Construction of Background Values of Arsenic and Mercury and Their Pollution Assessment in Key Intertidal Sediment Cores of China
-
摘要:
潮间带沉积物中砷、汞污染会导致该区域的动植物中砷、汞含量超标,严重影响当地植被的生态环境,进一步影响人类的生存安全,因此研究潮间带沉积物中砷、汞含量变化和空间分布具有重要的现实意义。本文选择大辽河口、苏北盐城浅滩、闽江口和珠江口4个潮间带为研究区,对沉积物砷、汞元素含量进行调查与对比研究,为潮间带沉积物砷、汞污染情况提供基础资料。利用原子荧光光谱法测定了研究区沉积物中砷、汞元素含量,选取铁元素作为归一化元素,建立了不同潮间带沉积物砷、汞元素的环境背景值。统计结果表明:砷、汞含量最大值均出现珠江口,分别为42.90mg/kg和0.287mg/kg,大于第一类《海洋沉积物质量标准》中砷的20.0mg/kg标准值和汞的0.2mg/kg标准值。本文采用地质累积指数法和潜在生态危害指数法对研究区砷、汞污染状况进行评价。在砷含量背景值中:珠江口最大值为19.19mg/kg,苏北盐城浅滩为11.02mg/kg,大辽河口为6.42mg/kg,闽江口最小值为2.90mg/kg;在汞含量背景值中:珠江口最大值为0.08mg/kg,其余三个河口均较小,大辽河口为0.03mg/kg,盐城浅滩为0.02mg/kg,闽江口为0.02mg/kg;砷、汞元素本底值最大值均出现在珠江口,最小值位于闽江口;砷元素在4个潮间带沉积物中均属于无污染情况和轻微的潜在生态危害,汞元素在珠江口为中等潜在生态危害,在其他3个潮间带沉积物中为轻微污染或者无污染情况。研究区中4个潮间带沉积物中砷、汞含量呈“南方高,北方低”的分布特征。闽江口和珠江口潮间带沉积物中砷、汞元素含量受人类工农业活动影响较大,因此造成了砷、汞含量呈现“南高北低”的分布特征,且珠江口的砷、汞污染情况较其他潮间带更为严重,亟需加强控制其污染趋势。
要点(1) 中国沿海潮间带的As、Hg含量呈现“南高北低”的空间分布特征。
(2) As、Hg元素环境背景值在珠江口较大,在闽江口较小,说明不同区域潮间带重金属背景值不同。
(3) 中国4个重点潮间带As、Hg污染程度较轻,但闽江口和珠江口受人类工农业活动影响较大。
HIGHLIGHTS(1) The spatial distribution of arsenic and mercury in the intertidal zone along the coast of China is characterized by "high in the south and low in the north".
(2) The environmental background values of arsenic and mercury are higher in the Pearl River (Zhujiang) Estuary and lower in the Minjiang Estuary, indicating that the background values of heavy metals in the intertidal zone vary in different regions.
(3) The four key intertidal zones in China are less polluted with arsenic and mercury, but the Minjiang and Pearl River estuaries are more affected by industrial and agricultural activities.
Abstract:BACKGROUNDThe contamination of arsenic and mercury in intertidal sediments will lead to excessive levels of arsenic and mercury in the flora and fauna of the region, which will seriously affect the ecological environment of local vegetation and further affect the survival and safety of human beings. Therefore, it is of great practical significance to study the changes in the contents and spatial distribution of arsenic and mercury in intertidal sediments.
OBJECTIVESTo investigate the contents of arsenic and mercury in sediments, so as to provide basic information on the pollution of arsenic and mercury in intertidal sediments.
METHODSThe contents of arsenic and mercury in the sediments of the study area were determined by atomic fluorescence spectrometry (AFS), and iron was selected as the normalized element to establish the environmental background values of arsenic and mercury elements in different intertidal sediments. The geoaccumulation index method and potential ecological hazard index method were used to evaluate the pollution status of arsenic and mercury in the study area.
RESULTSBackground value of arsenic content: Minjiang Estuary (2.90mg/kg) < Daliao Estuary (6.42mg/kg) < Yancheng Shoal in northern Jiangsu (11.02mg/kg) < Pearl River Estuary (19.19mg/kg). Background value of mercury content: maximum in Pearl River Estuary (0.08mg/kg), less in Daliao Estuary, Yancheng shoal and Minjiang Estuary (0.02mg/kg, 0.02mg/kg, 0.03mg/kg, respectively). The maximum values of background values of arsenic and mercury were both found in the Pearl River Estuary, and the minimum values were located in the Minjiang Estuary. The maximum values of arsenic and mercury of sediments were both found in the Pearl River Estuary, which were 42.90mg/kg and 0.287mg/kg, respectively, and were greater than the first class of Marine Sediment Quality Standard (arsenic: 20.0mg/kg; mercury: 0.2mg/kg). Arsenic belonged to no pollution and slight potential ecological hazards in the four intertidal sediments. Mercury was a medium potential ecological hazard in the Pearl River Estuary, and slight pollution or no pollution in the other three intertidal sediments.
CONCLUSIONSThe distribution of arsenic and mercury in the sediments of the four intertidal zones in the study area is characterized by "high in the south and low in the north". The arsenic and mercury contents in the intertidal sediments of Minjiang and Pearl River estuaries are more influenced by industrial and agricultural activities, thus causing the distribution features. The pollution of arsenic and mercury in the Pearl River Estuary is more serious than other intertidal areas, so it is urgent to strengthen the control of their pollution trends.
-
-
表 1 Eri范围与潜在生态危害程度关系[30]
Table 1 Relationship between Eri range and potential ecological hazard degree[30]
Eri范围 污染程度 RI范围 污染程度 Eri<40 轻微生态危害 RI<150 轻微生态危害 40≤Eri<80 中等生态危害 150≤RI<300 中等生态危害 80≤Eri<160 较高生态危害 300≤RI<600 较高生态危害 160≤Eri<320 高生态危害 300≤RI 很高生态危害 320≤Eri 极高生态危害 表 2 不同研究区砷汞含量统计
Table 2 Statistics of As and Hg contents in different study areas
元素 沉积物采样区域 样品数量(件) 最小值(mg/kg) 最大值(mg/kg) 平均值(mg/kg) 标准偏差(mg/kg) As 大辽河口 35 3.21 14.42 8.48 2.90 盐城浅滩 35 4.92 14.18 8.95 2.49 闽江口 33 3.19 11.70 5.10 2.29 珠江口 34 15.51 42.90 24.68 6.28 Hg 大辽河口 35 0.008 0.126 0.061 0.035 盐城浅滩 34 0.002 0.023 0.011 0.005 闽江口 32 0.013 0.099 0.044 0.024 珠江口 34 0.014 0.287 0.126 0.061 表 3 中国4个典型潮间带砷和汞背景值结果
Table 3 Results of background values of As and Hg in four typical intertidal zones in China
沉积物采样区域 TFe2O3平均含量(mg/kg) As背景值(mg/kg) Hg背景值(mg/kg) 大辽河口 2.92 6.42 0.03 盐城浅滩 4.67 11.02 0.02 福建闽江口 1.73 2.90 0.02 广东珠江口 4.52 19.19 0.08 表 4 研究区潮间带沉积物中砷、汞地累积指数(Igeo)和潜在生态危害指数(Eri)
Table 4 Igeo and Eri values for As and Hg in four typical intertidal zones in China
沉积物采样区域 地累积指数(Igeo) 潜在生态危害指数(Eri) As Hg As Hg 大辽河口 -0.17 0.13 13.97 78.79 盐城浅滩 -0.73 -0.88 9.15 35.44 福建闽江口 -0.30 -0.22 14.36 105.03 广东珠江口 -0.27 -0.13 12.67 58.30 -
[1] Schrage K R, Tupik J D, Allen J D. Intertidal zonation of hemichordates in soft sediments[J]. Invertebrate Biology, 2021, 140(3): e12344.
[2] 黄学勇, 张戈, 高茂生, 等. 广利河口北潮滩重金属分布特征及评价[J]. 海洋地质前沿, 2018, 34(9): 43-50. doi: 10.16028/j.1009-2722.2018.09006 Huang X Y, Zhang G, Gao M S, et al. Distribution pattern and assessment of heavy metals in the sediments of north Guang-Li River Estuary[J]. Marine Geology Frontiers, 2018, 34(9): 43-50. doi: 10.16028/j.1009-2722.2018.09006
[3] Luo X, Lang H, Wang W. Experimental study on the effect of salinity change on Fe and Cr removal from estuary water[J]. Atmospheric Environment, 2012, 57: 146-152. . doi: 10.1016/j.atmosenv.2012.04.056
[4] Ahn I Y, Choi J W. Macrobenthic communities impacted by anthropogenic activities in an intertidal sand flat on the west coast (Yellow Sea) of Korea[J]. Marine Pollution Bulletin, 1998, 36(10): 808-817. doi: 10.1016/S0025-326X(98)00061-7
[5] Kwon I, Lee C, Lee J, et al. The first national scale evaluation of total nitrogen stocks and burial rates of intertidal sediments along the entire coast of South Korea[J]. Science of the Total Environment, 2022, 793(1): 148568.
[6] Hwang D W, Kim P J, Kim S G, et al. Spatial distribution and pollution assessment of metals in intertidal sediments, Korea[J]. Environmental Science and Pollution Research, 2019, 26(19): 19379-19388. doi: 10.1007/s11356-019-05177-z
[7] Knight J. Processes of soft-sediment clast formation in the intertidal zone[J]. Sedimentary Geology, 2005, 181(3-4): 207-214. doi: 10.1016/j.sedgeo.2005.09.004
[8] Vouve F, Guiraud G, Marol C, et al. NH4+ turnover in intertidal sediments of Marennes-Oleron Bay (France): Effect of sediment temperature[J]. Oceanologica Acta, 2000, 23(5): 575-584. doi: 10.1016/S0399-1784(00)01104-X
[9] 蔡敬怡, 谭科艳, 路国慧, 等. 贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征[J]. 岩矿测试, 2019, 38(3): 305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123 Cai J Y, Tan K Y, Lu G H, et al. The spatial distribution characteristics of heavy metals in river sediments and suspended matter in small tributaries of the abandoned Wanshan mercury mines, Guizhou Province[J]. Rock and Mineral Analysis, 2019, 38(3): 305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123
[10] 庄海海, 高茂生, 徐绍辉, 等. 大沽河口潮间带沉积物重金属污染特征[J]. 海洋环境科学, 2018, 37(6): 826-834. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201806005.htm Zhuang H H, Gao M S, Xu S H, et al. The characteristics of heavy metal pollution in the intertidal zone of Dagu Estuary[J]. Marine Environmental Science, 2018, 37(6): 826-834. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201806005.htm
[11] Wang C C, Chen R F, Yang X, et al. Asian horseshoe crab bycatch in intertidal zones of the northern Beibu Gulf: Suggestions for conservation management[J]. Journal of Ocean University of China, 2022, 21(3): 611-621. doi: 10.1007/s11802-022-5214-9
[12] 钱贞兵, 孙立剑, 徐升, 等. 淮河流域安徽段土壤重金属元素分布特征研究[J]. 岩矿测试, 2018, 37(2): 193-200. doi: 10.15898/j.cnki.11-2131/td.201710190168 Qian Z B, Sun L J, Xu S, et al. Distribution characteristics of heavy metals in soils of the Anhui section of the Huaihe River Basin[J]. Rock and Mineral Analysis, 2018, 37(2): 193-200. doi: 10.15898/j.cnki.11-2131/td.201710190168
[13] 高娟琴, 于扬, 李以科, 等. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征[J]. 岩矿测试, 2021, 40(6): 871-882. doi: 10.15898/j.cnki.11-2131/td.202102210026 Gao J Q, Yu Y, Li Y K, et al. Distribution characteristics of rare earth elements and heavy metals in a soil-plant system at Bayan Obo rare earth mine, Inner Mongolia[J]. Rock and Mineral Analysis, 2021, 40(6): 871-882. doi: 10.15898/j.cnki.11-2131/td.202102210026
[14] 罗飞, 巴俊杰, 苏春田, 等. 武水河上游区域土壤重金属污染风险及来源分析[J]. 岩矿测试, 2019, 38(2): 195-203. doi: 10.15898/j.cnki.11-2131/td.201806040069 Luo F, Ba J J, Su C T, et al. Contaminant assessment and sources analysis of heavy metals in soils from the upper reaches of the Wushui River[J]. Rock and Mineral Analysis, 2019, 38(2): 195-203. doi: 10.15898/j.cnki.11-2131/td.201806040069
[15] Chen Y Z, Ning Y Q, Bi X Y, et al. Pine needles as urban atmospheric pollution indicators: Heavy metal concentrations and Pb isotopic source identification[J]. Chemosphere, 2022, 296: 134043. doi: 10.1016/j.chemosphere.2022.134043
[16] Deng H G, Gu T F, Li M H, et al. Comprehensive assessment model on heavy metal pollution in soil[J]. International Journal of Electrochemical Science, 2012, 7(6): 5286-5296.
[17] He J Y, Yang Y, Christakos G, et al. Assessment of soil heavy metal pollution using stochastic site indicators[J]. Geoderma, 2019, 337: 359-367. doi: 10.1016/j.geoderma.2018.09.038
[18] Li Z Y, Ma Z W, Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468: 843-853.
[19] 张威, 苏世兵, 李宁. 辽东半岛东岸潮间带沉积物重金属含量分析及污染评价[J]. 贵州师范大学学报(自然科学版), 2022, 40(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR202201002.htm Zhang W, Su S B, Li N. Heavy metal content analysis and pollution assessment of intertidal sediments in Biliu Estuary on the east coast of Liaodong Peninsula[J]. Journal of Guizhou Normal University (Natural Sciences), 2022, 40(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR202201002.htm
[20] 李兆河. 2010年湄洲湾北岸潮间带沉积物重金属污染分布及污染评价[J]. 海洋湖沼通报, 2021, 43(6): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB202106008.htm Li Z H. Distribution and evaluation of heavy metal pollution in surface sediments from intertidal zone on the northern shore of the Meizhou Bay in 2010[J]. Transactions of Oceanology and Limnology, 2021, 43(6): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB202106008.htm
[21] 刘阳, 赵晋娥, 张凡顺. 青岛潮间带表层沉积物重金属污染现状及潜在生态风险评价[J]. 环境污染与防治, 2021, 43(4): 492-496. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202104017.htm Liu Y, Zhao J E, Zhang F S. Pollution status and potential ecological risk assessment of heavy metals in the surface sediments of Qingdao intertidal zone[J]. Environmental Pollution & Control, 2021, 43(4): 492-496. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202104017.htm
[22] 冀应斌, 陈雷. 海洋沉积物重金属元素相关性研究——以海南岛环岛潮间带为例[J]. 河南科技, 2021, 40(30): 49-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKJ202130024.htm Ji Y B, Chen L. Correlation of heavy metal elements in marine sediments—A case study of the intertidal zone Hainan Island[J]. Henan Science and Technology, 2021, 40(30): 49-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKJ202130024.htm
[23] 张湘君. 海洋沉积物中金属元素环境本底值的确定[J]. 东海海洋, 1988(3): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DHHY198803010.htm Zhang X J. Determination of environmental background value of metal element in marine sediments[J]. Journal of Marine Sciences, 1988(3): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DHHY198803010.htm
[24] 陈勇, 马德毅, 刘文全, 等. 东寨港潮间带沉积物重金属环境背景值构建研究[J]. 海洋环境科学, 2020, 39(5): 716-722. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202005009.htm Chen Y, Ma D Y, Liu W Q, et al. The construction of heavy metal environmental background values of the intertidal sediments in Dongzhai Port[J]. Marine Environmental Science, 2020, 39(5): 716-722. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202005009.htm
[25] Sanchez-Rodas D, Mellano F, Morales E, et al. A simplified method for inorganic selenium and selenoaminoacids speciation based on HPLC-TR-HG-AFS[J]. Talanta, 2013, 106: 298-304.
[26] 祝正辉. 原子荧光光谱法测定土壤中的砷和汞[J]. 理化检验(化学分册), 2015, 51(7): 952-954. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201507015.htm Zhu Z H. Determination of arsenic and mercury in soil by AFS[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(7): 952-954. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201507015.htm
[27] 程伟, 邱海鸥, 汤少展, 等. HPLC-HG-AFS测定环境样品中As(Ⅲ)和As(Ⅴ)[J]. 分析试验室, 2015, 34(3): 267-269. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201503006.htm Cheng W, Qiu H O, Tang S Z, et al. Determination of As(Ⅲ) and As(Ⅴ) in environmental samples with HPLC-HG-AFS[J]. Chinese Journal of Analysis Laboratory, 2015, 34(3): 267-269. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201503006.htm
[28] 杨秀琳, 张伟. 原子荧光法测水中砷的方法检出限计算方式和结果比较[J]. 甘肃科技, 2019, 35(2): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ201902027.htm Yang X L, Zhang W. Determination of arsenic in water by atomic fluorescence spectrometry[J]. Gansu Science and Technology, 2019, 35(2): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ201902027.htm
[29] Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2(3): 109-118.
[30] Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001.
[31] 赵一阳, 鄢明才. 黄河、长江、中国浅海沉积物化学元素丰度比较[J]. 科学通报, 1992(13): 1202-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199213014.htm Zhao Y Y, Yan M C. Comparison of chemical element abundances in sediments of the Yellow River, the Yangtze River and China's shallow sea[J]. Chinese Science Bulletin, 1992(13): 1202-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199213014.htm
[32] 赵一阳, 鄢明才. 中国浅海沉积物化学元素丰度[J]. 中国科学(B辑), 1993(10): 1084-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199310011.htm Zhao Y Y, Yan M C. Abundance of chemical elements in shallow sea sediments of China[J]. Scientia Sinica (Chimica), 1993(10): 1084-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199310011.htm
[33] 吴燕玉, 李彤, 谭方, 等. 辽河平原土壤背景值区域特征及分布规律[J]. 环境科学学报, 1986, 6(4): 420-433. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX198604005.htm Wu Y Y, Li T, Tan F, et al. Element background levels in soils of Liaohe Rivier Plain[J]. Acta Scientiae Circumstantiae, 1986, 6(4): 420-433. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX198604005.htm
[34] 陈振金, 陈春秀, 刘用清, 等. 福建省土壤环境背景值研究[J]. 环境科学, 1992, 13(4): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ199204019.htm Chen Z J, Chen C X, Liu Y Q, et al. Study on soil environmental background value in Fujian Province[J]. Environmental Science, 1992, 13 (4): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ199204019.htm
[35] 陈邦本, 胡蓉卿, 陈铭达. 江苏海涂土壤环境元素的自然背景值[J]. 南京农业大学学报, 1985, 3(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-NJNY198503007.htm Chen B B, Hu R Q, Chen M D. The natural background-values of environmental elements in beach soils of Jiangsu Province[J]. Journal of Nanjing Agricultural University, 1985, 3(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-NJNY198503007.htm
[36] 陈斌, 尹晓娜, 姜广甲. 珠江口外陆架海域表层成绩五重金属潜在生态风险评价及来源分析[J]. 应用海洋学学报, 2021, 40(3): 520-528. https://www.cnki.com.cn/Article/CJFDTOTAL-TWHX202103017.htm Chen B, Yin X N, Jiang G J. Assessment of the potential ecological risk of heavy metals in the sediments of continental shelf and their sources off the Pearl River Estuary[J]. Journal of Applied Oceanography, 2021, 40(3): 520-528. https://www.cnki.com.cn/Article/CJFDTOTAL-TWHX202103017.htm
-
期刊类型引用(31)
1. 谢心怡,罗玉霞,邱慧,王健行,赵学付,王春英. 离子型稀土矿中残留氨氮的淋洗去除及动力学研究. 有色金属科学与工程. 2025(01): 143-151 . 百度学术
2. 轩诗垚,王占刚. 结合风场的土壤重金属污染扩散过程模拟. 计算机应用与软件. 2024(02): 68-72+151 . 百度学术
3. 韦春妙,章艳红,唐玉红,刘斌. 江西某退役焦化厂土壤重金属赋存形态分析及生物有效性评价. 土壤通报. 2024(03): 810-818 . 百度学术
4. 张振国,王月,陈军典,高倩,邢杰,骆念岗,田释梦,代佳浩. 冀东代表性铁尾矿库表层重金属含量特征及生态风险评价. 金属矿山. 2024(07): 231-240 . 百度学术
5. 张永康,曹耀华,冯乃琦,刘岩,张耀,王庆,刘佳. 某废弃煤矿区土壤重金属污染风险评价. 煤炭学报. 2024(07): 3188-3198 . 百度学术
6. 迟崇哲,刘影,王超,张大勇,王春慧. 有色金属矿山尾矿土壤化生态修复技术研究进展. 黄金. 2024(12): 8-12+138 . 百度学术
7. 汪媛媛,廖启林,李文博,徐宏婷,崔晓丹,刘玮晶,李文婷,周强. 江苏典型农田土壤重金属形态分布初步研究. 土壤. 2024(06): 1326-1338 . 百度学术
8. 魏光普,于晓燕,康瑜,宋宇辰. 稀土矿山“菌根-油松-耐性蚯蚓”修复土壤效应评价. 稀土. 2023(02): 120-129 . 百度学术
9. 吴灿萍,周罕,陈安,徐继刘,付俊. 某铜选冶场地土壤重金属污染特征及风险评价. 西南农业学报. 2023(02): 402-408 . 百度学术
10. 魏洪斌,罗明,向垒,查理思,杨慧丽. 矿业废弃地重金属形态分布特征与迁移转化影响机制分析. 环境科学. 2023(06): 3573-3584 . 百度学术
11. 杨洋,高慧敏,陶红,张秋灯. 重金属复合污染河道底泥淋洗动力学特征. 净水技术. 2023(06): 152-160+175 . 百度学术
12. 张永康,冯乃琦,刘岩,徐志强,张耀,王庆. 江西某铅锌矿区土壤重金属形态分析及风险评价. 矿产综合利用. 2023(03): 199-204+210 . 百度学术
13. 陈丹利,刘冠男,行正松,刘伟,潘飞飞,徐建军,赵元艺. 河南栾川钼铅锌多金属矿集区土壤重金属累积及源解析. 岩矿测试. 2023(04): 839-851 . 本站查看
14. 黄方昱,明光艳,谢玮琛,吴道铭,陈燕明. 稀土矿迹地周边农田土壤重金属生态风险评价. 世界有色金属. 2023(14): 178-181 . 百度学术
15. 林小淳,刘晓瑜,袁欣,张隆隆,刘斯文,冯亚鑫,赵晓倩,黄园英. 碱改性沸石吸附铅和氨氮性能及对稀土矿山土壤的修复作用. 岩矿测试. 2023(06): 1177-1188 . 本站查看
16. 杨士,刘祖文,龙焙,毕永顺,林苑,左华伟. 生物炭负载氧化石墨烯对离子型稀土矿区土壤中重金属的阻控效应. 环境科学. 2022(03): 1567-1576 . 百度学术
17. 陈陵康,陈海霞,金雄伟,张恋,刘金辉,柳传毅,徐狮,吴开兴,何书,孙涛,刘卫明. 离子型稀土矿粒度、粘土矿物、盐基离子迁移及重金属释放研究及展望. 中国稀土学报. 2022(02): 194-215 . 百度学术
18. 刘斯文,黄园英,赵文博,魏吉鑫,徐春丽,马嘉宝,刘久臣,黄采文. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价. 岩矿测试. 2022(03): 488-498 . 本站查看
19. 范晨子,袁继海,刘成海,郭威,孙冬阳,刘崴,赵九江,胡俊栋,赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价. 物探与化探. 2022(03): 761-771 . 百度学术
20. 彭红丽,谭海霞,王颖,魏建梅,冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价. 生态环境学报. 2022(06): 1235-1243 . 百度学术
21. 鲍丽萍,陈芸,杨海博,董学林,孙勇,周佳,周新. 鄂西北稀土矿区粮食与蔬菜中重金属污染风险评价. 食品安全质量检测学报. 2022(15): 5062-5069 . 百度学术
22. 白宇明,李永利,周文辉,胡浩远,卢震,边鹏. 典型工业城市土壤重金属元素形态特征及生态风险评估. 岩矿测试. 2022(04): 632-641 . 本站查看
23. 张笑辰,刘煜,张兴绘,孙小艳. 江西省主要城市土壤重金属污染及风险评价. 环境科学与技术. 2022(08): 206-217 . 百度学术
24. 杨贤房,郑林,万智巍,王远东,孟丽红,俞大杰. 酸性矿山5种植被恢复措施下土壤碱性磷酸酶基因细菌群落特征及其与重金属关系. 环境科学学报. 2022(12): 251-261 . 百度学术
25. 范晨子,郭威,袁继海,郝乃轩,赵九江,刘成海. 西南地区典型工矿业城市土壤—作物系统中重金属和硒元素特征及评价. 西南农业学报. 2022(08): 1909-1919 . 百度学术
26. 王毛兰,何昶,赵茜宇. 江西某养殖场废水灌溉土壤重金属污染特征及健康风险评价. 岩矿测试. 2022(06): 1072-1081 . 本站查看
27. 谭启海,赵永红,黄璐,万臣,杨智,周丹. 硫酸铵对离子型稀土矿区土壤重金属的释放和形态转化影响. 有色金属科学与工程. 2022(06): 134-144 . 百度学术
28. 陈月茹,曾敏静,程媛媛,龙焙,张斌超,曾玉,林树涛,易名儒,黄思浓. 温度对好氧颗粒污泥硝化-反硝化耦合脱氮性能影响. 环境科技. 2021(03): 7-12 . 百度学术
29. 范晨子,刘永兵,赵文博,刘成海,袁继海,郭威,郝乃轩. 云南安宁水系沉积污染物分布特征与风险评价. 岩矿测试. 2021(04): 570-582 . 本站查看
30. 徐春丽,刘斯文,魏吉鑫,黄园英,马嘉宝,曾普胜,李旭光. 离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征. 矿产保护与利用. 2021(04): 1-11 . 百度学术
31. 高娟琴,于扬,李以科,李瑞萍,柯昌辉,王登红,于沨,张塞,王雪磊. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征. 岩矿测试. 2021(06): 871-882 . 本站查看
其他类型引用(19)