Research Progress in situ Hf Isotopic Analysis of Oxide-type U-bearing Accessory Minerals
-
摘要:
近二十年来,Lu-Hf同位素分析技术得到了快速发展,为探讨岩石成因、物质来源及壳幔演化过程提供了重要手段。其中,锆石微区原位Hf同位素测定方法已经被广泛应用于同位素地球化学研究中。然而,金红石、锡石和铌铁矿等氧化物型含铀矿物激光剥蚀多接收等离子体质谱(LA-MC-ICPMS)Hf同位素测定方法发展较为缓慢。本文结合近年来相关研究工作,简要介绍副矿物Lu-Hf同位素分析技术的发展历史,系统梳理了金红石、锡石和铌铁矿等氧化物型含铀矿物原位Hf同位素测定方法研究的最新进展以及存在的问题。基于该方法目前存在的同质异位数干扰校正策略、质量监控标样的缺乏以及较低的Hf含量如何提高分析灵敏度等技术难点进行了详细论述。氧化物型含铀矿物的Hf含量普遍不高,在测试时需要更大的剥蚀束斑直径。而飞秒激光具有剥蚀的样品粒径细小且均匀的特点,采用飞秒激光与LA-MC-ICPMS(fs-LA-MC-ICPMS)相结合,可以减小剥蚀束斑从而提高原位分析的空间分辨率,是未来氧化物型含铀矿物原位Hf同位素分析的发展方向。
要点(1) 开发金红石、锡石和铌铁矿等氧化物型含铀矿物原位Hf同位素测定方法具有重要的科学意义。
(2) 总结针对金红石、锡石和铌铁矿等氧化物型含铀矿物的同质异位数干扰校正策略。
(3) 评述研发基体匹配标准物质的三种方案。
HIGHLIGHTS(1) Developing in situ Hf isotopic determination method for the oxide-type U-bearing accessory minerals has important scientific significance.
(2) The correction strategies for isobaric interference on oxide-type U-bearing accessory minerals, such as rutile, cassiterite and columbite, were discussed.
(3) Three schemes for developing matrix-matched reference materials were reviewed.
Abstract:BACKGROUNDIn recent years, the in situ Hf isotopic determination method of zircon has been widely used in isotopic geochemistry, and has become an important method to explore the genesis of rocks, the source of ore-forming materials and the evolution of crust and mantle. However, for some rocks, the lack of zircon seriously hinders the restriction of formation and evolution. The development of Hf isotopic determination methods for oxide-type U-bearing accessory minerals, such as rutile, cassiterite and columbite is urgently needed.
OBJECTIVESIn order to accelerate the studies of in situ Hf isotopic determination of oxide-type U-bearing minerals and their application to the geological research.
METHODSIn situ Hf isotopic analysis of oxide-type U-bearing accessory minerals was reviewed with NEPTUNE multiple-collector inductively coupled plasma-mass spectrometry (MC-ICPMS) and a 193nm excimer laser ablation system.
RESULTSCombined with relevant research work in recent years, the development history of Lu-Hf isotope analysis technology for accessory minerals was briefly described, and the latest progress and existing problems in in-situ Hf isotope determination methods for oxide-type uranium-bearing minerals such as rutile, cassiterite and niobite were systematically reviewed. The current technical difficulties such as the correction strategy for isobaric interference, the lack of quality control standard samples, the lower Hf content, and the improvement of analytical sensitivity were discussed in detail.
CONCLUSIONSThe low Hf content of oxide-type U-bearing accessory minerals requires a larger spot diameter. The femtosecond laser has the characteristics of fine and uniform grain size of the ablation samples. The combination of femtosecond laser and MC-ICPMS (fs-LA-MC-ICPMS) can reduce the spot diameter and improve the spatial resolution, which is the development direction of in situ Hf isotope analysis of oxide-type U-bearing accessory minerals in the future.
-
Keywords:
- hafnium isotope /
- LA-MC-ICPMS /
- rutile /
- cassiterite /
- columbite /
- correction strategies for isobars interference
-
致谢: 中国地质调查局天津地质调查中心李惠民研究员、李志丹高级工程师在成文过程中给予了帮助,在此表示衷心的感谢。
-
表 1 氧化物型含铀矿物的相关微量元素含量
Table 1 Trace element concentrations of oxide-type U-bearing minerals
矿物种类 含量(μg/g) 元素比值 数据来源
参考文献Yb Lu Hf U Pb Th Yb/Hf Lu/Hf 金红石R10 - 0.041 38 44.1 0.08 <0.004 - 0.001 [49] 金红石R19 - 0.127 8.65 - - - - 0.0147 [49] 金红石JDX 0.015 0.006 50 1.1 0.52 0.005 0.0003 0.0001 [17] 金红石SR-1 - - 42500 - - - - - [16] 金红石SR-2 - - 3990 - - - - - [16] 金红石SR-2B - - 2790 - - - - - [16] 金红石SR-3 - - 388 - - - - - [16] 金红石SR-3A - - 416 - - - - - [16] 金红石RMJG - - 102 80.0 17.90 0.001 - - [19] 金红石R632 - - 108 153~1000 11~72 0.2~5 - - [50] 锡石样品 0.15 0.03 0.08 0.25 4.31 0.07 1.9 0.4 [25] 锡石样品 0.16 0.03 0.07 0.27 3.75 0.07 2.3 0.4 [25] 锡石样品 0.054~0.40 0.048~0.16 0~2.9 - - - - - [26] 锡石样品 - <1 243~407 1~14 - 0~1 - < 0.004 [18] 铌铁矿Coltan139 95.4 11.2 454 2118 147 86 0.21 0.025 [51] 铌铁矿NP-2 - 0.309 241 - - - - 0.001 [20] 铌铁矿713-79 - 0.029 276 - - - - 0.0001 [20] 铌铁矿U-1 - 0.024 266 - - - - 0.0001 [20] 铌铁矿U-3 - 0.039 595 - - - - 0.0001 [20] 铌铁矿样品 69~348 9~70 340~842 - - 37~1190 0.2~0.5 0.02~0.07 [52] 铌铁矿样品 - 0~6 19~367 39~1489 - 1~79 - 0.06~0.1 [18] 注:表中“-”代表暂无数据,矿物后面的编号代表的是矿物标样的名称,例如“金红石R10”代表的是“金红石标样R10”。 表 2 氧化物型含铀矿物原位Hf同位素测定法拉第杯结构和典型的激光剥蚀参数
Table 2 Operational parameters and Faraday cup configuration for the measurements of Lu and Hf isotopes of oxide-type U-bearing minerals
氧化物型含铀矿物 法拉第杯结构及对应同位素 激光剥蚀参数 L4 L3 L2 L1 C H1 H2 H3 H4 金红石
Hf杯结构[17]172Yb 173Yb 175Lu 176Hf, 176Yb, 176Lu 177Hf 178Hf 179Hf 180Hf - 束斑大小60、90、120、160μm,激光频率20Hz,能量密度12J/cm2 锡石
Hf杯结构[18]171Yb 173Yb 175Lu 176Hf, 176Yb, 176Lu 177Hf 178Hf 179Hf 180Hf,180Ta,180W 182W 束斑大小90~145μm,激光频率4Hz,能量密度6 J/cm2 铌铁矿
Hf杯结构[20]172Yb 173Yb 175Lu 176Hf, 176Yb, 176Lu 177Hf 178Hf 179Hf 180Hf, 180Ta - 束斑大小120μm、160μm,激光频率20Hz,能量密度8J/cm2 -
[1] Duchene S, Blichert-Toft J, Luais B, et al. The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism[J]. Nature, 1997, 387: 586-589. doi: 10.1038/42446
[2] 郑建平, 路凤香, 余淳梅, 等. 汉诺坝玄武岩中麻粒岩捕虏体锆石Hf同位素、U-Pb定年和微量元素研究: 华北下地壳早期演化的记录[J]. 科学通报, 2004, 49(4): 375-383. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200404014.htm Zheng J P, Lu F X, Yu C M, et al. Zircon Hf isotope, U-Pb dating and trace elements of granulite xenoliths in Hannuoba basalt: Records of the early evolution of the lower crust in North China[J]. Chinese Science Bulletin, 2004, 49(4): 375-383. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200404014.htm
[3] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003
[4] Zirakparvar N A, Mathez E A, Rajesh H M, et al. Lu-Hf isotopic evidence of a deep mantle plume source for the ~2.06Ga Bushveld Large Igneous Province[J]. Lithos, 2019, 348-349: 1-15.
[5] 徐平, 吴福元, 谢烈文, 等. U-Pb同位素定年标准锆石的Hf同位素[J]. 科学通报, 2004, 49(14): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200414012.htm Xu P, Wu F Y, Xie L W, et al. Determinations of Hf isotopes of zircon standards for U-Pb dating[J]. Chinese Science Bulletin, 2004, 49(14): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200414012.htm
[6] Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1-2): 100-118. doi: 10.1016/j.chemgeo.2007.10.003
[7] 谢烈文, 张艳斌, 张辉煌, 等. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J]. 科学通报, 2008, 53(2): 220-228. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200802015.htm Xie L W, Zhang Y B, Zhang H H, et al. Simultaneous in situ determinations of U-Pb age, Hf isotopes and trace element compositions of zircon/baddeleyites. [J]. Chinese Science Bulletin, 2008, 53(2): 220-228. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200802015.htm
[8] Wu F Y, Yang Y H, Marks M A W, et al. In situ U-Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS[J]. Chemical Geology, 2010, 273(1-2): 8-34. doi: 10.1016/j.chemgeo.2010.02.007
[9] Wu F Y, Yang Y H, Mitchell R H, et al. In situ U-Pb and Nd-Hf-(Sr) isotopic investigations of zirconolite and calzirtite[J]. Chemical Geology, 2010, 277(1-2): 178-195. doi: 10.1016/j.chemgeo.2010.08.007
[10] 耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110005.htm Geng J Z, Li H K, Zhang J, et al. Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 2011, 30(10): 1508-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110005.htm
[11] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399. doi: 10.1039/c2ja30078h
[12] Huang H, Niu Y L, Teng F Z, et al. Discrepancy between bulk-rock and zircon Hf isotopes accompanying Nd-Hf isotope decoupling[J]. Geochimica et Cosmochimica Acta, 2019, 259: 17-36. doi: 10.1016/j.gca.2019.05.031
[13] Pandur K, Ansdell K M, Eglington B M, et al. In situ U-Pb geochronology, Lu-Hf and Sm-Nd isotope systematics of the Hoidas Lake REE deposit, northern Saskatchewan, Canada[J]. Precambrian Research, 2020, 339: 1-22.
[14] Choukroun M, O'Reilly S Y, Griffin W L, et al. Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle[J]. Geology, 2005, 33(1): 45-48. doi: 10.1130/G21084.1
[15] Aulbach S, O'Reilly S Y, Griffin W L, et al. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites[J]. Nature Geoscience, 2008, 1(7): 468-472. doi: 10.1038/ngeo226
[16] Ewing T A, Rubatto D, Eggins S M, et al. In situ measurement of hafnium isotopes in rutile by LA-MC-ICP-MS: Protocol and applications[J]. Chemical Geology, 2011, 281(1-2): 72-82. doi: 10.1016/j.chemgeo.2010.11.029
[17] 李杨, 杨岳衡, 焦淑娟, 等. 金红石Hf同位素激光原位多接收等离子体质谱(LA-MC-ICP-MS)测定[J]. 中国科学: 地球科学, 2016, 46(6): 857-869. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201606010.htm Li Y, Yang Y H, Jiao S J, et al. In situ determination of hafnium isotopes from rutile using LA-MC-ICP-MS[J]. Science China: Earth Sciences, 2015, 58: 2134-2144. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201606010.htm
[18] Kendall-Langley L A, Kemp A I S, Grigson J L, et al. U-Pb and reconnaissance Lu-Hf isotope analysis of cassiterite and columbite group minerals from Archean Li-Cs-Ta type pegmatites of western Australia[J]. Lithos, 2020, 352-353: 105231. doi: 10.1016/j.lithos.2019.105231
[19] Zhang L, Wu J L, Tu J R, et al. RMJG Rutile: A new natural reference material for microbeam U-Pb dating and Hf isotopic analysis[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 133-145. doi: 10.1111/ggr.12304
[20] Tang Z M, Che X D, Yang Y H, et al. Precise and accurate Lu-Hf isotope analysis of columbite-group minerals by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36: 1643-1656. doi: 10.1039/D1JA00125F
[21] 崔玉荣, 涂家润, 陈枫, 等. LA-(MC)-ICP-MS锡石U-Pb定年研究进展[J]. 地质学报, 2017, 91(6): 1386-1399. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201706017.htm Cui Y R, Tu J R, Chen F, et al. The research advances in LA-(MC)-ICP-MS U-Pb dating of cassiterite[J]. Acta Geologica Sinica, 2017, 91(6): 1386-1399. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201706017.htm
[22] 涂家润, 崔玉荣, 周红英, 等. 锡石U-Pb定年方法评述[J]. 地质调查与研究, 2019, 42(4): 245-253. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904002.htm Tu J R, Cui Y R, Zhou H Y, et al. Review of U-Pb dating methods for cassiterite[J]. Geological Survey and Research, 2019, 42(4): 245-253. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904002.htm
[23] Zack T, Moraes R, Kronz A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2004, 148(4): 471-488. doi: 10.1007/s00410-004-0617-8
[24] 黄品赟, 汪相, 陈洁, 等. 赣南淘锡坑锡矿床中锡石晶体形态学和地球化学研究[J]. 地质论评, 2012, 58(5): 987-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201205020.htm Huang P Y, Wang X, Chen J, et al. Morphological and geochemical studies of the cassiterite in Taoxikeng tin deposit, southern Jiangxi, China[J]. Geological Review, 2012, 58(5): 987-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201205020.htm
[25] Jiang S Y, Yu J M, Lu J J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: Implication for migmatitic-hydrothermal fluid evolution and ore genesis[J]. Chemical Geology, 2004, 209: 193-213. doi: 10.1016/j.chemgeo.2004.04.021
[26] 王志强, 陈斌, 马星华. 南岭芙蓉锡矿田锡石原位LA-ICP-MS U-Pb年代学及地球化学研究: 对成矿流体来源和演化的意义[J]. 科学通报, 2014, 59(25): 2505-2519. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201425009.htm Wang Z Q, Chen B, Ma X H. In situ LA-ICP-MS U-Pb age and geochemical data of cassiterite of the Furong tin deposit, the Nanling Range: Implications for the origin and evolution of the ore-forming fluid[J]. Chinese Science Bulletin, 2014, 59(25): 2505-2519. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201425009.htm
[27] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 3-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm Wu F Y, Li X H, Zheng Y F, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 3-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[28] Salters, Vincent J M. 176Hf/177Hf determination in small samples by a high-temperature SIMS technique[J]. Analytical Chemistry, 1994, 66(23): 4186-4189. doi: 10.1021/ac00095a012
[29] Thirlwall M F, Walder A J. In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry[J]. Chemical Geology, 1995, 122: 241-247. doi: 10.1016/0009-2541(95)00003-5
[30] Ma Q, Yang M, Zhao H, et al. Accurate and precise determination of Lu and Hf contents and Hf isotopic composition at the sub-nanogram level in geological samples using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1256-1262. doi: 10.1039/C9JA00034H
[31] 杨岳衡, 张宏福, 谢烈文, 等. 地质样品中镥-铪同位素体系的化学分离与质谱测试新进展[J]. 岩矿测试, 2006, 25(2): 151-158. http://www.ykcs.ac.cn/cn/article/id/ykcs_20060253 Yang Y H, Zhang H F, Xie L W, et al. Progresses in chemical separation for Lu-Hf isotopic system and mass spectrometric measurement in natural geological samples[J]. Rock and Mineral Analysis, 2006, 25(2): 151-158. http://www.ykcs.ac.cn/cn/article/id/ykcs_20060253
[32] Patchett P J, Tatsumoto M. A routine high-precision method for Lu-Hf isotope geochemistry and chronology[J]. Contributions to Mineralogy and Petrology, 1981, 75(3): 263-267. doi: 10.1007/BF01166766
[33] Thirlwall M F, Anczkiewicz R. Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios[J]. International Journal of Mass Spectrometry, 2004, 235(1): 59-81. doi: 10.1016/j.ijms.2004.04.002
[34] 李献华, 刘颖, 杨岳衡, 等. 同一岩石试样的Lu-Hf和Sm-Nd快速分离及国家岩石标准物质的Hf-Nd同位素比值精确测定[J]. 岩石学报, 2007, 23(2): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702003.htm Li X H, Liu Y, Yang Y H, et al. Rapid separation of Lu-Hf and Sm-Nd from a single rock dissolution and precise measurement of Hf-Nd isotopic ratios for national rock standards[J]. Acta Petrologica Sinica, 2007, 23(2): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702003.htm
[35] 李津, 唐索寒, 马健雄, 等. 金属同位素质谱分析中样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166 Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166
[36] 杨进辉, 吴福元, 谢烈文, 等. 辽东矿洞沟正长岩成因及其构造意义: 锆石原位微区U-Pb年龄和Hf同位素制约[J]. 岩石学报, 2007, 23(2): 263-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702008.htm Yang J H, Wu F Y, Xie L W, et al. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula, East-North China Craton: Constraints from in-situ zircon U-Pb ages and Hf isotopes[J]. Acta Petrologica Sinica, 2007, 23(2): 263-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702008.htm
[37] 肖志斌, 张然, 叶丽娟, 等. 沥青铀矿(GBW04420)的微区原位U-Pb定年分析[J]. 地质调查与研究, 2020, 43(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001001.htm Xiao Z B, Zhang R, Ye L J, et al. In-situ U-Pb dating of pitchblende (GBW04420)[J]. Geological Survey and Research, 2020, 43(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001001.htm
[38] Walder A J, Freedman P A. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source[J]. Journal of Analytical Atomic Spectrometry, 1992, 7: 571-575. doi: 10.1039/ja9920700571
[39] Walder A J, Platzner I, Freedman P A. Isotope ratio measurement of lead, neodymium and neodymium-samarium mixtures, hafnium and hafnium-lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 1993, 8(1): 19-23. doi: 10.1039/JA9930800019
[40] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
[41] Griffin W L, Wang X, Jackson S E, et al. Zircon chemi-stry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8
[42] Machado N, Simonetti A. CHAPTER 9. U-Pb dating and Hf isotopic composition of zircon by laser ablation-MC-ICP-MS[M]//Laser Ablation-ICP-MS in the Earth Sciences Principles & Applications, 2001: 121-146.
[43] Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J]. Chemical Geology, 2004, 209: 121-135.
[44] Iizuka T, Hirata T. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique[J]. Chemical Geology, 2005, 220(1-2): 121-137.
[45] 李献华, 梁细荣, 韦刚健, 等. 锆石Hf同位素组成的LAM-MC-ICP-MS精确测定[J]. 地球化学, 2003, 32(1): 86-90. Li X H, Liang X R, Wei G J, et al. Precise analysis of zircon Hf isotopes by LAM-MC-ICP-MS[J]. Geochimica, 2003, 32(1): 86-90.
[46] Gu H O, Sun H, Wang F Y, et al. A new practical isobaric interference correction model for the in situ Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1223-1232.
[47] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm Hou K J, Li Y H, Zou T R, et al. Laser ablation-MC-ICPMS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm
[48] 王浩, 杨岳衡, 杨进辉. 矿物微区Lu-Hf同位素分析技术研究进展[J]. 岩矿测试, 2022. doi: 10.15898/j.cnki.11-2131/td.202202210027. Wang H, Yang Y H, Yang J H. Processes in microbeam Lu-Hf isotopic analysis on minerals[J]. Rock and Mineral Analysis, 2022. doi: 10.15898/j.cnki.11-2131/td.202202210027.
[49] Luvizotto G L, Zack T, Meyer H P, et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis[J]. Chemical Geology, 2009, 261(3-4): 346-369.
[50] Axelsson E, Pape J, Berndt J, et al. Rutile R632—A new natural reference material for U-Pb and Zr determination[J]. Geostandards and Geoanalytical Research, 2018, 42(3): 319-338.
[51] Che X D, Wu F Y, Wang R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989.
[52] Deng X D, Li J W, Zhao X F, et al. U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS: Implications for geochronology of pegmatite and associated ore deposits[J]. Chemical Geology, 2013, 344: 1-11.
[53] Zack T, Stockli D F, Luvizotto G L, et al. In situ U-Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications[J]. Contributions to Mineralogy and Petrology, 2011, 162(3): 515-530.
[54] Li Q L, Lin W, Su W, et al. U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China[J]. Lithos, 2011, 122: 76-86.
[55] Santos M M, Lana C, Scholz R, et al. LA-ICP-MS U-Pb dating of rutiles associated with hydrothermal mineralization along the southern Araçuaí Belt, SE Brazil[J]. Journal of South American Earth Sciences, 2020, 99: 1-15.
[56] Ewing T A, Rubatto D, Hermann J. Hafnium isotopes and Zr/Hf of rutile and zircon from lower crustal metapelites (Ivrea-Verbano Zone, Italy): Implications for chemical differentiation of the crust[J]. Earth and Planetary Science Letters, 2014, 389: 106-118.
[57] Ewing T A, Müntener O. The mantle source of island arc magmatism during early subduction: Evidence from Hf isotopes in rutile from the Jijal Complex (Kohistan arc, Pakistan)[J]. Lithos, 2018, 308-309: 262-277.
[58] 崔玉荣, 周红英, 耿建珍, 等. 氧化物型含铀矿物LA-ICP-MS U-Pb年龄测定中的基体效应及其校正方法[J]. 地质通报, 2015, 34(12): 2325-2333. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201512019.htm Cui Y R, Zhou H Y, Geng J Z, et al. The matrix effects in oxide-type U-bearing mineral LA-ICP-MS U-Pb isotopic dating and their correction methods[J]. Geological Bulletin of China, 2015, 34(12): 2325-2333. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201512019.htm
[59] Yuan S D, Peng J T, Hao S, et al. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization[J]. Ore Geology Reviews, 2011, 43: 235-242.
[60] 陈靖, 侯可军, 王倩, 等. 非基体匹配分馏校正的LA-ICP-MS锡石微区U-Pb定年方法研究[J]. 岩石学报, 2021, 37(3): 943-955. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103018.htm Chen J, Hou K J, Wang Q, et al. In situ U-Pb dating of cassiterite by LA-ICP-MS without a matrix-matched standard[J]. Acta Petrologica Sinica, 2021, 37(3): 943-955. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103018.htm
[61] 周雄, 周玉, 孙宝伟, 等. 四川甲基卡稀有金属矿床134号脉锡石U-Pb定年与地质意义[J]. 岩矿测试, 2021, 40(1): 156-164. doi: 10.15898/j.cnki.11-2131/td.202005060006 Zhou X, Zhou Y, Sun B W, et al. Cassiterite U-Pb dating of No. 134 pegmatite vein in the Jiajika rare metal deposit, western Sichuan and its geological significances[J]. Rock and Mineral Analysis, 2021, 40(1): 156-164. doi: 10.15898/j.cnki.11-2131/td.202005060006
[62] Yang M, Romer R L, Yang Y H, et al. U-Pb isotopic dating of cassiterite: Development of reference materials and in situ applications by LA-SF-ICP-MS[J]. Chemical Geology, 2022, 593: 120754.
[63] Smith S R, Foster G L, Romer R L, et al. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and laser ablation-multi collector-ICP-MS[J]. Contributions to Mineralogy and Petrology, 2004, 147: 549-564.
[64] Che X D, Wang R C, Wu F Y, et al. Episodic Nb-Ta mineralisation in South China: Constraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating[J]. Ore Geology Reviews, 2019, 105: 71-85.
[65] Legros H, Mercadier J, Villeneuve J, et al. U-Pb isotopic dating of columbite-tantalite minerals: Development of reference materials and in situ applications by ion microprobe[J]. Chemical Geology, 2019, 512: 69-84.
[66] Feng Y G, Ting L, Linnen R, et al. LA-ICP-MS dating of high-uranium columbite from No. 1 pegmatite at Dakalasu, the Chinese Altay orogen: Assessing effect of metamictization on age concordance[J]. Lithos, 2020, 362-363: 105461.
[67] Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 2002, 17: 1567-1574.
[68] 陈开运, 袁洪林, 包志安, 等. 人工合成锆石Lu-Hf同位素标样方法研究[J]. 岩石矿物学杂志, 2012, 31(2): 279-288. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201202017.htm Chen K Y, Yuan H L, Bao Z A, et al. A preliminary study of the method for synthetic zircon Lu-Hf isotopic standard[J]. Acta Petrologicaet Mineralogica, 2012, 31(2): 279-288. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201202017.htm
[69] 李献华, 唐国强, 龚冰, 等. Qinghu(清湖)锆石: 一个新的U-Pb年龄和O, Hf同位素微区分析工作标样[J]. 科学通报, 2013, 58(20): 1954-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320010.htm Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(20): 1954-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320010.htm
[70] 周红英, 李怀坤, 耿建珍, 等. 一件可能的Hf同位素测定标准锆石[J]. 地质学报, 2013, 87(4): 554-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304010.htm Zhou H Y, Li H K, Geng J Z, et al. A potential standard zircon for Hf isotopic analysis[J]. Acta Geologica Sinica, 2013, 87(4): 554-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304010.htm
[71] Luo T, Zang W, Liu Y S, et al. Water vapor-assisted "universal" non-matrix-matched analytical method for the in situ U-Pb dating of zircon, monazite, titanite and xenotime by LA-ICP-MS[J]. Analytical Chemistry, 2018, 90(15): 9016-9024.
[72] Cui Y R, Tu J R, Geng J Z, et al. Advance in matrix effect study of LA-MC-ICPMS U-Pb dating on U-bearing oxide minerals[J]. Acta Geologica Sinica (English Edition), 2018, 92(4): 1680-1681.
[73] 李献华, 李扬, 李秋立, 等. 同位素地质年代学新进展与发展趋势[J]. 地质学报, 2022, 96(1): 104-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201007.htm Li X H, Li Y, Li Q L, et al. Progrcess and prospects of radiometric geochronology[J]. Acta Geologica Sinica, 2022, 96(1): 104-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201007.htm
[74] Poitrasson F, Mao X L, Mao S S, et al. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon[J]. Analytical Chemistry, 2003, 75: 6184-6190.
[75] Shaheen M E, Gagnon J E, Fryer B J. Femtosecond (fs) lasers coupled with modern ICP-MS instruments provide new and improved potential for in situ elemental and isotopic analyses in the geosciences[J]. Chemical Geology, 2012, 330-331: 260-273.
[76] 袁洪林, 陈开运, 包志安, 等. 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成[J]. 科学通报, 2013, 58(33): 3440-3449. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201333010.htm Yuan H L, Chen K Y, Bao Z A, et al. Determination of lead isotope compositions of geological samples using femtosecond laser ablation MC-ICPMS[J]. Chinese Science Bulletin, 2013, 58: 3914-3921. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201333010.htm
[77] Zhao H L, Li J G, Xiao Z B, et al. Determination of formation age (0.14Ma) of the Pengyang sandstone-type uranium deposit in the Ordos Basin, China: Using pitchblende in situ femtosecond LA-MC-ICP-MS method[J]. Chemical Geology, 2021, 4: 747-748.
[78] Wang C M, Qian X, Zhang Y Z, et al. In-situ S-Pb isotopic and trace elemental compositions of sulfides from the Habo Au polymetallic deposit: Evidences for vein-type Au mineralization in the Ailaoshan Au belt[J]. Ore Geology Reviews, 2022, 140: 104583.