• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

氧化物型含铀矿物微区原位Hf同位素分析技术研究进展

崔玉荣, 肖志斌, 涂家润, 周红英, 李国占

崔玉荣, 肖志斌, 涂家润, 周红英, 李国占. 氧化物型含铀矿物微区原位Hf同位素分析技术研究进展[J]. 岩矿测试, 2022, 41(5): 691-703. DOI: 10.15898/j.cnki.11-2131/td.202205180104
引用本文: 崔玉荣, 肖志斌, 涂家润, 周红英, 李国占. 氧化物型含铀矿物微区原位Hf同位素分析技术研究进展[J]. 岩矿测试, 2022, 41(5): 691-703. DOI: 10.15898/j.cnki.11-2131/td.202205180104
CUI Yurong, XIAO Zhibin, TU Jiarun, ZHOU Hongying, LI Guozhan. Research Progress in situ Hf Isotopic Analysis of Oxide-type U-bearing Accessory Minerals[J]. Rock and Mineral Analysis, 2022, 41(5): 691-703. DOI: 10.15898/j.cnki.11-2131/td.202205180104
Citation: CUI Yurong, XIAO Zhibin, TU Jiarun, ZHOU Hongying, LI Guozhan. Research Progress in situ Hf Isotopic Analysis of Oxide-type U-bearing Accessory Minerals[J]. Rock and Mineral Analysis, 2022, 41(5): 691-703. DOI: 10.15898/j.cnki.11-2131/td.202205180104

氧化物型含铀矿物微区原位Hf同位素分析技术研究进展

基金项目: 

国家自然科学基金项目 41873066

国家自然科学基金项目 42073055

国家自然科学基金青年基金项目 42103025

详细信息
    作者简介:

    崔玉荣,硕士,高级工程师,主要从事同位素地质年代学和地球化学研究。E-mail:cyr007@mail.ustc.edu.cn

  • 中图分类号: O562.6;O657.63

Research Progress in situ Hf Isotopic Analysis of Oxide-type U-bearing Accessory Minerals

  • 摘要:

    近二十年来,Lu-Hf同位素分析技术得到了快速发展,为探讨岩石成因、物质来源及壳幔演化过程提供了重要手段。其中,锆石微区原位Hf同位素测定方法已经被广泛应用于同位素地球化学研究中。然而,金红石、锡石和铌铁矿等氧化物型含铀矿物激光剥蚀多接收等离子体质谱(LA-MC-ICPMS)Hf同位素测定方法发展较为缓慢。本文结合近年来相关研究工作,简要介绍副矿物Lu-Hf同位素分析技术的发展历史,系统梳理了金红石、锡石和铌铁矿等氧化物型含铀矿物原位Hf同位素测定方法研究的最新进展以及存在的问题。基于该方法目前存在的同质异位数干扰校正策略、质量监控标样的缺乏以及较低的Hf含量如何提高分析灵敏度等技术难点进行了详细论述。氧化物型含铀矿物的Hf含量普遍不高,在测试时需要更大的剥蚀束斑直径。而飞秒激光具有剥蚀的样品粒径细小且均匀的特点,采用飞秒激光与LA-MC-ICPMS(fs-LA-MC-ICPMS)相结合,可以减小剥蚀束斑从而提高原位分析的空间分辨率,是未来氧化物型含铀矿物原位Hf同位素分析的发展方向。

    要点

    (1) 开发金红石、锡石和铌铁矿等氧化物型含铀矿物原位Hf同位素测定方法具有重要的科学意义。

    (2) 总结针对金红石、锡石和铌铁矿等氧化物型含铀矿物的同质异位数干扰校正策略。

    (3) 评述研发基体匹配标准物质的三种方案。

    HIGHLIGHTS

    (1) Developing in situ Hf isotopic determination method for the oxide-type U-bearing accessory minerals has important scientific significance.

    (2) The correction strategies for isobaric interference on oxide-type U-bearing accessory minerals, such as rutile, cassiterite and columbite, were discussed.

    (3) Three schemes for developing matrix-matched reference materials were reviewed.

  • 油井岩心是发现油气层和研究地层结构的重要资料,其中汞的富集和扩散是岩心分析的一个重要指标[1]。在原油加工过程中,砷会影响催化剂的活性[2]。在地质找矿中,汞和砷也是重要指示元素[3]。石油钻探往往达到几千米的深度,需要投入巨大的人力和物力,测定油井岩心中汞和砷的含量,能够同时为石油钻探和地质找矿提供技术服务,达到节约高效的目标。

    汞和砷的测定方法有滴定法[4]、液相色谱法[5-6]、气相色谱法[7]、电感耦合等离子体发射光谱法[8]、分光光度法[9]、原子吸收光谱法[10-11]、电感耦合等离子体质谱法[12-13]、便携式仪器测定法[14-15]等。王水溶矿-原子荧光光度检测方法因其检出限低、灵敏度高、稳定性好、样品前处理简单而被广泛应用,如苏明跃等[16]采用王水消解-原子荧光光谱法测定矿石中的汞和砷,相对标准偏差在0.93%~8.1%之间;倪润祥等[17]采用湿法消解-原子荧光光谱法测定煤中的硒和砷,砷的相对标准偏差在5.6%~6.0%之间。但是,当采用王水溶解含油岩心时,由于原油的疏水性会造成许多样品漂浮在液面上,或者在溶液中的样品也由于表面原油的包裹与酸接触不充分[18],样品中的部分汞和砷无法被溶解出来,导致检测结果偏低。对于这种样品,传统方法主要通过高温烧制和强酸氧化将有机物分解后再进行溶矿测试。例如,罗荣根[19]利用高温分解载金碳中的汞,结果显示高温会造成汞的损失,导致结果偏低。杨常青等[20]用硝酸-硫酸-氢氟酸分解无烟煤中的汞,由于反应温度较高,敞口溶解造成结果偏低。

    索氏提取法是一种可以通过有机溶剂将原油从固体物质中提取分离出来的方法,该方法对原油的提取分离彻底,提取温度低不易造成汞和砷的损失,是对含油岩心中原油进行提取分离的理想选择。本文拟建立一种通过索氏提取法将岩心中的原油提取分离,用50%王水溶解剩余样品中的汞和砷元素,用原子荧光光谱仪测定汞和砷含量的方法。

    AFS-9561原子荧光光谱仪(北京海光仪器有限公司);汞、砷空心阴极灯(北京有色金属研究院)。测汞的工作条件为:灯电流30mA,辅助阴极电流0mA(汞灯没有辅助阴极),负高压300mV,载气流量300mL/min,原子化器高度8cm,读数时间12s,读数延迟时间3s,进样量1000μL,还原剂用量1834μL/min。测砷的工作条件为:灯电流30mA,辅助阴极电流15mA,负高压270mV,载气流量300mL/min,原子化器高度10cm,读数时间12s,读数延迟时间3s,进样量500μL,还原剂用量1000μL/min。

    索氏提取器(100mL,沈阳市昌昊玻璃仪器有限公司);RE-52A旋转蒸发仪(上海亚荣生化仪器厂)。

    砷、汞标准储备液(中国计量科学研究院,100μg/mL)。

    汞标准系列溶液(0、0.05、0.20、0.50、1.50、3.00、5.00μg/L):由汞标准储备液用含重铬酸钾(0.5g/L)的10%硝酸逐级稀释至所需浓度[21]

    砷标准系列溶液(0、0.5、2、5、15、50、100.00μg/L):由砷标准储备液用10%盐酸逐级稀释至所需浓度。

    氯仿;硝酸;盐酸;氢氧化钠;硼氢化钾;抗坏血酸;硫脲;抗坏血酸-硫脲混合溶液(抗坏血酸浓度50g/L,硫脲浓度50g/L);还原剂溶液(硼氢化钾浓度20g/L,氢氧化钠浓度5g/L);载流溶液(5%盐酸)。以上试剂均为分析纯,水为超纯水。

    选取油井含油层原油含量差异明显的4个岩心样品作为实验对象,编号为SY-1、SY-2、SY-3和SY-4。称取样品5g(粒径≤75μm)于滤纸筒中,将滤纸筒包好,放入索氏提取器中,向底瓶加入氯仿100mL,在75℃下提取8h,冷却,将提取液浓缩至5mL,转移至称量瓶中,室温挥发至干,称取抽提物质量。取出纸筒中岩心样品,晾干,待测[22]

    称取提取过的样品0.2500g于25mL比色管中,用水润湿,加入50%王水10mL,摇匀,在沸水浴中加热2h,中间摇匀2次[23],取出,冷却,定容至刻度,摇匀,放置过夜,待测。同时进行空白实验。

    移取上层清液10mL于样品管中,对汞进行测定。移取上层清液2.5mL于25mL比色管中,加入盐酸5mL,加入抗坏血酸-硫脲混合溶液5mL,摇匀,静置反应1h以上,对砷进行测定。

    称取含油岩心平行样品SY-1两份,一份经过索氏提取,一份未经过索氏提取,同时用50%王水加热分解,定容,两种处理所得的溶液如图 1所示,两种溶液中汞和砷测定结果见表 1。由图 1可见,对于未经过提取的样品溶液,由于原油的疏水性,许多样品漂浮在液面上,与酸接触不充分。与经过提取的样品溶液相比,未经过提取的样品溶液颜色明显偏淡,这主要是因为原油在溶矿过程中被氧化而消耗部分王水[24],导致王水中的氯化亚硝酰减少,氧化性变弱。由表 1检测结果对比可得,未经过提取的样品由于与酸接触不充分以及王水溶液氧化性变弱,导致汞和砷检测结果偏低。通过索氏提取法用氯仿对样品中的原油进行提取后,样品完全浸入王水溶液中,溶液颜色也显示为强氧化性的黄色,汞和砷检测结果明显增大。

    图  1  经过提取和未经过提取的溶样效果对比
    1—未经过索氏提取的样品SY-1溶液,2—经过索氏提取的样品SY-1溶液。
    Figure  1.  Comparison of sample dissolution effect between the extracted and unextracted samples
    表  1  经过提取和未经过提取的汞和砷的测定结果对比
    Table  1.  Comparison of analytical results of Hg and As in the extracted and unextracted samples
    样品编号 氯仿沥青含量(%) Hg测定值(mg/kg) As测定值(mg/kg)
    未经过提取 经过提取 未经过提取 经过提取
    SY-1 0.078 0.065 0.105 19.3 24.4
    SY-2 0.134 0.044 0.114 16.4 26.5
    SY-3 0.033 0.076 0.108 18.3 22.4
    SY-4 0.254 0.049 0.128 12.3 31.5
    下载: 导出CSV 
    | 显示表格

    在常用有机溶剂中,对原油具有高溶解度的主要有甲苯、石油醚、正己烷、氯仿、二硫化碳、二氯甲烷、辛烷、庚烷等[25-26]。通过毒性和溶解性的筛查,以石油醚、正己烷和氯仿作为提取的备选溶剂进行实验。由表 2测定结果可得,氯仿的提取能力最强,石油醚次之,正己烷最弱,所以选择氯仿作为提取剂。

    表  2  不同溶剂提取原油的结果对比
    Table  2.  Comparison of crude oil extracted by different solvents
    样品编号 氯仿
    (g)
    相对提取率
    (%)
    石油醚
    (g)
    相对提取率
    (%)
    正己烷
    (g)
    相对提取率
    (%)
    SY-1 0.0777 100 0.0748 96.3 0.0722 92.9
    SY-2 0.1336 100 0.1242 93.0 0.1205 90.2
    SY-3 0.0328 100 0.0302 92.1 0.0284 86.6
    SY-4 0.2536 100 0.2311 91.1 0.2206 87.0
    下载: 导出CSV 
    | 显示表格

    索氏提取法是一种利用虹吸效应对固体物质中的有机物进行多次提取的方法。提取温度越高,在一定时间内提取的次数越多,提取效率越高,但是溶剂的损失也越严重[27],对于本研究也会引起汞和砷的损失,进而导致测得浓度值偏低。综合考虑,将提取速度控制在3次/h,对应的水浴温度为75℃。

    索氏提取的基本原理是连续多次萃取,这就决定了萃取物含量越高的样品往往需要更长的萃取时间[28-29],因此选择原油含量最高的SY-4样品作为萃取时间实验的对象。将提取温度设置为75℃,分别测定提取时间为1、2、3、4、5、6、7、8、9和10h时样品中汞和砷的含量。由图 2测定结果得知,随着提取时间的延长,汞和砷的测定值越来越大。这主要是因为随着样品中原油越来越多地被溶剂提取分离,其中的汞和砷更多地被王水溶解。但是,当提取时间大于8h时,汞的测定值有明显下降的趋势,这是因为长时间的高温回流造成了汞的挥发损失[30],所以将提取时间设置为8h。

    图  2  不同提取时间汞和砷的测定结果
    Figure  2.  Analytical results of Hg and As at different extraction time

    对一个汞和砷含量都很低的沉积物标准物质GBW07121(砷认定值0.25mg/kg,汞认定值0.0040mg/kg)进行7次平行实验,测得汞含量分别为0.0043、0.0038、0.0068、0.0053、0.0061、0.0044、0.0046mg/kg,计算汞的方法检出限为0.003mg/kg,测得砷含量分别为0.25、0.20、0.34、0.26、0.29、0.24、0.27mg/kg,计算砷的方法检出限为0.10mg/kg。

    通过标准系列溶液的测定可得本方法在汞含量为0.010~0.50mg/kg具有良好的线性,相关系数为0.9998;在砷含量为0.25~50mg/kg具有良好的线性,相关系数为0.9998。

    对未经过提取分离、经过高氯酸处理和经过提取分离的样品SY-1分别进行7次平行实验,测得结果见表 3。对比可知,未经过提取分离的测定精密度很差,这主要是因为对于未提取的样品,在溶矿过程中,由于原油的疏水性导致许多样品漂浮在液面上方[31],随着王水的沸腾,部分样品被随机浸入溶液中,其中的汞和砷不定量地溶解出来。对于经过高氯酸处理的样品,由于部分原油组分不能被高氯酸完全碳化[32],在溶矿过程中仍有小部分样品漂浮在液面上,造成测定结果精密度较差。而经过有机溶剂的提取后,由于原油被完全分离提取,样品沉入王水底部,其中的汞和砷被王水完全溶解,方法精密度有了很大提高。

    表  3  精密度实验结果
    Table  3.  Precision tests of the method
    样品处理 元素 分次测定值(mg/kg) RSD(%)
    未经提取的SY-1 Hg 0.065 0.038 0.044 0.07
    30.061 0.086 0.035
    33.0
    As 15.3 11.4 14.2 18.7
    17.0 20.1 9.67
    25.0
    高氯酸处理的SY-1 Hg 0.089 0.082 0.068 0.073
    0.089 0.094 0.071
    15.0
    As 22.1 21.6 18.7 20.7
    22.2 23.6 18.5
    9.0
    经过提取的SY-1 Hg 0.105 0.098 0.102 0.112
    0.104 0.092 0.114
    7.3
    As 24.4 26.5 23.2 23.5
    25.6 24.1 25.9
    5.1
    下载: 导出CSV 
    | 显示表格

    对样品SY-1进行三种浓度的加标实验,测得结果见表 4。在三种不同加标浓度下,加标回收率均在92.5%以上。这说明提取过程造成汞和砷的损失较小,样品溶解完全,该方法具有良好的准确度。

    表  4  加标回收实验结果
    Table  4.  Spiked recovery tests of the method
    实验序号 元素 样品浓度
    (mg/kg)
    加标浓度
    (mg/kg)
    测得浓度
    (mg/kg)
    回收率
    (%)
    1 Hg 0.105 0.200 0.296 95.5
    As 24.4 50.0 72.4 96.0
    2 Hg 0.105 0.100 0.199 94.0
    As 24.4 25.0 48.1 94.8
    3 Hg 0.105 0.040 0.142 92.5
    As 24.4 10.0 33.8 94.0
    下载: 导出CSV 
    | 显示表格

    本文建立了用索氏提取法低温提取分离含油岩心中的原油,用50%王水溶解剩余样品,再采用原子荧光光谱测定汞和砷含量的方法。本方法避免了由于原油的疏水性造成样品与王水接触不充分、分解不完全和反应温度过高造成汞元素损失的问题,与传统方法相比较,具有精密度好、准确度高的优点,可为含油岩心中其他元素的检测提供借鉴。

    致谢: 中国地质调查局天津地质调查中心李惠民研究员、李志丹高级工程师在成文过程中给予了帮助,在此表示衷心的感谢。
  • 图  1   技术路线图

    Figure  1.   Diagram of technology roadmap

    表  1   氧化物型含铀矿物的相关微量元素含量

    Table  1   Trace element concentrations of oxide-type U-bearing minerals

    矿物种类 含量(μg/g) 元素比值 数据来源
    参考文献
    Yb Lu Hf U Pb Th Yb/Hf Lu/Hf
    金红石R10 - 0.041 38 44.1 0.08 <0.004 - 0.001 [49]
    金红石R19 - 0.127 8.65 - - - - 0.0147 [49]
    金红石JDX 0.015 0.006 50 1.1 0.52 0.005 0.0003 0.0001 [17]
    金红石SR-1 - - 42500 - - - - - [16]
    金红石SR-2 - - 3990 - - - - - [16]
    金红石SR-2B - - 2790 - - - - - [16]
    金红石SR-3 - - 388 - - - - - [16]
    金红石SR-3A - - 416 - - - - - [16]
    金红石RMJG - - 102 80.0 17.90 0.001 - - [19]
    金红石R632 - - 108 153~1000 11~72 0.2~5 - - [50]
    锡石样品 0.15 0.03 0.08 0.25 4.31 0.07 1.9 0.4 [25]
    锡石样品 0.16 0.03 0.07 0.27 3.75 0.07 2.3 0.4 [25]
    锡石样品 0.054~0.40 0.048~0.16 0~2.9 - - - - - [26]
    锡石样品 - <1 243~407 1~14 - 0~1 - < 0.004 [18]
    铌铁矿Coltan139 95.4 11.2 454 2118 147 86 0.21 0.025 [51]
    铌铁矿NP-2 - 0.309 241 - - - - 0.001 [20]
    铌铁矿713-79 - 0.029 276 - - - - 0.0001 [20]
    铌铁矿U-1 - 0.024 266 - - - - 0.0001 [20]
    铌铁矿U-3 - 0.039 595 - - - - 0.0001 [20]
    铌铁矿样品 69~348 9~70 340~842 - - 37~1190 0.2~0.5 0.02~0.07 [52]
    铌铁矿样品 - 0~6 19~367 39~1489 - 1~79 - 0.06~0.1 [18]
    注:表中“-”代表暂无数据,矿物后面的编号代表的是矿物标样的名称,例如“金红石R10”代表的是“金红石标样R10”。
    下载: 导出CSV

    表  2   氧化物型含铀矿物原位Hf同位素测定法拉第杯结构和典型的激光剥蚀参数

    Table  2   Operational parameters and Faraday cup configuration for the measurements of Lu and Hf isotopes of oxide-type U-bearing minerals

    氧化物型含铀矿物 法拉第杯结构及对应同位素 激光剥蚀参数
    L4 L3 L2 L1 C H1 H2 H3 H4
    金红石
    Hf杯结构[17]
    172Yb 173Yb 175Lu 176Hf, 176Yb, 176Lu 177Hf 178Hf 179Hf 180Hf - 束斑大小60、90、120、160μm,激光频率20Hz,能量密度12J/cm2
    锡石
    Hf杯结构[18]
    171Yb 173Yb 175Lu 176Hf, 176Yb, 176Lu 177Hf 178Hf 179Hf 180Hf,180Ta,180W 182W 束斑大小90~145μm,激光频率4Hz,能量密度6 J/cm2
    铌铁矿
    Hf杯结构[20]
    172Yb 173Yb 175Lu 176Hf, 176Yb, 176Lu 177Hf 178Hf 179Hf 180Hf, 180Ta - 束斑大小120μm、160μm,激光频率20Hz,能量密度8J/cm2
    下载: 导出CSV
  • [1]

    Duchene S, Blichert-Toft J, Luais B, et al. The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism[J]. Nature, 1997, 387: 586-589. doi: 10.1038/42446

    [2] 郑建平, 路凤香, 余淳梅, 等. 汉诺坝玄武岩中麻粒岩捕虏体锆石Hf同位素、U-Pb定年和微量元素研究: 华北下地壳早期演化的记录[J]. 科学通报, 2004, 49(4): 375-383. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200404014.htm

    Zheng J P, Lu F X, Yu C M, et al. Zircon Hf isotope, U-Pb dating and trace elements of granulite xenoliths in Hannuoba basalt: Records of the early evolution of the lower crust in North China[J]. Chinese Science Bulletin, 2004, 49(4): 375-383. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200404014.htm

    [3]

    Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003

    [4]

    Zirakparvar N A, Mathez E A, Rajesh H M, et al. Lu-Hf isotopic evidence of a deep mantle plume source for the ~2.06Ga Bushveld Large Igneous Province[J]. Lithos, 2019, 348-349: 1-15.

    [5] 徐平, 吴福元, 谢烈文, 等. U-Pb同位素定年标准锆石的Hf同位素[J]. 科学通报, 2004, 49(14): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200414012.htm

    Xu P, Wu F Y, Xie L W, et al. Determinations of Hf isotopes of zircon standards for U-Pb dating[J]. Chinese Science Bulletin, 2004, 49(14): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200414012.htm

    [6]

    Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1-2): 100-118. doi: 10.1016/j.chemgeo.2007.10.003

    [7] 谢烈文, 张艳斌, 张辉煌, 等. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J]. 科学通报, 2008, 53(2): 220-228. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200802015.htm

    Xie L W, Zhang Y B, Zhang H H, et al. Simultaneous in situ determinations of U-Pb age, Hf isotopes and trace element compositions of zircon/baddeleyites. [J]. Chinese Science Bulletin, 2008, 53(2): 220-228. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200802015.htm

    [8]

    Wu F Y, Yang Y H, Marks M A W, et al. In situ U-Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS[J]. Chemical Geology, 2010, 273(1-2): 8-34. doi: 10.1016/j.chemgeo.2010.02.007

    [9]

    Wu F Y, Yang Y H, Mitchell R H, et al. In situ U-Pb and Nd-Hf-(Sr) isotopic investigations of zirconolite and calzirtite[J]. Chemical Geology, 2010, 277(1-2): 178-195. doi: 10.1016/j.chemgeo.2010.08.007

    [10] 耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110005.htm

    Geng J Z, Li H K, Zhang J, et al. Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 2011, 30(10): 1508-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110005.htm

    [11]

    Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399. doi: 10.1039/c2ja30078h

    [12]

    Huang H, Niu Y L, Teng F Z, et al. Discrepancy between bulk-rock and zircon Hf isotopes accompanying Nd-Hf isotope decoupling[J]. Geochimica et Cosmochimica Acta, 2019, 259: 17-36. doi: 10.1016/j.gca.2019.05.031

    [13]

    Pandur K, Ansdell K M, Eglington B M, et al. In situ U-Pb geochronology, Lu-Hf and Sm-Nd isotope systematics of the Hoidas Lake REE deposit, northern Saskatchewan, Canada[J]. Precambrian Research, 2020, 339: 1-22.

    [14]

    Choukroun M, O'Reilly S Y, Griffin W L, et al. Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle[J]. Geology, 2005, 33(1): 45-48. doi: 10.1130/G21084.1

    [15]

    Aulbach S, O'Reilly S Y, Griffin W L, et al. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites[J]. Nature Geoscience, 2008, 1(7): 468-472. doi: 10.1038/ngeo226

    [16]

    Ewing T A, Rubatto D, Eggins S M, et al. In situ measurement of hafnium isotopes in rutile by LA-MC-ICP-MS: Protocol and applications[J]. Chemical Geology, 2011, 281(1-2): 72-82. doi: 10.1016/j.chemgeo.2010.11.029

    [17] 李杨, 杨岳衡, 焦淑娟, 等. 金红石Hf同位素激光原位多接收等离子体质谱(LA-MC-ICP-MS)测定[J]. 中国科学: 地球科学, 2016, 46(6): 857-869. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201606010.htm

    Li Y, Yang Y H, Jiao S J, et al. In situ determination of hafnium isotopes from rutile using LA-MC-ICP-MS[J]. Science China: Earth Sciences, 2015, 58: 2134-2144. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201606010.htm

    [18]

    Kendall-Langley L A, Kemp A I S, Grigson J L, et al. U-Pb and reconnaissance Lu-Hf isotope analysis of cassiterite and columbite group minerals from Archean Li-Cs-Ta type pegmatites of western Australia[J]. Lithos, 2020, 352-353: 105231. doi: 10.1016/j.lithos.2019.105231

    [19]

    Zhang L, Wu J L, Tu J R, et al. RMJG Rutile: A new natural reference material for microbeam U-Pb dating and Hf isotopic analysis[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 133-145. doi: 10.1111/ggr.12304

    [20]

    Tang Z M, Che X D, Yang Y H, et al. Precise and accurate Lu-Hf isotope analysis of columbite-group minerals by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36: 1643-1656. doi: 10.1039/D1JA00125F

    [21] 崔玉荣, 涂家润, 陈枫, 等. LA-(MC)-ICP-MS锡石U-Pb定年研究进展[J]. 地质学报, 2017, 91(6): 1386-1399. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201706017.htm

    Cui Y R, Tu J R, Chen F, et al. The research advances in LA-(MC)-ICP-MS U-Pb dating of cassiterite[J]. Acta Geologica Sinica, 2017, 91(6): 1386-1399. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201706017.htm

    [22] 涂家润, 崔玉荣, 周红英, 等. 锡石U-Pb定年方法评述[J]. 地质调查与研究, 2019, 42(4): 245-253. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904002.htm

    Tu J R, Cui Y R, Zhou H Y, et al. Review of U-Pb dating methods for cassiterite[J]. Geological Survey and Research, 2019, 42(4): 245-253. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201904002.htm

    [23]

    Zack T, Moraes R, Kronz A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2004, 148(4): 471-488. doi: 10.1007/s00410-004-0617-8

    [24] 黄品赟, 汪相, 陈洁, 等. 赣南淘锡坑锡矿床中锡石晶体形态学和地球化学研究[J]. 地质论评, 2012, 58(5): 987-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201205020.htm

    Huang P Y, Wang X, Chen J, et al. Morphological and geochemical studies of the cassiterite in Taoxikeng tin deposit, southern Jiangxi, China[J]. Geological Review, 2012, 58(5): 987-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201205020.htm

    [25]

    Jiang S Y, Yu J M, Lu J J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: Implication for migmatitic-hydrothermal fluid evolution and ore genesis[J]. Chemical Geology, 2004, 209: 193-213. doi: 10.1016/j.chemgeo.2004.04.021

    [26] 王志强, 陈斌, 马星华. 南岭芙蓉锡矿田锡石原位LA-ICP-MS U-Pb年代学及地球化学研究: 对成矿流体来源和演化的意义[J]. 科学通报, 2014, 59(25): 2505-2519. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201425009.htm

    Wang Z Q, Chen B, Ma X H. In situ LA-ICP-MS U-Pb age and geochemical data of cassiterite of the Furong tin deposit, the Nanling Range: Implications for the origin and evolution of the ore-forming fluid[J]. Chinese Science Bulletin, 2014, 59(25): 2505-2519. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201425009.htm

    [27] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 3-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm

    Wu F Y, Li X H, Zheng Y F, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 3-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm

    [28]

    Salters, Vincent J M. 176Hf/177Hf determination in small samples by a high-temperature SIMS technique[J]. Analytical Chemistry, 1994, 66(23): 4186-4189. doi: 10.1021/ac00095a012

    [29]

    Thirlwall M F, Walder A J. In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry[J]. Chemical Geology, 1995, 122: 241-247. doi: 10.1016/0009-2541(95)00003-5

    [30]

    Ma Q, Yang M, Zhao H, et al. Accurate and precise determination of Lu and Hf contents and Hf isotopic composition at the sub-nanogram level in geological samples using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1256-1262. doi: 10.1039/C9JA00034H

    [31] 杨岳衡, 张宏福, 谢烈文, 等. 地质样品中镥-铪同位素体系的化学分离与质谱测试新进展[J]. 岩矿测试, 2006, 25(2): 151-158. http://www.ykcs.ac.cn/cn/article/id/ykcs_20060253

    Yang Y H, Zhang H F, Xie L W, et al. Progresses in chemical separation for Lu-Hf isotopic system and mass spectrometric measurement in natural geological samples[J]. Rock and Mineral Analysis, 2006, 25(2): 151-158. http://www.ykcs.ac.cn/cn/article/id/ykcs_20060253

    [32]

    Patchett P J, Tatsumoto M. A routine high-precision method for Lu-Hf isotope geochemistry and chronology[J]. Contributions to Mineralogy and Petrology, 1981, 75(3): 263-267. doi: 10.1007/BF01166766

    [33]

    Thirlwall M F, Anczkiewicz R. Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios[J]. International Journal of Mass Spectrometry, 2004, 235(1): 59-81. doi: 10.1016/j.ijms.2004.04.002

    [34] 李献华, 刘颖, 杨岳衡, 等. 同一岩石试样的Lu-Hf和Sm-Nd快速分离及国家岩石标准物质的Hf-Nd同位素比值精确测定[J]. 岩石学报, 2007, 23(2): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702003.htm

    Li X H, Liu Y, Yang Y H, et al. Rapid separation of Lu-Hf and Sm-Nd from a single rock dissolution and precise measurement of Hf-Nd isotopic ratios for national rock standards[J]. Acta Petrologica Sinica, 2007, 23(2): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702003.htm

    [35] 李津, 唐索寒, 马健雄, 等. 金属同位素质谱分析中样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166

    Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166

    [36] 杨进辉, 吴福元, 谢烈文, 等. 辽东矿洞沟正长岩成因及其构造意义: 锆石原位微区U-Pb年龄和Hf同位素制约[J]. 岩石学报, 2007, 23(2): 263-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702008.htm

    Yang J H, Wu F Y, Xie L W, et al. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula, East-North China Craton: Constraints from in-situ zircon U-Pb ages and Hf isotopes[J]. Acta Petrologica Sinica, 2007, 23(2): 263-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702008.htm

    [37] 肖志斌, 张然, 叶丽娟, 等. 沥青铀矿(GBW04420)的微区原位U-Pb定年分析[J]. 地质调查与研究, 2020, 43(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001001.htm

    Xiao Z B, Zhang R, Ye L J, et al. In-situ U-Pb dating of pitchblende (GBW04420)[J]. Geological Survey and Research, 2020, 43(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001001.htm

    [38]

    Walder A J, Freedman P A. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source[J]. Journal of Analytical Atomic Spectrometry, 1992, 7: 571-575. doi: 10.1039/ja9920700571

    [39]

    Walder A J, Platzner I, Freedman P A. Isotope ratio measurement of lead, neodymium and neodymium-samarium mixtures, hafnium and hafnium-lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 1993, 8(1): 19-23. doi: 10.1039/JA9930800019

    [40]

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    [41]

    Griffin W L, Wang X, Jackson S E, et al. Zircon chemi-stry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8

    [42]

    Machado N, Simonetti A. CHAPTER 9. U-Pb dating and Hf isotopic composition of zircon by laser ablation-MC-ICP-MS[M]//Laser Ablation-ICP-MS in the Earth Sciences Principles & Applications, 2001: 121-146.

    [43]

    Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J]. Chemical Geology, 2004, 209: 121-135.

    [44]

    Iizuka T, Hirata T. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique[J]. Chemical Geology, 2005, 220(1-2): 121-137.

    [45] 李献华, 梁细荣, 韦刚健, 等. 锆石Hf同位素组成的LAM-MC-ICP-MS精确测定[J]. 地球化学, 2003, 32(1): 86-90.

    Li X H, Liang X R, Wei G J, et al. Precise analysis of zircon Hf isotopes by LAM-MC-ICP-MS[J]. Geochimica, 2003, 32(1): 86-90.

    [46]

    Gu H O, Sun H, Wang F Y, et al. A new practical isobaric interference correction model for the in situ Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1223-1232.

    [47] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm

    Hou K J, Li Y H, Zou T R, et al. Laser ablation-MC-ICPMS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm

    [48] 王浩, 杨岳衡, 杨进辉. 矿物微区Lu-Hf同位素分析技术研究进展[J]. 岩矿测试, 2022. doi: 10.15898/j.cnki.11-2131/td.202202210027.

    Wang H, Yang Y H, Yang J H. Processes in microbeam Lu-Hf isotopic analysis on minerals[J]. Rock and Mineral Analysis, 2022. doi: 10.15898/j.cnki.11-2131/td.202202210027.

    [49]

    Luvizotto G L, Zack T, Meyer H P, et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis[J]. Chemical Geology, 2009, 261(3-4): 346-369.

    [50]

    Axelsson E, Pape J, Berndt J, et al. Rutile R632—A new natural reference material for U-Pb and Zr determination[J]. Geostandards and Geoanalytical Research, 2018, 42(3): 319-338.

    [51]

    Che X D, Wu F Y, Wang R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989.

    [52]

    Deng X D, Li J W, Zhao X F, et al. U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS: Implications for geochronology of pegmatite and associated ore deposits[J]. Chemical Geology, 2013, 344: 1-11.

    [53]

    Zack T, Stockli D F, Luvizotto G L, et al. In situ U-Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications[J]. Contributions to Mineralogy and Petrology, 2011, 162(3): 515-530.

    [54]

    Li Q L, Lin W, Su W, et al. U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China[J]. Lithos, 2011, 122: 76-86.

    [55]

    Santos M M, Lana C, Scholz R, et al. LA-ICP-MS U-Pb dating of rutiles associated with hydrothermal mineralization along the southern Araçuaí Belt, SE Brazil[J]. Journal of South American Earth Sciences, 2020, 99: 1-15.

    [56]

    Ewing T A, Rubatto D, Hermann J. Hafnium isotopes and Zr/Hf of rutile and zircon from lower crustal metapelites (Ivrea-Verbano Zone, Italy): Implications for chemical differentiation of the crust[J]. Earth and Planetary Science Letters, 2014, 389: 106-118.

    [57]

    Ewing T A, Müntener O. The mantle source of island arc magmatism during early subduction: Evidence from Hf isotopes in rutile from the Jijal Complex (Kohistan arc, Pakistan)[J]. Lithos, 2018, 308-309: 262-277.

    [58] 崔玉荣, 周红英, 耿建珍, 等. 氧化物型含铀矿物LA-ICP-MS U-Pb年龄测定中的基体效应及其校正方法[J]. 地质通报, 2015, 34(12): 2325-2333. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201512019.htm

    Cui Y R, Zhou H Y, Geng J Z, et al. The matrix effects in oxide-type U-bearing mineral LA-ICP-MS U-Pb isotopic dating and their correction methods[J]. Geological Bulletin of China, 2015, 34(12): 2325-2333. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201512019.htm

    [59]

    Yuan S D, Peng J T, Hao S, et al. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization[J]. Ore Geology Reviews, 2011, 43: 235-242.

    [60] 陈靖, 侯可军, 王倩, 等. 非基体匹配分馏校正的LA-ICP-MS锡石微区U-Pb定年方法研究[J]. 岩石学报, 2021, 37(3): 943-955. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103018.htm

    Chen J, Hou K J, Wang Q, et al. In situ U-Pb dating of cassiterite by LA-ICP-MS without a matrix-matched standard[J]. Acta Petrologica Sinica, 2021, 37(3): 943-955. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103018.htm

    [61] 周雄, 周玉, 孙宝伟, 等. 四川甲基卡稀有金属矿床134号脉锡石U-Pb定年与地质意义[J]. 岩矿测试, 2021, 40(1): 156-164. doi: 10.15898/j.cnki.11-2131/td.202005060006

    Zhou X, Zhou Y, Sun B W, et al. Cassiterite U-Pb dating of No. 134 pegmatite vein in the Jiajika rare metal deposit, western Sichuan and its geological significances[J]. Rock and Mineral Analysis, 2021, 40(1): 156-164. doi: 10.15898/j.cnki.11-2131/td.202005060006

    [62]

    Yang M, Romer R L, Yang Y H, et al. U-Pb isotopic dating of cassiterite: Development of reference materials and in situ applications by LA-SF-ICP-MS[J]. Chemical Geology, 2022, 593: 120754.

    [63]

    Smith S R, Foster G L, Romer R L, et al. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and laser ablation-multi collector-ICP-MS[J]. Contributions to Mineralogy and Petrology, 2004, 147: 549-564.

    [64]

    Che X D, Wang R C, Wu F Y, et al. Episodic Nb-Ta mineralisation in South China: Constraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating[J]. Ore Geology Reviews, 2019, 105: 71-85.

    [65]

    Legros H, Mercadier J, Villeneuve J, et al. U-Pb isotopic dating of columbite-tantalite minerals: Development of reference materials and in situ applications by ion microprobe[J]. Chemical Geology, 2019, 512: 69-84.

    [66]

    Feng Y G, Ting L, Linnen R, et al. LA-ICP-MS dating of high-uranium columbite from No. 1 pegmatite at Dakalasu, the Chinese Altay orogen: Assessing effect of metamictization on age concordance[J]. Lithos, 2020, 362-363: 105461.

    [67]

    Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 2002, 17: 1567-1574.

    [68] 陈开运, 袁洪林, 包志安, 等. 人工合成锆石Lu-Hf同位素标样方法研究[J]. 岩石矿物学杂志, 2012, 31(2): 279-288. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201202017.htm

    Chen K Y, Yuan H L, Bao Z A, et al. A preliminary study of the method for synthetic zircon Lu-Hf isotopic standard[J]. Acta Petrologicaet Mineralogica, 2012, 31(2): 279-288. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201202017.htm

    [69] 李献华, 唐国强, 龚冰, 等. Qinghu(清湖)锆石: 一个新的U-Pb年龄和O, Hf同位素微区分析工作标样[J]. 科学通报, 2013, 58(20): 1954-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320010.htm

    Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(20): 1954-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320010.htm

    [70] 周红英, 李怀坤, 耿建珍, 等. 一件可能的Hf同位素测定标准锆石[J]. 地质学报, 2013, 87(4): 554-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304010.htm

    Zhou H Y, Li H K, Geng J Z, et al. A potential standard zircon for Hf isotopic analysis[J]. Acta Geologica Sinica, 2013, 87(4): 554-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304010.htm

    [71]

    Luo T, Zang W, Liu Y S, et al. Water vapor-assisted "universal" non-matrix-matched analytical method for the in situ U-Pb dating of zircon, monazite, titanite and xenotime by LA-ICP-MS[J]. Analytical Chemistry, 2018, 90(15): 9016-9024.

    [72]

    Cui Y R, Tu J R, Geng J Z, et al. Advance in matrix effect study of LA-MC-ICPMS U-Pb dating on U-bearing oxide minerals[J]. Acta Geologica Sinica (English Edition), 2018, 92(4): 1680-1681.

    [73] 李献华, 李扬, 李秋立, 等. 同位素地质年代学新进展与发展趋势[J]. 地质学报, 2022, 96(1): 104-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201007.htm

    Li X H, Li Y, Li Q L, et al. Progrcess and prospects of radiometric geochronology[J]. Acta Geologica Sinica, 2022, 96(1): 104-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201007.htm

    [74]

    Poitrasson F, Mao X L, Mao S S, et al. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon[J]. Analytical Chemistry, 2003, 75: 6184-6190.

    [75]

    Shaheen M E, Gagnon J E, Fryer B J. Femtosecond (fs) lasers coupled with modern ICP-MS instruments provide new and improved potential for in situ elemental and isotopic analyses in the geosciences[J]. Chemical Geology, 2012, 330-331: 260-273.

    [76] 袁洪林, 陈开运, 包志安, 等. 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成[J]. 科学通报, 2013, 58(33): 3440-3449. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201333010.htm

    Yuan H L, Chen K Y, Bao Z A, et al. Determination of lead isotope compositions of geological samples using femtosecond laser ablation MC-ICPMS[J]. Chinese Science Bulletin, 2013, 58: 3914-3921. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201333010.htm

    [77]

    Zhao H L, Li J G, Xiao Z B, et al. Determination of formation age (0.14Ma) of the Pengyang sandstone-type uranium deposit in the Ordos Basin, China: Using pitchblende in situ femtosecond LA-MC-ICP-MS method[J]. Chemical Geology, 2021, 4: 747-748.

    [78]

    Wang C M, Qian X, Zhang Y Z, et al. In-situ S-Pb isotopic and trace elemental compositions of sulfides from the Habo Au polymetallic deposit: Evidences for vein-type Au mineralization in the Ailaoshan Au belt[J]. Ore Geology Reviews, 2022, 140: 104583.

  • 期刊类型引用(5)

    1. 孟康,邵德勇,张六六,李立武,张瑜,罗欢,宋辉,张同伟. 鄂西宜昌地区寒武系水井沱组页岩破碎气地球化学特征及其对页岩含气性的指示意义. 地学前缘. 2023(03): 14-27 . 百度学术
    2. 蒙炳坤,李靖,周世新,淡永,张庆玉,聂国权. 黔南坳陷震旦系—寒武系页岩解析气中氦气成因及来源. 天然气地球科学. 2023(04): 647-655 . 百度学术
    3. 朱志勇,朱祥坤,杨涛. 自动分离提纯系统的研制及其在同位素分析测试中的应用. 岩矿测试. 2020(03): 384-390 . 本站查看
    4. 高梓涵,李立武,王玉慧,曹春辉,贺坚. 双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用. 岩矿测试. 2019(05): 469-478 . 本站查看
    5. 尚慧. 页岩脱气实验下含气性变化特征研究. 宁波职业技术学院学报. 2018(05): 105-108 . 百度学术

    其他类型引用(2)

图(1)  /  表(2)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  57
  • PDF下载量:  42
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-05-17
  • 修回日期:  2022-07-11
  • 录用日期:  2022-08-19
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2022-09-28

目录

/

返回文章
返回