0.0027 1.1768 0.0515 0.1327 0.0020 750 91 790 24 803 11 25 0.07 40.5 29.6 0.0649 0.0026 1.1802 0.0463 0.1324 0.0017 772 85 791 22 801 10 26 0.07 36.0 26.3 0.0666 0.0025 1.2160 0.0462 0.1321 0.0015 833 78 808 21 800 8 27 0.09 26.2 29.7 0.0643 0.0029 1.1701 0.0516 0.1320 0.0019 750 94 787 24 799 11 28 0.05 27.6 20.8 0.0654 0.0027 1.2025 0.0515 0.1334 0.0015 787 87 802 24 807 9 29 0.05 35.5 28.1 0.0655 0.0026 1.1997 0.0460 0.1330 0.0017 791 83 800 21 805 10 30 0.09 34.2 26.9 0.0660 0.0022 1.1966 0.0394 0.1315 0.0016 806 66 799 18 797 9 31 0.08 40.3 32.0 0.0678 0.0030 1.2244 0.0523 0.1314 0.0018 861 94 812 24 796 10 32 0.06 40.4 26.6 0.0668 0.0023 1.1941 0.0427 0.1299 0.0015 831 68 798 20 787 9 33 0.03 29.4 24.2 0.0647 0.0024 1.2021 0.0484 0.1346 0.0017 765 80 802 22 814 10 34 0.07 31.9 24.9 0.0642 0.0024 1.1775 0.0435 0.1331 0.0018 748 50 790 20 806 10 35 0.06 29.7 22.4 0.0673 0.0026 1.2187 0.0466 0.1314 0.0018 856 80 809 21 796 10 36 0.06 29.7 22.6 0.0672 0.0025 1.2232 0.0476 0.1321 0.0016 843 80 811 22 800 9 Durango
样品元素含量(μg/g) 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 0.08 431.4 28.8 0.2609 0.0390 0.1497 0.0152 0.0059 0.0003 3254 238 142 13 38 2 2 0.16 559.8 37.9 0.2094 0.0432 0.1321 0.0279 0.0056 0.0006 2901 340 126 25 36 4 3 0.10 433.2 28.8 0.1793 0.0460 0.1610 0.0182 0.0060 0.0002 2646 439 152 16 38 1 4 0.10 422.8 28.2 0.3682 0.0938 0.1775 0.0180 0.0061 0.0002 3784 397 166 16 39 1 5 0.11 450.0 30.0 0.2383 0.0354 0.1548 0.0150 0.0061 0.0002 3109 239 146 13 39 1 6 0.13 441.0 29.3 0.2216 0.0464 0.1468 0.0359 0.0059 0.0002 2992 342 139 32 38 1 7 0.12 443.7 29.4 0.2602 0.1103 0.0983 0.0158 0.0058 0.0002 3248 724 95 15 37 1 8 0.09 445.7 29.5 0.2118 0.0395 0.1282 0.0149 0.0062 0.0002 2919 307 122 13 40 2 9 0.11 427.5 28.4 0.0000 0.0000 0.1779 0.0144 0.0064 0.0002 − − 166 12 41 1 10 0.09 433.5 29.1 0.2339 0.0267 0.1431 0.0141 0.0056 0.0002 3079 183 136 13 36 2 11 0.09 423.3 28.5 0.2342 0.0271 0.1430 0.0140 0.0056 0.0002 3081 186 136 12 36 2 12 0.09 411.9 27.7 0.2208 0.0279 0.1462 0.0141 0.0061 0.0002 2987 204 139 13 39 1 13 0.10 417.3 28.4 0.1753 0.0392 0.1312 0.0136 0.0057 0.0002 2609 375 125 12 37 1 14 0.12 399.9 27.0 0.0774 0.0990 0.1272 0.0158 0.0058 0.0003 1132 1488 122 14 37 2 15 0.10 414.8 27.8 0.1731 0.0434 0.1216 0.0142 0.0059 0.0002 2588 430 117 13 38 2 16 0.10 431.4 28.8 0.1954 0.0215 0.1444 0.0134 0.0064 0.0003 2789 181 137 12 41 2 17 0.12 433.4 28.9 0.2054 0.0628 0.0858 0.0144 0.0057 0.0002 2869 519 84 13 36 2 18 0.10 430.5 28.6 0.1547 0.1071 0.1729 0.0148 0.0061 0.0002 2398 1591 162 13 39 2 19 0.10 449.8 29.4 0.1582 0.0499 0.1346 0.0166 0.0061 0.0003 2437 559 128 15 39 2 20 0.11 437.4 28.6 0.2234 0.0260 0.1710 0.0156 0.0064 0.0002 3005 188 160 14 41 2 21 0.08 437.2 28.6 0.4834 0.2508 0.1420 0.0145 0.0058 0.0002 4192 1122 135 13 38 1 22 0.08 441.5 28.8 0.2613 0.0529 0.1755 0.0182 0.0058 0.0002 3255 324 164 16 37 2 23 0.11 502.3 33.0 0.2055 0.0281 0.1446 0.0190 0.0061 0.0003 2870 224 137 17 39 2 24 0.07 442.4 29.0 0.2263 0.0602 0.1714 0.0167 0.0058 0.0003 3026 440 161 14 37 2 25 0.12 428.2 28.0 0.2170 0.0418 0.1360 0.0149 0.0059 0.0002 2958 316 129 13 38 2 26 0.13 499.2 32.8 0.1948 0.0392 0.1548 0.0223 0.0060 0.0003 2784 335 146 20 38 2 27 0.10 419.7 27.8 0.1378 0.0305 0.1292 0.0145 0.0063 0.0002 2200 393 123 13 40 1 28 0.11 423.3 28.0 0.1976 0.0239 0.1311 0.0140 0.0060 0.0002 2806 199 125 13 39 1 29 0.09 462.6 30.5 0.2353 0.0340 0.1545 0.0171 0.0060 0.0003 3089 233 146 15 38 2 30 0.09 500.1 33.2 0.2165 0.0291 0.1526 0.0184 0.0060 0.0003 2955 223 144 16 38 2 31 0.09 431.8 28.4 0.2207 0.0427 0.1393 0.0151 0.0061 0.0003 2987 321 132 13 39 2 32 0.10 440.8 28.9 0.1693 0.0335 0.1382 0.0158 0.0061 0.0002 2551 337 131 14 39 2 33 0.07 444.7 28.8 0.2302 0.0773 0.1586 0.0161 0.0059 0.0002 3053 560 150 14 38 2 34 0.10 439.3 28.5 0.2513 0.0501 0.1576 0.0162 0.0059 0.0003 3194 321 149 14 38 2 35 0.09 447.6 29.5 0.2095 0.0381 0.1414 0.0161 0.0060 0.0003 2902 299 134 14 39 2 36 0.15 457.4 29.8 0.2327 0.0289 0.1741 0.0167 0.0066 0.0003 3072 200 163 14 43 2 Otter Lake
样品元素含量(μg/g) 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 1.74 553.4 147.8 0.1408 0.0155 3.2691 0.3406 0.1664 0.0041 2239 191 1474 81 992 23 2 1.41 263.3 93.4 0.1445 0.0099 3.4504 0.2251 0.1714 0.0026 2283 118 1516 51 1020 14 3 1.77 182.6 56.8 0.2146 0.0054 5.4643 0.1614 0.1843 0.0034 2940 40 1895 25 1090 19 4 0.95 178.6 38.6 0.2521 0.0051 6.8339 0.1775 0.1957 0.0027 3198 32 2090 23 1152 15 5 1.39 437.1 60.0 0.1715 0.0036 4.0178 0.1046 0.1687 0.0018 2573 34 1638 21 1005 10 6 1.23 330.8 39.1 0.1935 0.0042 4.8208 0.1160 0.1807 0.0021 2773 35 1789 20 1071 11 7 1.23 666.1 104.9 0.1343 0.0025 3.0840 0.0610 0.1661 0.0013 2155 31 1429 15 990 7 8 1.11 383.3 69.6 0.1691 0.0035 4.0172 0.0975 0.1711 0.0015 2550 35 1638 20 1018 8 9 1.13 498.6 84.0 0.1606 0.0036 3.7315 0.1008 0.1664 0.0014 2462 33 1578 22 992 8 10 0.88 103.1 19.1 0.2963 0.0087 8.4443 0.2636 0.2052 0.0027 3451 45 2280 28 1203 14 11 1.14 159.7 21.1 0.3107 0.0099 9.0356 0.3412 0.2082 0.0028 3524 48 2342 35 1219 15 12 1.30 231.7 40.2 0.2126 0.0047 5.2309 0.1247 0.1781 0.0016 2926 30 1858 20 1057 9 13 1.24 136.3 32.1 0.2111 0.0052 5.2680 0.1336 0.1806 0.0022 2914 40 1864 22 1070 12 14 0.98 329.4 51.8 0.1909 0.0039 4.6007 0.1112 0.1735 0.0018 2750 33 1749 20 1031 10 15 1.12 238.0 36.6 0.2253 0.0047 5.6751 0.1391 0.1815 0.0020 3020 34 1928 21 1075 11 16 1.20 140.6 42.7 0.1820 0.0040 4.3601 0.1006 0.1733 0.0015 2672 36 1705 19 1030 9 17 1.21 119.6 40.0 0.1788 0.0033 4.3273 0.0882 0.1748 0.0015 2642 29 1699 17 1038 8 18 1.34 533.7 71.4 0.1597 0.0045 3.8424 0.1145 0.1733 0.0018 2454 48 1602 24 1030 10 19 0.86 346.3 48.2 0.1794 0.0050 4.1841 0.1245 0.1680 0.0030 2647 47 1671 24 1001 17 20 1.17 165.4 46.2 0.2051 0.0062 5.1698 0.1756 0.1809 0.0024 2878 50 1848 29 1072 13 21 0.93 225.6 28.2 0.2170 0.0052 5.5341 0.1614 0.1838 0.0024 2958 39 1906 25 1087 13 22 1.26 202.3 54.5 0.1911 0.0052 4.8397 0.1826 0.1796 0.0022 2752 45 1792 32 1065 12 23 1.23 120.1 45.2 0.1886 0.0049 4.6458 0.1577 0.1759 0.0024 2731 42 1758 28 1044 13 24 1.20 95.0 26.7 0.2904 0.0085 8.3242 0.2427 0.2085 0.0040 3420 45 2267 26 1221 22 25 0.81 306.3 20.0 0.3252 0.0093 10.0052 0.3691 0.2188 0.0038 3594 44 2435 34 1275 20 26 0.81 587.8 35.9 0.2186 0.0056 5.4828 0.1482 0.1810 0.0020 2970 41 1898 23 1073 11 27 0.76 193.6 33.3 0.2319 0.0051 5.9810 0.1408 0.1863 0.0018 3065 35 1973 21 1101 10 28 0.82 515.3 30.1 0.2139 0.0051 5.3590 0.1448 0.1803 0.0018 2935 38 1878 23 1068 10 29 1.49 552.5 96.7 0.1562 0.0053 3.7183 0.1717 0.1693 0.0029 2417 53 1575 37 1008 16 30 0.82 146.4 28.9 0.2685 0.0093 7.5063 0.2963 0.1995 0.0029 3297 54 2174 35 1173 16 31 1.50 243.4 36.4 0.2164 0.0048 5.5621 0.1449 0.1847 0.0018 2955 36 1910 22 1092 10 32 1.11 264.0 36.1 0.2655 0.0094 7.5285 0.3287 0.1988 0.0027 3280 56 2176 39 1169 15 33 1.05 294.6 44.3 0.2400 0.0057 6.4487 0.2019 0.1916 0.0022 3120 37 2039 28 1130 12 34 1.46 289.1 41.1 0.2489 0.0065 6.6652 0.2106 0.1928 0.0027 3189 42 2068 28 1136 15 35 0.83 96.1 33.2 0.2127 0.0075 5.5419 0.1837 0.1878 0.0027 2928 58 1907 29 1109 15 36 1.09 671.2 106.2 0.1675 0.0079 4.6291 0.4488 0.1750 0.0049 2533 79 1755 81 1039 27 -
[1] 李华伟, 杨志明. 岩浆锆石和磷灰石矿物化学及在斑岩矿床领域的应用[J]. 地质学报, 2023, 97(4): 973−1001. doi: 10.3969/j.issn.0001-5717.2023.04.002 Li H W, Yang Z M. Geochemistry of magmatic zircon and apatite and its applications in porphyry deposits[J]. Acta Geologica Sinica, 2023, 97(4): 973−1001. doi: 10.3969/j.issn.0001-5717.2023.04.002
[2] 赵振华, 严爽. 矿物——成矿与找矿[J]. 岩石学报, 2019, 35(1): 31−68. doi: 10.18654/1000-0569/2019.01.03 Zhao Z H, Yan S. Minerals and relevant metallogeny and exploration[J]. Acta Petrologica Sinica, 2019, 35(1): 31−68. doi: 10.18654/1000-0569/2019.01.03
[3] 孙晓旭, 冯坚, 李超, 等. 自动矿物识别和表征系统在辽东吉祥峪稀土矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2023, 42(6): 1120−1131. doi: 10.15898/j.ykcs.202203270061 Sun X X, Feng J, Li C, et al. Application of automated mineral identification and characterization system to identify minerals and occurrences of elements in Jixiangyu rare earth deposit of Eastern Liaoning[J]. Rock and Mineral Analysis, 2023, 42(6): 1120−1131. doi: 10.15898/j.ykcs.202203270061
[4] Danisik M, Pfaff K, Evans N J, et al. Tectonothermal history of the Schwarzwald ore district (Germany): An apatite triple dating approach[J]. Chemical Geology, 2010, 278(1/2): 58−69.
[5] David M C, Spiking R A. Geochronology and thermochronology using apatite: Time and temperature, lower crust to surface[J]. Elements, 2015, 11(3): 189−194. doi: 10.2113/gselements.11.3.189
[6] Jian X, Guan P, Zhang W, et al. Late Cretaceous to early Eocene deformation in the Northern Tibetan Plateau: Detrital apatite fission track evidence from Northern Qaidam Basin[J]. Gondwana Research, 2018, 60: 94−104. doi: 10.1016/j.gr.2018.04.007
[7] 付山岭, 赵成海. 原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景[J]. 岩矿测试, 2017, 36(1): 1−13. doi: 10.15898/j.cnki.11-2131/td.2017.01.002 Fu S L, Zhao C H. Progress of in situ U-Th/He isotopic dating technique and its application to low temperature deposits[J]. Rock and Mineral Analysis, 2017, 36(1): 1−13. doi: 10.15898/j.cnki.11-2131/td.2017.01.002
[8] 梅清风, 杨进辉, 孙金凤, 等. Acasta片麻杂岩多期次热事件: 来自锆石、榍石和磷灰石的原位微区年代学证据[J]. 中国科学: 地球科学, 2024, 67(3): 673−686. Mei Q F, Yang J H, Sun J F, et al. Multiple thermal events recorded in the Acasta Gneiss Complex: Evidence from in-situ dating of zircon, titanite, and apatite[J]. Science China Earth Sciences, 2024, 67(3): 673−686.
[9] 祝亚男, 彭建堂, 邢朗彰, 等. 湘西沃溪金锑钨矿床白钨矿、黑钨矿与磷灰石U-Pb定年及其地质意义[J]. 岩石学报, 2023, 39(6): 1829−1846. doi: 10.18654/1000-0569/2023.06.15 Zhu Y N, Peng J T, Xing L Z, et al. U-Pb dating of scheelite, wolframite and apatite from the Woxi Au-Sb-W deposit, Western Hunan Province and their geological significance[J]. Acta Petrologica Sinica, 2023, 39(6): 1829−1846. doi: 10.18654/1000-0569/2023.06.15
[10] Chew D M, Spikings R A. Apatite U-Pb thermochronology: Review[J]. Minerals, 2021, 11(10): 1095−1116. doi: 10.3390/min11101095
[11] Chen W, Simonetti A. In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history[J]. Chemical Geology, 2013, 353(5): 151−172.
[12] Cherniak D J, Lanford W A, Ryerson F. Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques[J]. Geochimica et Cosmochimica Acta, 1991, 55(6): 1663−1673. doi: 10.1016/0016-7037(91)90137-T
[13] 赵令浩, 詹秀春, 曾令森, 等. 磷灰石 LA-ICP-MS U-Pb 定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753. doi: 10.15898/j.cnki.11-2131/td.202202260035 Zhao L H, Zhan X C, Zeng L S, et al. Direct calibration method for LA-HR-ICP-MS apatite U-Pb dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744−753. doi: 10.15898/j.cnki.11-2131/td.202202260035
[14] Chew D M, Petrus J A, Kamber B S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb[J]. Chemical Geology, 2014, 363: 185−199. doi: 10.1016/j.chemgeo.2013.11.006
[15] Thomson S N, Gehrels G E, Ruiz J, et al. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): Q0AA21.
[16] 周红英, 刘敦一, Nemchim A, 等. 鞍山地区 3.8Ga变质石英闪长岩遭受3.0Ga构造事 件叠加——来自磷灰石SHRIMP U-Th-Pb定年证据[J]. 地质论评, 2007, 53(1): 120−125. doi: 10.3321/j.issn:0371-5736.2007.01.016 Zhou H Y, Liu D Y, Nemchim A, et al. 3.0Ga thermo-tectonic events suffered by the 3.8Ga Meta-quartz-diorite in the Anshan area: Constraints from Apatite SHRIMP U-Th-Pb dating[J]. Geological Review, 2007, 53(1): 120−125. doi: 10.3321/j.issn:0371-5736.2007.01.016
[17] Chew D M, Sylvester P J, Tubrett M N. U-Pb and Th-Pb dating of apatite by LA-ICPMS[J]. Chemical Geology, 2011, 280(1): 200−216.
[18] Li Q L, Li X H, Wu F Y, et al. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb[J]. Gondwana Research, 2012, 21: 745−756. doi: 10.1016/j.gr.2011.07.008
[19] 许雅雯, 李惠民, 王家松, 等. U-Pb同位素测年新方法——激光烧蚀等离子体质谱法直接测定探针片中锆石和磷灰石年龄[J]. 地质调查与研究, 2015, 38(1): 67−76. Xu Y W, Li H M, Wang J S, et al. A new method of U-Pb isotopic dating: In polished thin section U-Pb dating of zircon, apatite using laser ablation-MC-ICP-MS[J]. Geological Survey and Research, 2015, 38(1): 67−76.
[20] Wohlgemuth-Ueberwasser C, Tegner C, Pease V. LA-Q-ICP-MS apatite U/Pb geochronology using common Pb in plagioclase: Examples from layered mafic intrusions[J]. American Mineralogist, 2017, 102: 571−579. doi: 10.2138/am-2017-5903
[21] Fisher C M, Bauer A M, Luo Y, et al. Laser ablation split-stream analysis of the Sm-Nd and U-Pb isotope compositions of monazite, titanite, and apatite—Improvements, potential reference materials, and application to the Archean Saglek Block gneisses[J]. Chemical Geology, 2020, 539: 119493. doi: 10.1016/j.chemgeo.2020.119493
[22] 刘敏, 宋世伟, 崔玉荣, 等. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U-Pb年代学及微量元素研究[J]. 岩石学报, 2021, 37(3): 717−732. doi: 10.18654/1000-0569/2021.03.05 Liu M, Song S W, Cui Y R, et al. In-situ U-Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform-like W(Cu) ore of the Zhuxi tungsten deposit, Northeastern Jiangxi Province[J]. Acta Petrologica Sinica, 2021, 37(3): 717−732. doi: 10.18654/1000-0569/2021.03.05
[23] 张妍, 包志安, 陈开运, 等. LA-ICP-MS磷灰石-榍石U-Pb定年测试[J]. 西北大学学报(自然科学版), 2023, 53(6): 1030−1040. Zhang Y, Bao Z A, Chen K Y, et al. In situ U-Pb dating of apatite-titanite by LA-ICP-MS[J]. Journal of Northwest University (Natural Science Edition), 2023, 53(6): 1030−1040.
[24] Thompson J, Meffre S, Maas R, et al. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite[J]. Journal of Analytical Atomic Spectrometry, 2016, 31: 1206−1215. doi: 10.1039/C6JA00048G
[25] Krestianinov E, Amelin Y, Neymark L A, et al. U-Pb systematics of uranium-rich apatite from Adirondacks: Inferences about regional geological and geochemical evolution, and evaluation of apatite reference materials for in situ dating[J]. Chemical Geology, 2021, 581: 120417. doi: 10.1016/j.chemgeo.2021.120417
[26] Paul A N, Spikings R A, Gaynor S P. U-Pb ID-TIMS reference ages and initial Pb isotope compositions for Durango and Wilberforce apatites[J]. Chemical Geology, 2021, 586: 120604. doi: 10.1016/j.chemgeo.2021.120604
[27] Apen F E, Wall C J, Cottle J M, et al. Apatites for destruction: Reference apatites from Morocco and Brazil for U-Pb petrochronology and Nd and Sr isotope geochemistry[J]. Chemical Geology, 2022, 590: 120689. doi: 10.1016/j.chemgeo.2021.120689
[28] Lana C, Gonçalves G O, Mazoz A, et al. Assessing the U-Pb, Sm-Nd and Sr-Sr isotopic compositions of the sume apatite as a reference material for LA-ICP-MS analysis[J]. Geostandards and Geoanalytical Research, 2022, 46: 71−95. doi: 10.1111/ggr.12413
[29] Duan L J, Zhang L L, Zhu D C, et al. MAP-2 apatite: A new young age reference material for U-Pb dating with LA-ICPMS analysis[J]. International Journal of Mass Spectrometry, 2023, 493: 117121. doi: 10.1016/j.ijms.2023.117121
[30] Duan L J, Zhang L L, Zhu D C, et al. Apatite MAP-3: A new homogeneous and low common lead natural reference for laser in situ U-Pb dating and Nd isotope analysis[J]. Journal of Analytical Atomic Spectrometry, 2023, 38: 1478−1493. doi: 10.1039/D2JA00405D
[31] 周红英, 耿建珍, 崔玉荣, 等. 磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年[J]. 地球学报, 2012, 33(6): 857−864. doi: 10.3975/cagsb.2012.06.03 Zhou H Y, Geng J Z, Cui Y R, et al. In situ U-Pb dating of apatite using LA-MC-ICP-MS[J]. Acta Geoscientica Sinica, 2012, 33(6): 857−864. doi: 10.3975/cagsb.2012.06.03
[32] 周红英, 李怀坤, 张健, 等. 新太古代花岗片麻岩中麻粒岩包体磷灰石U-Pb定年对燕辽裂陷槽中元古代长城群底界年龄的制约[J]. 地质调查与研究, 2020, 43(2): 81−88. Zhou H Y, Li H K, Zhang J, et al. U-Pb dating of apatite from the granulite xenoliths in the Neoarchaean granitic gneiss: Constraints on the base age of the Mesoproterozoic Changchengian Group in the Yanliao Aulacogen, Northern North China Craton[J]. Geological Survey and Research, 2020, 43(2): 81−88.
[33] 周红英, 李惠民. 金红石 U-Pb 同位素稀释法定年技术的改进[J]. 岩石矿物学杂志, 2008, 27(1): 77−80. doi: 10.3969/j.issn.1000-6524.2008.01.011 Zhou H Y, Li H M. The improvement of the rutile isotope dilution U-Pb dating methodology[J]. Acta Petrologica et Mineralogiga, 2008, 27(1): 77−80. doi: 10.3969/j.issn.1000-6524.2008.01.011
[34] 陆松年, 李惠民. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年[J]. 中国地质科学院院报, 1991, 22: 137−146. Lu S N, Li H M. A precise U-Pb single zircon age determination for the volcanice of Dahongyu Formation Changcheng system in Jixian[J]. Bulletin of the Chinese Academy of Geological Sciences, 1991, 22: 137−146.
[35] 涂家润, 肖志斌, 曲凯, 等. 氟碳铈矿U-Pb定年技术研究[J]. 地球学报, 2017, 38(6): 945−951. doi: 10.3975/cagsb.2017.06.09 Tu J R, Xiao Z B, Qu K, et al. A study of U-Pb dating technology of bastnaesite[J]. Acta Geoscientica Sinica, 2017, 38(6): 945−951. doi: 10.3975/cagsb.2017.06.09
[36] Tu J R, Xiao Z B, Zhou H Y, et al. U-Pb dating of single-grain uraninite by isotope dilution thermal ionization mass spectrometry[J]. Ore Geology Reviews, 2019, 109: 407−412. doi: 10.1016/j.oregeorev.2019.05.001
[37] Zhang L, Wu J L, Tu J R, et al. RMJG Rutile: A new natural reference material for microbeam U-Pb dating and Hf isotopic analysis[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 133−145. doi: 10.1111/ggr.12304
[38] 涂家润, 崔玉荣, 周红英, 等. 锡石U-Pb定年方法评述[J]. 地质调查与研究, 2019, 42(4): 245−253. Tu J R, Cui Y R, Zhou H Y, et al. Review of U-Pb dating methods for cassiterite[J]. Geological Survey and Research, 2019, 42(4): 245−253.
[39] Ludwig K R. PBDAT for MS-DOS. A computer program for IBM-PC compatibles for processing raw Pb-U-Th isotope data, version 1.00a[J]. United States Geological Survey Open-File Report, 1988, 88-542: 1−37.
[40] Ludwig K R. User’s manual for Isoplot/Ex (Version 2.2): A geochronological toolkit for microsoft excel[M]. Berkely: Geochronology Center Special Publication, 2000: 1−55.
[41] Jaffey A, Flynn F, Glendenin L, et al. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4: 1889. doi: 10.1103/PhysRevC.4.1889
[42] Hiess J, Condon D J, McLean N, et al. 238U/235U systematics in terrestrial uranium-bearing minerals[J]. Science, 2012, 335: 1610−1614. doi: 10.1126/science.1215507
[43] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1-2): 537−571. doi: 10.1093/petrology/egp082
[44] 杨亚楠, 李秋立, 刘宇, 等. 离子探针锆石U-Pb定年[J]. 地学前缘, 2014, 21(2): 81−92. Yang Y N, Li Q L, Liu Y, et al. Zircon U-Pb dating by secondary ion mass spectrometry[J]. Earth Science Frontiers, 2014, 21(2): 81−92.
[45] Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207−221. doi: 10.1016/0012-821X(75)90088-6
[46] Carr P A, Zink S, Bennett V C, et al. A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the Mole Granite polymetallic system, Eastern Australia[J]. Chemical Geology, 2020, 539: 119539. doi: 10.1016/j.chemgeo.2020.119539
[47] Yang M, Romer R L, Yang Y H, et al. U-Pb isotopic dating of cassiterite development of reference materials and in situ applications by LA-SF-ICP-MS[J]. Chemical Geology, 2022, 593: 120754. doi: 10.1016/j.chemgeo.2022.120754
[48] Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581−589. doi: 10.1016/j.gsf.2015.11.006
[49] 郝爽, 李惠民, 李国占, 等. LA-ICP-MS 测定锡石U-Pb 同位素年龄时两种普通铅扣除方法的原理及适用性比较[J]. 地质通报, 2016, 35(4): 622−632. doi: 10.3969/j.issn.1671-2552.2016.04.019 Hao S, Li H M, Li G Z, et al. The comparison of the principle and applicability between two methods of deducting the initial common lead for in situ LA-ICP-MS U-Pb isotope dating of cassiterite[J]. Geological Bulletin of China, 2016, 35(4): 622−632. doi: 10.3969/j.issn.1671-2552.2016.04.019
[50] 邓宾, 曾璐, 周庆, 等. 碎屑岩磷灰石单矿物多法定年进展与应用[J]. 地质科技情报, 2017, 36(1): 77−86. Deng B, Zeng L, Zhou Q, et al. A review of detrital apatite single-grain LA-ICPMS multi-dating[J]. Geological Science and Technology Information, 2017, 36(1): 77−86.
[51] Neymark L A, Holm-Denoma C S, Moscati R J. In situ LA-ICPMS U-Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary[J]. Chemical Geology, 2018, 483: 410−425. doi: 10.1016/j.chemgeo.2018.03.008