Determination of Iridium and Rhodium in Copper Anode Slime by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulphide Fire Assay
-
摘要:
铜阳极泥富集了矿石、精矿或熔剂中绝大部分贵金属(如铱和铑),具有很高的综合回收价值。目前尚无铜阳极泥中铱和铑检测标准,而对其中铱和铑检测方法的开发是铱铑回收提取工作的重要前提。本文建立了锍镍试金富集结合电感耦合等离子体质谱法(ICP-MS)测定铜阳极泥中铱铑的检测技术。实验中通过锍镍试金捕集试样中的贵金属铱和铑,用50%盐酸溶解锍镍扣,使得含铱和铑的沉淀物与银及其他杂质元素有效分离,趁热过滤,铱铑沉淀物和滤膜转入封闭消解罐中以50%王水为介质溶解。试液采用ICP-MS直接测定铱和铑含量。实验优化了样品预处理条件,镍硫比为4∶1,时,熔渣为酸性,熔渣流动性和渣扣分离效果好且能有效捕集试样中铱和铑;锍镍扣溶解酸度为50%盐酸时,锍镍扣溶解反应合适且溶解完全,趁热过滤,其中银、镍、铜等杂质元素大部分被盐酸除去,达到了分离含铱和铑沉淀物与银及其他杂质元素的效果; 密封消解温度和时间分别为160℃、2~3h时,铱和铑消解完全;选择合适的测定同位素可以消除可能存在的质谱干扰,以193Ir和103Rh为测定同位素、203Tl和185Re分别为铱和铑的内标时消除了信号漂移基体效应的影响。在优化的实验条件下测定铑和铱混合标准溶液系列,结果表明,铑和铱在10~100μg/L质量浓度范围内和铑及铱质谱强度与内标质谱强度之比呈线性关系,铱和铑的线性回归方程分别为y=36674.6x+8264.7和y=45686.7x+288.6,线性相关系数均大于0.999,方法检出限分别为0.007μg/L和0.011μg/L,定量下限分别为0.024μg/L和0.038μg/L。按照实验方法测定8个实际铜阳极泥试样中铱和铑,测定结果的相对标准偏差(RSD,n=7)为1.40%~4.57%,加标回收率为95.00%~103.65%。该方法能够满足铜阳极泥样品的检测要求。
-
关键词:
- 铱 /
- 铑 /
- 铜阳极泥 /
- 锍镍试金 /
- 电感耦合等离子体质谱法
要点(1) 优化了锍镍试金方案,当镍硫比为4∶1时,熔渣流动性和渣扣分离效果好,能有效地捕集铜阳极泥中铱铑。
(2) 锍镍扣采用50%盐酸溶解后趁热过滤,可有效地分离铱铑与银及其他杂质元素。
(3) 在160℃下密闭消解2~3h铱铑沉淀物,消解完全,以203Tl和185Re作为铱和铑的内标消除信号漂移的影响。
HIGHLIGHTS(1) The scheme of nickel sulphide fire assay was optimized. When the ratio of nickel to sulfur was 4∶1, the fluidity of molten slag and the separation effect of slag buckle were good, and the iridium and rhodium in copper anode slime could be captured effectively.
(2) The NiS beads were dissolved with 50% hydrochloric acid so that the precipitation of rhodium and iridium was separated from silver and other impurity elements through filtration when it was hot.
(3) The precipitate of iridium and rhodium can be completely digested for 2 hours at 160℃. The effect of signal drift could be eliminated by using 203Tl and 185Re as the internal standards of iridium and rhodium, respectively.
Abstract:BACKGROUNDWith the wide application of iridium and rhodium in aerospace, electronics, energy and other fields, it has become a very attractive metal in the world. In China, iridium and rhodium ore resources are relatively scarce with low grade, so it is essential to recover iridium and rhodium from secondary mineral resources. Copper anode slime enriches most of the precious metals such as iridium and rhodium in ores, which has high comprehensive recovery value. At present, there is no detection standard for iridium and rhodium in copper anode slime. The migration behavior of iridium and rhodium was not clear, so it was difficult to achieve directional enrichment and efficient extraction of iridium and rhodium metals. Therefore, the development of detection methods for iridium and rhodium in copper anode slime is an important prerequisite for the recovery and extraction of iridium and rhodium.
OBJECTIVESAn analytical method for accurate determination of iridium and rhodium in copper anode slime was established to maximize the utilization of mineral resources and the recycling rate of iridium, rhodium and other precious metals. At the same time, it could provide data support for the purification of iridium and rhodium in copper anode slime.
METHODSIn this paper, a method for determination of iridium and rhodium in copper anode slime by inductively coupled plasma-mass spectrometry (ICP-MS) with nickel sulphide fire assay was established. In the experiment, the precious metals iridium and rhodium in the sample were captured by nickel sulphide fire assay. The NiS beads were dissolved with 50% hydrochloric acid so that the precipitation of rhodium and iridium was separated from silver and other impurity elements through filtration when it was hot. The precipitates containing iridium and rhodium were effectively separated from silver and other impurity elements. The precipitate of iridium and rhodium with filter film were transferred into a closed digestion tank and dissolved in 50% aqua regia. The contents of iridium and rhodium in the solution were directly determined by ICP-MS.
RESULTSThe conditions such as the ingredient of nickel sulphide fire assay, the concentration of hydrochloric acid, tellurium coprecipitation, the sealing digestion time and temperature were studied. The experimental results showed that the molten slag was acidic when the ratio of nickel to sulfur was 4∶1, and it could effectively capture the iridium and rhodium in the sample with good fluidity of molten slag and the separation effect of slag buckle. When the NiS beads were dissolved by 50% hydrochloric acid, the dissolution reaction of NiS beads was suitable and complete. The precipitation containing rhodium and iridium was separated from impurity elements and filtered when hot. The precipitation was sealed and digested by dilute aqua regia (1∶1) at 160℃ for 2-3h. The possible MS interference was eliminated by selecting a suitable determination isotope. The 185Re was selected as the internal standard of 103Rh and 203Tl as the internal standard of 193Ir to eliminate the effect of signal drift, the results of iridium and rhodium had high precision and accuracy. The standard solution series of iridium and rhodium were determined under the optimized experimental conditions. The results indicated that the mass concentration of iridium and rhodium in the range of 10-100μg/L were linear to the ratio of the intensity of iridium and rhodium to the internal standard mass spectrometry. The calibration curves of iridium and rhodium were y=36674.6x+8264.7 and y=45686.7x+288.6, respectively, and the linear correlation coefficient (r) of calibration curves of iridium and rhodium were more than 0.999. The detection limits for iridium and rhodium were 0.007μg/L and 0.011μg/L, respectively, and the lower limits of detection were 0.024μg/L and 0.038μg/L, respectively. The content results of rhodium and iridium in 8 actual samples with the method showed that, the relative standard deviation (RSD, n=7) was between 1.40% and 4.57%, and the recovery was in the range of 95.00% to 103.65%.
CONCLUSIONSThe method has high efficiency and accuracy and can meet the detection requirements of copper anode slime samples.
-
随着铱、铑在航空航天、电子、能源等不同领域的广泛应用,当前已属国际非常瞩目的金属[1-2]。铱、铑主要存在于铂矿中,在精炼过程中富集提取,但中国铂矿资源比较稀缺且品位低,因此,非常有必要从二次矿产资源中回收铱、铑。铜阳极泥作为铜冶炼生产过程中产生的主要固体副产物之一,富集了金、银、铂、钯贵金属和少量铱、铑,具有较大的提取价值[3]。但目前铜阳极泥中铱、铑缺乏具有针对性的检测方法,无法实现铱、铑精准定量分析,难以定向富集和高效提取。因此,亟需建立准确测定铜阳极泥中铱和铑含量的分析方法,从而实现最大限度地提高矿产资源的利用率和铱铑等贵金属循环使用率,同时为铜冶炼行业提纯铜阳极泥中铱、铑贵金属提供数据支撑。
目前,低含量铱、铑样品常需经预分离富集后再采用相应的仪器分析方法测定[4-5]。如Ni等[6]采用锍镍试金预富集-敞开式混合酸消解,结合电感耦合等离子体质谱法(ICP-MS)测定岩石矿物中的铂钯铱铑钌;Zhang等[7]建立了超声萃取-电感耦合等离子体发射光谱法(ICP-OES)快速测定超基性岩石中的金铂钯铱铑钌。锍镍试金因其能有效地富集超痕量的铱和铑而成为目前铱和铑最理想的富集方法[8-9]。例如,程志炎等[10]采用锍镍试金富集黑色页岩石中的铂族元素,经盐酸和王水处理,建立了锂盐-锍镍试金ICP-MS测定黑色页岩中铂族元素的方法。但当待测试样中含有银时,采用锍镍试金富集后经混合酸处理,会形成大量氯化银沉淀从而影响铱铑的检测。铜阳极泥中铱、铑含量约10.00~500.00μg/g,银含量高达1.0×105μg/g以上,采用常规锍镍试金法无法准确测定铜阳极泥试样中铱和铑量。本文在前人工作基础上,通过锍镍试金富集样品中的铱和铑后,在盐酸作用下,分离待测贵金属硫化物和银及其他杂质元素,趁热抽滤,选择封闭消解法溶解待测贵金属硫化物,以193Ir和103Rh为测定同位素,在10%王水介质中,实现了ICP-MS对铜阳极泥中铱和铑含量的测定。
1. 实验部分
1.1 仪器与主要试剂
ICPA RQ型电感耦合等离子体质谱仪(美国ThermoFisher公司),工作参数为:视频功率1550W,载气流速0.80L/min,辅助气流速0.30L/min,等离子体气流速14.0L/min,采样深度6.0mm,泵速40r/min,测量方式为跳峰,扫描次数300次,每个质量通道数为2,使用高纯氩气(质量分数≥99.99%);封闭消解罐(不锈钢外套,聚四氟乙烯内罐,容积为50mL)。
碱性熔剂有碳酸钠(工业纯,粉状)、碱式碳酸镍:NiCO3·2Ni(OH)2·4H2O(优级纯,粉状,铱量≤0.05g/t, 且铑量≤0.05g/t),采用铱铑空白值小且稳定的优级纯碱式碳酸镍作为铱、铑等贵金属捕集剂。随同做空白实验,可以用于痕量元素的检测分析,采用阶段性升温熔炼,坩埚内试料不超过容积的二分之一,且碱式碳酸镍加入量仅为2g,可避免高温熔炼时碱式碳酸镍失去结晶水所造成的剧烈溅跳、试料逸出现象。
硫化剂有升华硫(分析纯,≥99.0%,粉状),主要与碱式碳酸镍生成硫化镍定量捕集试样中除银以外的贵金属元素。
酸性熔剂有硼砂(工业纯,粉状)和二氧化硅(工业纯,粉状),可以有效地降低熔渣的熔点,样品中贱金属的氧化物和脉石与碳酸钠、二氧化硅、硼砂等熔剂发生化合反应,生成硅酸盐或硼酸盐等熔渣,因其比重小而浮在上面,借此使铱铑富集于锍镍扣中。还原剂有淀粉(粉状),主要将金属氧化物还原成微粒的金属或合金,可以控制锍镍扣的大小。
覆盖剂(碳酸钠与硼砂质量比为2∶1);盐酸(优级纯);10%盐酸;硝酸(优级纯);王水(3∶1),现配现用;实验室用水为去离子水。
铱、铑、铼、铊标准储备溶液:1000μg/L(国家标准物质研究中心)。铱和铑混合标准溶液系列:铱和铑质量浓度分别均为0、10.00、30.00、50.00、80.00、100.00μg/L由1000μg/L铱和铑的单元素标准储备溶液逐级稀释所得,为保证不产生氯化银沉淀,通过中国多个知名检测机构验证,选用介质为10%(体积分数)王水。铼和铊混合内标溶液:铼和铊浓度质量浓度均为0.1μg/mL,由铼和铊的单元素标准储备液稀释配制而成,介质为10%(体积分数)王水。
1.2 实验样品
铜阳极泥是铜冶炼电解精炼中附着于阳极基体表面或沉淀于电解槽底或悬浮于电解液中的泥状物,富集了矿石、精矿或熔剂中绝大部分或大部分的贵金属和某些稀散元素。本文使用的铜阳极泥1#~8#来自吉林紫金铜业有限公司和黑龙江紫金铜业有限公司,样品中铱和铑含量范围分别为10.00~300.00μg/g和10.00~500.00μg/g,跨度范围较大,具有一定的代表性。试样粒度不大于0.098mm,于100~105℃烘2h后置于干燥器中冷却至室温。
1.3 实验方法
1.3.1 锍镍试金富集
铜阳极泥中银含量高达1.0×105μg/g以上,通过锍镍试金富集,银也会被富集至锍镍扣中,若试样量较大,在用盐酸消解锍镍扣阶段会有较多的氯化银沉淀生成,氯化银沉淀易吸附铱、铑,造成实验结果不准确,且随着试样量增大,盐酸用量随之增多,锍镍扣溶解时间相应的增长。若试样量较小,则样品代表性不强。综合考虑,试样量选择称取0.30g,通过实验验证,结果满意。
准确称取0.30g(精确至0.0001g)试样,加入20g碳酸钠、2g碳酸镍、8g二氧化硅、10g硼砂、1g淀粉、1g升华硫混合均匀,置于100mL黏土坩埚,覆盖一层10mm厚的覆盖剂。将配好料的坩埚置于930℃的试金炉中,于930℃下保温20min,并继续在约30min内升温至1130±30℃,保温15min(总计熔融时间为1h左右),出炉。将熔融物倒入已预热的铸铁模中。冷却后砸碎熔渣,取出锍镍扣(随同实验带空白试样)。用碎扣装置粉碎锍镍扣直至无明显颗粒,移入500mL烧杯中,加入50%盐酸300mL,盖上表面皿,置于温控式电热板上低温加热并保持微沸状态,待溶液澄清且无硫化氢小气泡冒出为止。用全玻璃微孔滤膜过滤器趁热将溶液抽滤,用温热的10%盐酸洗涤沉淀及烧杯各5~6次,温热的水洗涤沉淀及烧杯各3~5次。
1.3.2 沉淀消解及试样中铱和铑的测定
将1.3.1节中沉淀和滤膜转移至封闭消解罐中,加入50%王水约20~30mL,置于干燥箱中升温至160℃并保温消解2~3h。冷却后开罐,将溶液转移至200mL容量瓶中,用水稀释至刻度,混匀,静置澄清。
按照仪器工作条件,于ICP-MS仪器上采用三通在线加入内标的方式,与系列标准溶液同时测量溶液中各元素的计数,参考《地球化学样品中贵金属分析方法第7部分:铂族元素量的测定锍镍试金-电感耦合等离子体质谱法》(GB/T 17418.7—2010)用差减法扣除随同试料空白溶液的计数,从工作曲线上计算出相应的铱和铑的质量浓度。
2. 结果与讨论
2.1 锍镍试金方案的优化
锍镍扣的好坏与试金方案密切相关,合理的锍镍试金配料能有效地富集试样中的铱铑稀贵金属,同时也确保分析结果的准确性。试金方案中镍、硫的比例十分重要,如果硫比例过低,不能保障镍全部进入锍扣,影响铱、铑的回收;如果硫比例过高,会使较多的硫进入锍扣,妨碍锍镍扣在盐酸中的溶解[11-13]。为获得良好的锍镍扣[14],实验通过称取铜阳极泥3#试样0.30g (精确至0.0001g),用不同比例的锍镍试金配料进行熔炼,观察其造渣和成扣情况,实验现象见表 1。
表 1 3#试样采用不同锍镍试金配方(即不同镍硫比)的实验现象并于镍:硫为4∶1时获得良好锍镍扣Table 1. Experimental phenomena in 3# sample with different ratios of nickel to sulfur. The ratio of nickel to sulfur was 4∶1, it could effectively capture the iridium and rhodium in the sample to obtain good NiS beads with good fluidity of molten slag and the separation effect of slag buckle方案编号 配料各成分的质量(g) 实验现象 锍镍扣质量(g) 碳酸钠 碱式碳酸镍 二氧化硅 硼砂 淀粉 硫 方案1 20 1 8 10 1 1 扣偏小, 渣与扣未完全分离 0.72 方案2 20 2 8 10 1 1 扣溶解时存在大量硫漂浮物 1.42 方案3 20 2 8 10 1 0.5 流动性好,与扣易分离 1.37 方案4 10 2 3 20 0 0.5 粘渣,扣不光滑 0.48 由表 1可知,方案3,即碱式碳酸镍与硫的质量比为4∶1时,获得的熔渣流动性好,渣扣易分离且锍镍扣大小合适,这说明熔渣为碱性时,锍镍扣不易成型且不易与渣分离,熔渣为酸性时,形成的锍镍扣大小相对合适且扣渣易分离[15]。这与张彦斌等[16]的结论是一致的,当熔渣为酸性,镍与硫的质量比为3∶1时,地质样品中铱和铑回收率最大。施意华等[12]采用锍镍试金富集地质样品中的铱和铑,当镍与硫的质量比为2∶1时,铱和铑回收率最大。方案2中硫含量过高,锍镍扣用盐酸溶解时产生大量不溶的黑色絮状物,从而影响铱铑的测定,赵素利等[17]通过控制升华硫和硝酸钾的加入量获得合适的锍镍扣从而测定了硫铁矿中铂族元素含量。针对铜阳极泥试样中铱铑的测量,方案3锍镍试金配料配比可以满足测试要求,因此本文采用方案3对样品进行预富集。
2.2 锍镍扣溶解酸度
贵金属经锍镍扣捕集后,扣中有大量金属硫化物(主要为硫化镍)与银、铱、铑等贵金属在一起,需进一步将铱、铑与金属硫化物、银等分离。以铜阳极泥试样3#为研究对象,按照实验方法分别用浓盐酸、50%盐酸、33%盐酸、25%盐酸和20%盐酸溶解锍镍扣,考察盐酸浓度对铱和铑测定的影响。结果表明:采用20%和25%盐酸溶解后溶液有轻微浑浊,且锍镍扣无法完全溶解,溶解时间长达6.5~7h,测定值明显较低;采用33%和50%盐酸溶解后溶液清亮,锍镍扣完全溶解,且测定值保持相对稳定,但采用50%盐酸溶解时间远小于33%盐酸溶解时间;采用浓盐酸溶解时虽然能完全溶解,但反应过于剧烈,易发生溅跳损失。采用《铜阳极泥化学分析方法第2部分:金量和银量的测定火试金重量法》(YS/T 745.2—2016)和《铜阳极泥化学分析方法第1部分:铜量的测定碘量法》(YS/T 745.1—2010)测定铜阳极泥试样3#中银和铜含量分别为1.27×105μg/g和16.72%,经过33%和50%盐酸处理后,于ICP-OES仪器上测定待测液中银、镍、铜,结果分别为1.51mg/L、0.78mg/L、<0.01mg/L,由此可知锍镍扣中95%以上的银以及大部分金属硫化物都被盐酸除去,与蔡树型等[11]的结论是一致的。综合考虑到反应剧烈程度和溶解时间,实验采用50%盐酸溶解锍镍扣。在对比以往文献的研究中发现,针对锍镍扣溶解,采用33%~50%盐酸溶解效果好,如施意华等[12]采用4mol/L盐酸溶解锍镍扣时,铱、铑元素回收率为97.3%~103.4%;Li等[18]采用6mol/L盐酸溶解锍镍扣时,铱、铑的测定结果准确有效。
2.3 密封消解温度和时间
密封消解的温度和时间会直接影响样品消解效果,从而影响铱和铑的检测。以铜阳极泥试样3#为实验对象,按表 2中的温度和时间进行消解实验,考察密封消解温度和时间对铱和铑测定的影响。可见在160~180℃下消解2~5h能将沉淀完全消解,在保证试样中铱和铑完全消解的前提下,实验中选择密封消解温度为160℃,密封消解时间为2~3h。张金矿等[2]采用密闭消解法测定地质样品中的铱和铑,铱和铑溶解完全,但是密闭消解温度为200℃,密闭消解时间长达16h,密闭消解温度高于和时间远长于本方法。在达到铱和铑消解完全的目的,本方法在安全、能耗、时效等方面具有明显优势。
表 2 样品3#采用不同温度不同时间消解的实验现象并于密封消解温度和时间分别为160℃和2~3h时消解完全Table 2. Experimental phenomena in 3# sample with different temperatures and digestion time. The precipitation containing rhodium and iridium could completely digestion at 160℃ for 2-3h消解温度(℃) 不同消解时间下实验现象 1h 2h 3h 4h 5h 120 有不溶物 有不溶物 有不溶物 有不溶物 有不溶物 140 有不溶物 有不溶物 有不溶物 溶液澄清,消解完全 溶液澄清,消解完全 160 有不溶物 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全 180 有不溶物 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全 2.4 ICP-MS分析质量数和内标的选择
ICP-MS测定时存在的多原子干扰基于等离子体和样品基体的干扰[19]。铑的同位素仅有103Rh,其多原子干扰有63Cu40Ar、87Sr16O1H。试样经锍镍试金预处理,锍镍扣经盐酸溶解后,银、铜、铁、镍等元素均能与铱铑有效地分离,故消除了63Cu40Ar多原子干扰。铱的同位素有191Ir(丰度37.30%)和193Ir(丰度62.7%),其中191Ir的多原子干扰有1H190Os、14N177Hf,193Ir的多原子干扰有177Hf16O。同位素的选择以丰度大,尽量避免多原子离子干扰和同量异位素的重叠干扰为原则。193Ir和191Ir均无同量异位素干扰,试样中不含铪,不存在上述多原子离子干扰。因此实验选取103Rh和193Ir作为分析元素的质量数,与石贵勇等[20]通过实验研究确定的分析质量数是一致的。
在ICP-MS分析中,内标元素能有效地监控和校正分析信号的短期和长期漂移并对基体效应具有明显的补偿作用[21-23]。铱和铑常用的内标元素有Ru、Re、Tl和Lu等,内标匀速选择原则是质量数与被测元素相近,同时丰度高、无干扰[24]。基于这个原则,按照本实验方法测定处理试样,并分别在线加入浓度为0.1μg/mL的Ru、Re、Tl和Lu标准溶液作为内标元素,考察5种元素对ICP-MS测定铱和铑精密度的影响。通过对多次测量结果分析,185Re作为Rh的内标,203Tl作为Ir的内标可以有效地消除基体效应带来的影响。
2.5 校准曲线和检出限
按照仪器设定的工作条件对铱和铑混合标准溶液系列进行测定,以铱和铑的质量浓度为横坐标,铱和铑质谱强度与内标质谱强度之比为纵坐标,绘制校准曲线,其中铱和铑的线性回归方程分别为y=36674.6x+8264.7和y=45686.7x+288.6,线性相关系数均大于0.999。在上述工作条件下连续测定11次试剂空白溶液,铑测定结果分别是:0.064、0.078、0.076、0.070、0.070、0.069、0.071、0.069、0.068、0.070、0.071μg/L;铱测定结果分别是:0.021、0.026、0.023、0.021、0.019、0.019、0.019、0.019、0.018、0.019、0.018μg/L。以3倍的标准偏差为检出限,铱和铑分别为0.007μg/L和0.011μg/L;以10倍的标准偏差为检出下限,铱和铑分别为0.024μg/L和0.038μg/L。姚慧等[25]采用超级微波消解ICP-MS法测定车用陶瓷催化剂中铑含量,方法检出限为4.9μg/L;刘芳美等[26]采用密闭消解ICP-AES法测定铂钯精矿中铱含量,方法检出限为20μg/L;刘娟等[27]采用ICP-OES法测定石油重整废催化剂中铱含量,方法检出限为0.046mg/L。本文实验方法检出限优于湿分解法,能够满足铜阳极泥分析测试的需求。
2.6 方法精密度及加标回收实验
选取8个不同含量水平的铜阳极泥试样,按照上述实验方法对每个试样平行测定7次,并加入一定量的铱和铑单元素标准溶液进行加标回收实验,结果见表 3。《化学分析方法验证确认和内部资料控制要求》(GB/T 32465—2015)标准中对精密度的要求:含量范围为大于10μg/g时,相对标准偏差小于7.3%;含量范围大于100μg/g时,相对标准偏差小于5.3%。《合格评定化学分析方法确认和验证指南》(GB/T 27417—2017)标准中对方法回收率的要求:含量范围在1~100μg/g时,方法回收率范围为90%~110%;含量范围大于100μg/g时,方法回收率范围为95%~105%。从表 3看出:各元素测定结果的RSD均小于4.57%(n=7),精密度较好,且优于程志炎等[10]采用锂盐-锍镍试金ICP-MS法测定铱铑的结果;加标回收率在95.00%~103.65%之间,可以满足铜阳极泥中铱、铑元素的分析要求。
表 3 方法准确度和精密度能满足铜阳极泥中铱、铑元素的分析要求Table 3. Accuracy and precision tests of the method. The proposed method could satisfy the detection requirements of copper anode slime samples with high efficiency and accuracy样品编号 元素 测定值(μg/g) RSD(%) 实验1 实验2 加标量(μg/g) 测得总量(μg/g) 回收率(%) 加标量(μg/g) 测得总量(μg/g) 回收率(%) 1# Ir 10.16 3.83 10.00 19.66 95.00 20.00 29.51 96.75 Rh 84.24 3.22 80.00 161.42 96.48 160.00 241.24 98.12 2# Ir 50.35 3.91 50.00 100.89 101.08 100.00 149.77 99.42 Rh 128.71 4.50 100.00 227.35 98.64 200.00 330.11 100.70 3# Ir 86.80 1.40 80.00 163.69 96.11 160.00 247.00 100.12 Rh 192.81 1.99 100.00 293.84 101.03 200.00 397.15 102.17 4# Ir 136.32 2.45 100.00 233.57 97.25 200.00 335.86 99.77 Rh 214.14 3.06 100.00 310.64 96.50 200.00 416.82 101.34 5# Ir 192.64 2.97 100.00 293.00 100.36 200.00 395.17 101.26 Rh 285.81 3.12 150.00 433.94 98.75 300.00 583.88 99.36 6# Ir 253.78 4.29 100.00 355.48 101.70 200.00 451, 73 98.98 Rh 423.67 3.10 100.00 520.19 96.52 200.00 619.83 98.08 7# Ir 281.99 2.02 100.00 383.41 101.42 200.00 479.52 98.76 Rh 501.01 2.32 100.00 600.00 98.99 200.00 708.31 103.65 8# Rh 21.41 4.57 20.00 41.04 98.15 40.00 60.07 96.65 3. 结论
本文建立了镍硫比例为4∶1的锍镍试金预富集铜阳极泥试样中铱铑,通过50%盐酸溶解锍镍扣后趁热过滤,有效地将含铱铑沉淀物与银及其他杂质元素分离。采用密封消解法溶解含铱铑沉淀物,用ICP-MS测定铜阳极泥中铱铑的方法,解决了铜阳极泥中铱和铑无相关检测标准、无法明确其迁移行为的问题。通过加标回收对方法进行验证,本文方法能保证分析结果的准确性,为铱铑的回收提取提供数据支撑。
从铜阳极泥实际样品的结果来看,本文方法具有较理想的检出限水平和精密度,且该方法已转化为《铜阳极泥化学分析方法第10部分铱量和铑量的测定锍镍试金富集-电感耦合等离子体质谱法》(YS/T 745.10)行业标准,可推广应用作为铜阳极泥中铱铑的贸易结算依据。与此同时,锍镍试金富集与ICP-MS法相结合,为铜阳极泥处理工艺各类中间物料中铱铑的测定提供了重要的分析技术。
-
表 1 3#试样采用不同锍镍试金配方(即不同镍硫比)的实验现象并于镍:硫为4∶1时获得良好锍镍扣
Table 1 Experimental phenomena in 3# sample with different ratios of nickel to sulfur. The ratio of nickel to sulfur was 4∶1, it could effectively capture the iridium and rhodium in the sample to obtain good NiS beads with good fluidity of molten slag and the separation effect of slag buckle
方案编号 配料各成分的质量(g) 实验现象 锍镍扣质量(g) 碳酸钠 碱式碳酸镍 二氧化硅 硼砂 淀粉 硫 方案1 20 1 8 10 1 1 扣偏小, 渣与扣未完全分离 0.72 方案2 20 2 8 10 1 1 扣溶解时存在大量硫漂浮物 1.42 方案3 20 2 8 10 1 0.5 流动性好,与扣易分离 1.37 方案4 10 2 3 20 0 0.5 粘渣,扣不光滑 0.48 表 2 样品3#采用不同温度不同时间消解的实验现象并于密封消解温度和时间分别为160℃和2~3h时消解完全
Table 2 Experimental phenomena in 3# sample with different temperatures and digestion time. The precipitation containing rhodium and iridium could completely digestion at 160℃ for 2-3h
消解温度(℃) 不同消解时间下实验现象 1h 2h 3h 4h 5h 120 有不溶物 有不溶物 有不溶物 有不溶物 有不溶物 140 有不溶物 有不溶物 有不溶物 溶液澄清,消解完全 溶液澄清,消解完全 160 有不溶物 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全 180 有不溶物 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全 溶液澄清,消解完全 表 3 方法准确度和精密度能满足铜阳极泥中铱、铑元素的分析要求
Table 3 Accuracy and precision tests of the method. The proposed method could satisfy the detection requirements of copper anode slime samples with high efficiency and accuracy
样品编号 元素 测定值(μg/g) RSD(%) 实验1 实验2 加标量(μg/g) 测得总量(μg/g) 回收率(%) 加标量(μg/g) 测得总量(μg/g) 回收率(%) 1# Ir 10.16 3.83 10.00 19.66 95.00 20.00 29.51 96.75 Rh 84.24 3.22 80.00 161.42 96.48 160.00 241.24 98.12 2# Ir 50.35 3.91 50.00 100.89 101.08 100.00 149.77 99.42 Rh 128.71 4.50 100.00 227.35 98.64 200.00 330.11 100.70 3# Ir 86.80 1.40 80.00 163.69 96.11 160.00 247.00 100.12 Rh 192.81 1.99 100.00 293.84 101.03 200.00 397.15 102.17 4# Ir 136.32 2.45 100.00 233.57 97.25 200.00 335.86 99.77 Rh 214.14 3.06 100.00 310.64 96.50 200.00 416.82 101.34 5# Ir 192.64 2.97 100.00 293.00 100.36 200.00 395.17 101.26 Rh 285.81 3.12 150.00 433.94 98.75 300.00 583.88 99.36 6# Ir 253.78 4.29 100.00 355.48 101.70 200.00 451, 73 98.98 Rh 423.67 3.10 100.00 520.19 96.52 200.00 619.83 98.08 7# Ir 281.99 2.02 100.00 383.41 101.42 200.00 479.52 98.76 Rh 501.01 2.32 100.00 600.00 98.99 200.00 708.31 103.65 8# Rh 21.41 4.57 20.00 41.04 98.15 40.00 60.07 96.65 -
[1] 王甜甜, 郭晓瑞, 毛香菊, 等. 锡试金富集-微波消解-石墨炉原子吸收光谱法测定地球化学样品中痕量铑和铱[J]. 冶金分析, 2021, 41(9): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202109014.htm Wang T T, Guo X R, Mao X J, et al. Determination of trace rhodium and iridium in geochemical samples by graphite furnace atomic absorption spectrometry with tin fire assay and microwave digestion[J]. Metallurgical Analysis, 2021, 41(9): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202109014.htm
[2] 张金矿, 于亚辉, 陈浩凤, 等. 密闭消解-ICP-MS法测定地质样品中的痕量铑和铱[J]. 贵金属, 2017, 38(4): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ201704011.htm Zhang J K, Yu Y H, Chen H F, et al. Sealed digestion and ICP-MS determination of trace Rh and Ir in geological samples[J]. Precious Metals, 2017, 38(4): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ201704011.htm
[3] Amer A M. Processing of copper anodic-slimes for extraction of valuable metals[J]. Waste Management, 2003, 23(8): 763-770. doi: 10.1016/S0956-053X(03)00066-7
[4] 冯先进. 电感耦合等离子体质谱分析技术在国内矿石矿物分析中的应用[J]. 冶金分析, 2020, 40(6): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006004.htm Feng X J. Application of inductively coupled plasma mass spectrometry for analysis of ore and mineral in China[J]. Metallurgical Analysis, 2020, 40(6): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006004.htm
[5] 毛香菊, 刘璐, 肖芳, 等. 锍镍试金-微波消解-高分辨率连续光源石墨炉原子吸收光谱法测定岩石矿物中超痕量铂钯钌铑铱[J]. 冶金分析, 2020, 40(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202003001.htm Mao X J, Liu L, Xiao F, et al. Determination of ultra-trace platinum, palladium, ruthenium, rhodium and iridium in rocks and minerals by high resolution continuum source graphite furnace atomic absorption spectrometry with nickel sulfide fire assay enrichment and microwave digestion[J]. Metallurgical Analysis, 2020, 40(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202003001.htm
[6] Ni W S, Mao X J, Zhang H L. Determination of ultra-trace platinum, palladium, ruthenium, rhodium, and iridium in rocks and minerals by inductively coupled-plasma mass spectrometry following nickel sulfide fire assay preconcentration and open mixed acid digestion[J]. Analytical Letters, 2019, 52(11): 1699-1710. doi: 10.1080/00032719.2019.1566348
[7] Zhang G, Tian M. A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction[J]. Optics & Spectroscopy, 2015, 118(4): 513-518.
[8] 毛香菊, 肖芳, 刘璐, 等. 锍镍试金-高分辨率连续光源石墨炉原子吸收光谱法测定铬铁矿中铂族元素[J]. 冶金分析, 2020, 40(7): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007009.htm Mao X J, Xiao F, Liu L, et al. Determination of platinum group elements in chromite by nickel sulfide fire assay-high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007009.htm
[9] 熊方祥, 杨炳红, 符招弟, 等. 镍锍试金-铝共熔-电感耦合等离子体发射光谱(ICP-OES)法测定废催化剂中铑铱钌[J]. 中国无机分析化学, 2022, 12(2): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202202012.htm Xiong F X, Yang B H, Fu Z D, et al. Determination of rhodium, iridium and ruthenium in spent catalystss by inductively coupled plasma emission optical spectrometry with nickel sulphide fire-assay and aluminum eutectic[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(2): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202202012.htm
[10] 程志炎, 李鼎, 寇勇强, 等. 锂盐-锍镍试金-等离子质谱法测定黑色页岩中铂族元素[J]. 化学分析计量, 2020, 29(3): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202003014.htm Cheng Z Y, Li D, Kou Y Q, et al. Determination of platinum group elements in black shale by inductively coupled plasma-mass spectrometry with lithium salt-nickel sulphide fire-assay[J]. Chemical Analysis and Meterage, 2020, 29(3): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202003014.htm
[11] 蔡树型, 黄超. 贵金属分析[M]. 北京: 冶金工业出版社, 1984: 38-40. Cai S X, Huang C. Analysis of precious metals[M]. Beijing: Metallurgical Industry Press, 1984: 38-40.
[12] 施意华, 靳晓珠, 熊传信, 等. 锍镍试金富集-等离子质谱法测定地质样品中的金铂钯铑铱钌[J]. 矿产与地质, 2009, 23(1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200901020.htm Shi Y H, Ji X Z, Xiong C X, et al. Determination of Au, Pt, Pd, Rh, Ir and Ru in geological samples by sulfonium nickel assaying enrichment with ICP-MS method[J]. Mineral Resources and Geology, 2009, 23(1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200901020.htm
[13] 刘向磊, 孙文军, 文田耀, 等. 地质样品中贵金属分析方法现状及展望[J]. 冶金分析, 2022, 42(12): 23-35. Liu X L, Sun W J, Wen T Y, et al. Status and prospect of analytical methods for precious metal elements in geological samples[J]. Metallurgical Analysis, 2022, 42(12): 23-35.
[14] 王烨, 于亚辉, 王琳, 等. 地质样品中贵金属元素的预处理方法研究进展[J]. 岩矿测试, 2020, 39(1): 15-29. doi: 10.15898/j.cnki.11-2131/td.201905160064 Wang Y, Yu Y H, Wang L, et al. Research progress on pretreatment methods for analysis of precious metal elements in geological samples[J]. Rock and Mineral Analysis, 2020, 39(1): 15-29. doi: 10.15898/j.cnki.11-2131/td.201905160064
[15] 郭家凡, 来新泽, 王琳, 等. 火试金反应原理及熔渣影响因素探究[J]. 冶金分析, 2022, 42(12): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202212001.htm Guo J F, Lai X Z, Wang L, et al. The reaction principle of fire assay and discussion on the influencing factors of slag[J]. Metallurgical Analysis, 2022, 42(12): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202212001.htm
[16] 张彦斌, 程忠洲, 李华. 锍试金富集-电感耦合等离子体质谱法测定地质样品中铂钯铑铱[J]. 冶金分析, 2006, 26(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200604004.htm Zhang Y B, Cheng Z Z, Li H. Determination of platinum, palladium, rhodium and iridium in geological samples by inductively coupled plasma-mass spectrometry after the preconcentration with nickel sulphide fire assay[J]. Metallurgical Analysis, 2006, 26(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200604004.htm
[17] 赵素利, 张欣, 李曼, 等. 锍镍试金-电感耦合等离子体质谱法测定硫铁矿中铂族元素[J]. 岩矿测试, 2011, 30(4): 412-415. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110405 Zhao S L, Zhang X, Li M, et al. Determination of platinum group elements in pyrite samples by inductively coupled plasma-mass spectrometry with nickel sulphide fire assay[J]. Rock and Mineral Analysis, 2011, 30(4): 412-415. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110405
[18] Li X L, Ebihara M. Determination of all platinum-group elements in mantle-derived xenoliths by neuton activation analysis with NiS fire-assay preconcentration[J]. Journal of Radioanalytical and Nuclear Chemistry, 2003, 255(1): 131-135.
[19] 沈宇, 张尼, 高小红, 等. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷[J]. 岩矿测试, 2014, 33(5): 649-654. http://www.ykcs.ac.cn/cn/article/id/a0203e2d-3752-4d6d-b752-26adcf61c413 Shen Y, Zhang N, Gao X H, et al. Determination of vanadium-chromium-nickel-germanium-germanium arsenic in geochemical samples by microwave digestion inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(5): 649-654. http://www.ykcs.ac.cn/cn/article/id/a0203e2d-3752-4d6d-b752-26adcf61c413
[20] 石贵勇, 孙晓明, 张燕, 等. 锍镍试金富集-等离子体质谱法测定煌斑岩中铂族元素[J]. 岩矿测试, 2008, 27(4): 241-244. http://www.ykcs.ac.cn/cn/article/id/ykcs_20080486 Shi G Y, Sun X M, Zhang Y, et al. Determination of platinum group elements in Lamprophyre sample by nickel sulfide fire assay-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2008, 27(4): 241-244. http://www.ykcs.ac.cn/cn/article/id/ykcs_20080486
[21] 宋小年, 冯天培. 电感耦合等离子体发射光谱法测定高纯金属锡中痕量杂质元素[J]. 岩矿测试, 2006, 25(3): 282-284. http://www.ykcs.ac.cn/cn/article/id/ykcs_20060390 Song X N, Feng T P. Determination of trace impurity elements in high purity tin metal by inductively coupled plasma emission spectrometry[J]. Rock and Mineral Analysis, 2006, 25(3): 282-284. http://www.ykcs.ac.cn/cn/article/id/ykcs_20060390
[22] 胡圣虹, 陈爱芳, 林守麟, 等. 地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究[J]. 地球科学, 2000, 25(2): 186-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002014.htm Hu S H, Chen A F, Lin S L, et al. ICP-MS analysis of 40 trace, trace and ultra trace elements in geological samples[J]. Earth Science, 2000, 25(2): 186-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002014.htm
[23] Schonberg G. Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS[J]. Geostandards and Geoanalytical Research, 1993, 17(1): 81-97.
[24] 王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085 Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085
[25] 姚慧, 王阳, 杨惠玲. 超级微波消解电感耦合等离子体质谱法测定车用陶瓷催化剂中铂、钯、铑[J]. 化学分析计量, 2021, 30(2): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202102011.htm Yao H, Wang Y, Yang H L. Determination of Pt, Pd, Rh in automotive ceramic catalyst by super microwave digestion inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Meterage, 2021, 30(2): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202102011.htm
[26] 刘芳美, 赖秋祥, 巫贞祥, 等. 密闭消解-电感耦合等离子体原子发射光谱法测定铂钯精矿中铜金铂钯硒碲铋铱铑[J]. 冶金分析, 2021, 41(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202106015.htm Liu F M, Lai Q X, Wu Z X, et al. Determination of copper, gold, platinum, palladium, selenium, tellurium, bismuth, iridium and rhodium in platinum and palladium concentrates by inductive plasma atomic emission spectrometry with sealed digestion[J]. Metallurgical Analysis, 2021, 41(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202106015.htm
[27] 刘娟, 庞文林, 朱红波, 等. ICP-OES法测定石油重整废催化剂中的铂、铱量[J]. 湖南有色金属, 2019, 35(6): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201906017.htm Liu J, Pang W L, Zhu H B, et al. Determination of Pt and Ir in petroleum reforming waste catalyst by ICP-OES[J]. Hunan Nonferrous Metals, 2019, 35(6): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201906017.htm
-
期刊类型引用(1)
1. 郭家凡,陈笑语,孙勇,仲伟路,朱少璇,王琳. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素. 岩矿测试. 2024(05): 693-702 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 176
- HTML全文浏览量: 79
- PDF下载量: 55
- 被引次数: 1