内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征

高娟琴, 于扬, 李以科, 李瑞萍, 柯昌辉, 王登红, 于沨, 张塞, 王雪磊

高娟琴, 于扬, 李以科, 李瑞萍, 柯昌辉, 王登红, 于沨, 张塞, 王雪磊. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征[J]. 岩矿测试, 2021, 40(6): 871-882. DOI: 10.15898/j.cnki.11-2131/td.202102210026
引用本文: 高娟琴, 于扬, 李以科, 李瑞萍, 柯昌辉, 王登红, 于沨, 张塞, 王雪磊. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征[J]. 岩矿测试, 2021, 40(6): 871-882. DOI: 10.15898/j.cnki.11-2131/td.202102210026
GAO Juan-qin, YU Yang, LI Yi-ke, LI Rui-ping, KE Chang-hui, WANG Deng-hong, YU Feng, ZHANG Sai, WANG Xue-lei. Distribution Characteristics of Rare Earth Elements and Heavy Metals in a Soil-Plant System at Bayan Obo Rare Earth Mine, Inner Mongolia[J]. Rock and Mineral Analysis, 2021, 40(6): 871-882. DOI: 10.15898/j.cnki.11-2131/td.202102210026
Citation: GAO Juan-qin, YU Yang, LI Yi-ke, LI Rui-ping, KE Chang-hui, WANG Deng-hong, YU Feng, ZHANG Sai, WANG Xue-lei. Distribution Characteristics of Rare Earth Elements and Heavy Metals in a Soil-Plant System at Bayan Obo Rare Earth Mine, Inner Mongolia[J]. Rock and Mineral Analysis, 2021, 40(6): 871-882. DOI: 10.15898/j.cnki.11-2131/td.202102210026

内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征

基金项目: 

国家重点研发计划项目"锂能源金属矿产基地深部探测技术示范"课题 2017YFC0602705

国家重点研发计划项目"锂能源金属矿产基地深部探测技术示范"课题(2017YFC0602705);中国地质调查局地质调查项目"松潘-甘孜成锂带锂铍多金属大型锂矿资源基地综合调查评价"(DD20190173)

中国地质调查局地质调查项目"松潘-甘孜成锂带锂铍多金属大型锂矿资源基地综合调查评价" DD20190173

详细信息
    作者简介:

    高娟琴, 博士研究生, 地球化学专业。E-mail: gaojuanqinmail@sina.com

    通讯作者:

    于扬, 博士, 副研究员, 主要从事地球化学研究。E-mail: yuyang_cags@sina.com

  • 中图分类号: O657.63;X820.4

Distribution Characteristics of Rare Earth Elements and Heavy Metals in a Soil-Plant System at Bayan Obo Rare Earth Mine, Inner Mongolia

  • 摘要: 白云鄂博是世界最大的稀土矿山,研究白云鄂博矿区土壤及植物等环境介质中的稀土元素和重金属元素的分布特征,可以为调查矿区环境现状提供基础数据,同时为矿山环境修复提供参考依据。本文采集了白云鄂博稀土矿区的土壤、植物,以及背景区本巴台地区的岩石、土壤、牛粪五类样品,采用电感耦合等离子体质谱法(ICP-MS)测定了样品中15种稀土元素(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y)及8种重金属元素(Cr、Mn、Ni、Cu、Zn、Cd、Pb、As)的含量,研究这些元素地球化学行为及其在空间上的变化规律。结果表明:①矿区土壤和植物样品均显示出明显的轻稀土富集、重稀土亏损的特征。土壤和植物中含量最高的稀土元素均为Ce,分别达到49.95%及48.55%,与白云鄂博稀土矿富Ce的特征高度一致。②铁花植物的稀土元素总量在空间上呈现出主矿>东矿>东介勒格勒矿段的趋势,与三处矿体本身含矿性变化一致,说明该种植物稀土含量基本受矿体含矿性控制,对生长环境中稀土富集程度指示较准确。③矿区土壤中存在一定程度的Zn(465~778mg/kg)、Cd(1.35~2.23mg/kg)、Pb(181~431mg/kg)累积,其中部分点位Cd、Pb存在超出风险管制值的现象。综上,白云鄂博的矿石、土壤、植物样品均表现出富Ce的特征,且植物稀土含量与其所生长处的矿体含矿性强弱高度相关,三者之间稀土含量特征表现出明显继承性。此外,矿区局部点位土壤存在的Zn、Cd、Pb累积需要引起适当关注。
    要点

    (1) 土壤和植物均富集轻稀土且Ce含量达49.95%及48.55%,与矿石富Ce的特征一致。

    (2) 铁花中稀土总量空间变化规律与三处矿体含矿性强弱变化高度一致。

    (3) 矿区土壤存在Zn、Cd、Pb累积,需加强对相应区域矿业活动的关注。

    HIGHLIGHTS

    (1) Soil and plants were enriched in light rare earth elements (REEs). The Ce content of soil and plants reached 49.95% and 48.55%, respectively, which was consistent with the Ce rich characteristics of Bayan Obo ore.

    (2) The spatial variation of REEs in Limonium bicolor (Bag.) Kuntze was highly consistent with the variation of mineralization degree of three ore bodies.

    (3) The accumulation of Zn, Cd and Pb in the soil of the mining area was detected, thus it is necessary to pay more attention to the mining activities in the corresponding region.

  • 石油作为基础性能源产品,对现代国家经济的可持续发展有着重大影响[1]。但随着石油的开发与利用,发生了一些溢油事故[2-3]给环境造成了重大危害[4]。石油类的污染物成分复杂,主要为石油烃和多环芳烃[5],其中石油烃能通过食物链富集而对人体健康造成危害[6],多环芳烃包含危害人体健康的致癌物质[7-8]。因此,对石油类污染物的监测已是环境保护的关注重点之一。2018年国家颁布的《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600—2018)中将石油烃、多环芳烃等均列为监测项目,并制定了相应的风险筛选值和管控值,对土壤进行风险筛查和分类提供了依据,为生态环境修复提供了有力的技术支撑。

    石油类污染物主要以烃类形式存在,碳、氢占比高达95%~99%[9],因此红外分光光度法相较于重量法[10]、紫外分光光度法[11-12]、气相色谱法[13-16]、荧光法[17-18]等,能更全面、准确地检测油类物质的总量,且灵敏度高、不受油品影响[19-20],对低含量油污染土壤测定更加适用[21-22]。石油类的官能团CH3、CH2和CH分别在红外光谱2930cm-1、2960cm-1和3030cm-1处存在伸缩振动,通过这三个波数处的吸光度可以计算出含CH3、CH2和CH基团的烃类含量[23]。现行环境标准《土壤石油类的测定红外分光光度法》(HJ 1051—2019)、《水质石油类和动植物油类的测定红外分光光度法》(HJ 637—2018)采用红外校正系数法计算石油类含量,通过测定正十六烷(CH3)、异辛烷(CH2)和苯(CH)三种烃类在三个波数下的吸光度,联立方程式计算校正因子XYZF,利用校正因子来计算石油类含量[24],该计算方式相对复杂,手动计算费时费力;如采用软件计算虽可提高计算效率,但又因实际测试油品的红外光谱吸收峰的偏移,而造成计算结果偏差较大。在《生活饮用水标准检验方法有机物综合指标》(GB/T 5750.7—2006)、被代替的《水质石油类和动植物油的测定红外光度法》(GB/T 16488—1996)和杨斌等[25]、梁庆勋等[26]、马宏伟等[27]研究中均采用了标准曲线法,但国家标准中的标准曲线法采用非色散红外光谱单波数,因未考虑芳香烃的影响而存在局限性,从而导致标准曲线法的适用范围受限或被舍弃[28],而文献[25-27]中均未明确指出具体采用的波数,因此作为简单、方便的标准曲线法是否仍能使用,其计算结果是否具有代表性值得深究。

    为解决校正系数法计算复杂、单波数计算范围受限等一系列问题,本文依据CH3、CH2和CH官能团在三个波数下产生的吸光度,组合成5种标准曲线法,计算已知含量的5种配制油品,通过计算结果的比对,确立最佳计算方法为三波数之和标准曲线法。再经过芳香烃占比试验对计算方法适用中国油品的范围进行验证。最后进行实际样品测定,并与校正系数法进行对比,验证其实用性。本文建立的三波数之和标准曲线法,为解决红外分光光度法测定石油类总量中标准曲线法的适用范围扩充提供了参考依据,同时也是对现行校正系数法的有益补充。

    傅里叶变换红外光谱仪(FRONTIER型,美国PerkinElmer公司):扫描范围为2800~3200cm-1;配备4cm带盖石英比色皿。

    四氯乙烯(红外光谱级,国药集团化学试剂有限公司)。

    标准物质:石油类标准溶液(1000mg/L)、正十六烷(10000mg/L)、异辛烷(10000mg/L)、苯(10000mg/L),均购自上海安谱实验科技股份有限公司。

    其他油品:原油(华北油田);高温润滑油(长沙合轩化工科技有限公司);机油(壳牌全合成机油);0#柴油(中国石油化工集团有限公司);92#汽油(中国石油化工集团有限公司)。

    实际样品:在工业园区调查项目中分别选取10个污染类型不同、污染程度不一的土壤和水质样品。土壤样品编号为T-1至T-10,水质样品编号为S-1至S-10。

    将1000mg/L石油类标准溶液用四氯乙烯稀释成150、100、50、20、10、5、2mg/L标准系列,用4cm石英比色皿进行红外光谱扫描,记录2930cm-1、2960cm-1、3030cm-1处的吸光度值。

    依据标准溶液浓度与2930cm-1、2960cm-1、3030cm-1处的吸光度分别绘制三条标准工作曲线。

    依据标准溶液浓度与2930cm-1、2960cm-1处的吸光度之和绘制标准工作曲线。

    依据标准溶液浓度与2930cm-1、2960cm-1、3030cm-1处的吸光度之和绘制标准工作曲线。

    称取原油、润滑油、机油、柴油和汽油样品各0.50g,分别用四氯乙烯定容至50mL,配制成10000mg/L的储备液。再将上述各油品储备液用四氯乙烯稀释成100、50、20、10、5、2mg/L系列溶液,用4cm石英比色皿进行红外光谱扫描,得到红外光谱图,记录2930cm-1、2960cm-1、3030cm-1处的吸光度值。

    以四氯乙烯为溶剂,吸取不同体积的正十六烷、异辛烷和苯标准溶液,按照不同比例配制成溶液,用4cm石英比色皿进行红外光谱扫描,使用三波数之和标准曲线法计算。

    土壤样品:称取土壤样品10.0g于锥形瓶中,加入20mL四氯乙烯,置于振荡器中,振荡提取30min,静置10min后倾出提取液。再用20mL四氯乙烯提取一次,合并提取液并定容50mL。提取液流经填充硅酸镁吸附柱,弃去前5mL滤出液,保留剩余流出液,待测。

    水质样品:取500mL水质样品于分液漏斗中,用50mL四氯乙烯分两次萃取,合并萃取液并定容至50mL。取适量萃取液过硅酸镁吸附柱,弃去前5mL滤出液,余下的接入25mL比色管中,用于测定石油类。

    测定:以4cm石英比色皿加入四氯乙烯为参比,分别测量提取液的红外光谱图,记录2930cm-1、2960cm-1、3030cm-1处的吸光度值。

    按照1.3节标准曲线绘制步骤进行单波数、两波数吸光度之和与三波数吸光度之和绘制标准曲线,各标准曲线方程与相关系数见表 1,各浓度红外光谱图见图 1

    表  1  标准曲线方程与相关系数
    Table  1.  Standard curve equations and correlation coefficients
    标准曲线名称 回归方程 相关系数(R)
    2930cm-1标准曲线 y=0.0135x+0.015 0.9996
    2960cm-1标准曲线 y=0.0078x-0.0041 0.9998
    3030cm-1标准曲线 y=0.0011x-0.0013 0.9996
    两波数吸光度之和标准曲线 y=0.0214x-0.008 0.9998
    三波数吸光度之和标准曲线 y=0.0225x-0.0065 0.9999
    下载: 导出CSV 
    | 显示表格
    图  1  石油类标准溶液红外光谱图
    Figure  1.  Infrared spectra of petroleum standard solution

    图 1所示,当标准溶液浓度为1mg/L时,红外吸收峰吸光度之和为0.083,虽满足3倍信噪比但峰不明显;当标准溶液浓度为150mg/L时,红外光谱图已出现平顶峰,因此石油类质量浓度在2~100mg/L时与其吸光度呈良好线性关系,相关系数如表 1所示全部大于0.999。以3倍信噪比(S/N)计算,最低检出浓度为1mg/L。

    浓度为100mg/L的5种油品的红外光谱图如图 2所示,不同产地和不同类型的油品,各种烃类的结构和所占比例相差很大,但主要属于CH2、CH3官能团组成的烷烃、环烷烃,CH官能团的芳香烃占比较少,与王玉纯等[23]采集中国不同油田的炼油厂废水进行测定得出芳香烃含量不高的结论相符。

    图  2  各油品红外光谱图
    Figure  2.  Infrared spectra of various oil products

    读取上述5种油品各浓度相应波数的吸光度值,分别以2930cm-1、2960cm-1、3030cm-1的单波数标准曲线计算,以两波数吸光度之和标准曲线进行计算,以三波数吸光度之和标准曲线进行计算,得到其相应计算浓度。计算浓度(ρ)与各油品配制浓度(ρ)的相对误差(δ)按下列公式进行计算。

    $$ \delta {\rm{ = }}\left( {{\rho _{计}} - {\rho _{配}}} \right)/{\rho _{配}} $$

    各油品单波数标准曲线计算结果的相对误差情况如图 3所示。由图 3a可知,原油和柴油的各浓度点相对误差较小,大致分布在20%之内,由此可知原油和柴油相较于其余油品更适合采用2930cm-1标准曲线进行计算。由图 3b可知,润滑油和机油的各浓度点相对误差较小,大致分布在20%之内,由此可知润滑油和机油的主要成分相较于其余油品更适合采用2960cm-1标准曲线进行计算。由图 3c可知,5种油品的各浓度点相对误差均在40%以上,计算浓度与配制浓度相差较大,表明5种油品中CH官能团为主的芳香烃含量较低或不存在[9],与图 2各油品的红外光谱图中3030cm-1峰较低或不存在的测试结果相符。单波数标准曲线的选择性强,不适用于多种类石油污染物的计算。

    图  3  单波数标准曲线法计算各种油品的结果
    Figure  3.  Calculation results of single wave number standard curve method for various oil products

    图 4可知,两波数之和标准曲线法计算各油品结果的相对误差均小于30%,这是因为两波数吸光度之和标准曲线法包括了CH2、CH3两个官能团产生的吸光度(图 4a),三波数吸光度之和标准曲线法包括了CH2、CH3和CH三个官能团产生的吸光度(图 4b),较单波数标准曲线法更全面。两种方法相比较,三波数吸光度之和标准曲线法计算结果的相对误差更小,更接近于配制值,说明虽然芳香烃在石油类中含量较低,但其对总量还是存在一定的影响。所以5种标准曲线法中,三波数吸光度之和标准曲线法是更适合作为计算石油类总量的方法。

    图  4  吸光度之和标准曲线法计算各种油品的结果
    Figure  4.  Calculation results of various oil products by summation of absorbance standard curve method

    由2.2节可知单波数标准曲线法的选择性强,不能准确计算所有石油类污染。同样的,标准方法中的单波数非分散红外光度法由于没有考虑到芳香烃类化合物,当油品中芳烃含量超过25%时,该方法的计算结果便会产生较大误差,并不适用[28]

    为验证三波数吸光度之和标准曲线法是否存在这类问题,开展了芳香烃占比试验。表 2的计算结果表明:随着芳香烃占比的增加回收率逐渐降低,当芳香烃占比大于50%时,回收率低于70%。因为中国原油的特点是含蜡较多,属于以烷烃为主的石蜡基石油,芳香烃占比小于30%,通常油品中芳香烃含量一般不超过15%[9],所以三波数吸光度之和标准曲线法可适用于中国石油类污染的检测。

    表  2  芳香烃占比试验结果
    Table  2.  Results of the proportion test for aromatic hydrocarbons
    三种烃比例(正十六烷∶异辛烷∶苯) 芳香烃占比(%) 配制浓度(mg/L) 三波数之和标准曲线法
    计算值(mg/L) 回收率(%)
    7 ∶ 3 ∶ 0 0 50.00 59.98 119.96
    6 ∶ 3 ∶ 1 10 50.00 55.42 110.83
    6 ∶ 2 ∶ 2 20 50.00 52.93 105.86
    5 ∶ 2 ∶ 3 30 50.00 46.70 93.39
    5 ∶ 1 ∶ 4 40 50.00 43.66 87.32
    3 ∶ 2 ∶ 5 50 50.00 36.55 73.10
    3 ∶ 1 ∶ 6 60 50.00 33.47 66.94
    2 ∶ 1 ∶ 7 70 50.00 28.24 56.48
    1 ∶ 1 ∶ 8 80 50.00 22.43 44.86
    1 ∶ 0 ∶ 9 90 50.00 18.65 37.29
    0 ∶ 0 ∶ 10 100 50.00 13.85 27.69
    下载: 导出CSV 
    | 显示表格

    对空白水和空白土壤(石英砂)进行加标试验,共三个浓度水平,每个浓度水平平行进行6次测定,按照1.4节进行样品前处理、三波数之和标准曲线法计算测定结果,计算其精密度与加标回收率,结果见表 3。方法精密度(RSD)在5.9%~8.0%之间,均小于10%,加标回收率在76.4%~98.2%之间,符合HJ 1051—2019、HJ 637—2018中回收率70%~110%的要求。

    表  3  空白加标样品精密度结果
    Table  3.  Precision results of blank spiked samples
    测定次数 土壤空白加标样品石油类物质含量(mg/kg) 水质空白加标样品石油类物质含量(mg/kg)
    10mg/kg 50mg/kg 100mg/kg 0.10mg/L 0.50mg/L 2.50mg/L
    1 9.11 47.6 93.4 0.0823 0.458 2.36
    2 7.93 48.3 92.5 0.0764 0.403 2.13
    3 9.29 47.4 91.6 0.0951 0.471 2.08
    4 8.26 49.1 94.1 0.0876 0.427 2.41
    5 8.74 45.7 95.7 0.0811 0.452 2.24
    6 7.73 48.2 90.6 0.0798 0.485 2.33
    平均值 8.51 47.7 93 0.0837 0.45 2.26
    回收率(%) 77.3~92.9 91.4~98.2 91.6~95.7 76.4~95.1 80.6~97.0 83.2~96.4
    RSD(%) 7.5 6.7 5.9 8.0 6.7 5.9
    下载: 导出CSV 
    | 显示表格

    按照本文的实验方法(三波数吸光度之和标准曲线法)对采集的土壤和水实际样品(1.2节)进行测定,将三波数吸光度之和标准曲线法计算结果与标准方法HJ 637—2018、HJ 1051—2019中的校正系数法计算结果进行对比。如表 4所示,对于实际土壤样品两种测试结果的相对偏差在0.5%~4.8%,水样品的相对偏差在-5.3%~6.7%,

    表  4  实际样品的计算结果对比
    Table  4.  Comparison of calculation results for actual samples
    土壤样品编号 土壤样品中石油类物质含量(mg/kg) 水样品编号 水样品中石油类物质含量(mg/L)
    校正系数法
    (标准方法)
    三波数之和标准曲线法
    (本文方法)
    相对偏差
    (%)
    校正系数法
    (标准方法)
    三波数之和标准曲线法
    (本文方法)
    相对偏差
    (%)
    T-1 17.4 18.5 -3.1 S-1 0.08 0.07 6.7
    T-2 9.73 9.82 -0.5 S-2 0.11 0.12 -4.3
    T-3 87.9 90.9 -1.7 S-3 0.09 0.1 -5.3
    T-4 104 94.8 4.6 S-4 0.67 0.65 1.5
    T-5 374 393 -2.5 S-5 0.88 0.92 -2.2
    T-6 646 689 -3.2 S-6 0.79 0.84 -3.1
    T-7 1235 1304 -2.7 S-7 1.25 1.18 2.9
    T-8 1647 1723 -2.3 S-8 1.34 1.26 3.1
    T-9 5386 5839 -4.0 S-9 1.87 1.67 5.6
    T-10 20880 22342 -3.4 S-10 2.07 2.14 -1.7
    注:相对偏差=(推荐方法测定值-两次测定值的平均值)/两次测定值平均值×100%。
    下载: 导出CSV 
    | 显示表格

    参考HJ 1051—2019中土壤平行样的相对偏差≤30%、HJ 637—2018中水样实验室内标准偏差的范围为0.8%~13%,测试结果满足要求,因此三波数吸光度之和标准曲线法可作为实际测定石油类总量的方法。

    本文建立了三波数之和标准曲线法计算环境样品中石油类总量的方法。依据标准曲线法原理和常见油品红外谱图,对红外分光光度法测定石油类的三个波数处的吸光度进行排列组合,组建出5种标准曲线法计算已知含量的5种油品,并进行结果比对,表明三波数之和标准曲线法包含的波数全面,结果更接近实际配制值,是标准曲线法中的最佳计算方法。再经过芳香烃占比试验和实际样品验证,表明本文方法在芳香烃占比小于50%时,与校正系数法结果相一致,能满足石油类污染的测定需求。

    三波数之和标准曲线法的建立,解决了标准曲线法在红外分光光度法测定石油类总量中的应用难题,突破了单波数标准曲线法的局限性,同时具有简单、方便、准确等特点,是对现行校正系数法的有益补充。但对于芳香烃占比大于50%的石油类污染,计算结果偏差较大,需进一步探讨研究。

  • 图  1   白云鄂博主矿区采样点分布图(据柯昌辉等[30])

    1—第四系;2—白垩系固阳组;3—长城系尖山组;4—长城系都拉哈拉组;5—新太古界乌拉山群;6—二叠纪二长花岗岩;7—黑云母花岗闪长岩;8—中元古代白云石碳酸岩;9—花岗岩脉;10—石英斑岩脉;11—闪长岩/闪长玢岩脉;12—碳酸岩脉;13—碱性岩脉;14—钠角闪石岩脉;15—钠辉石钠角闪石碱性岩脉;16—铁矿化体;17—低品位铁矿化带;18—矿区采样点及编号。
    本巴台采样点B8915及B8916距离主矿区80km,未在图中显示。

    Figure  1.   Map of sampling sites in main mining area of Bayan Obo (According to Ke, et al[30])

    图  2   白云鄂博矿区各类型样品(a)稀土元素和(b)重金属元素含量对比

    Figure  2.   Comparison of (a) REE and (b) heavy metal contents of all kinds of samples from Bayan Obo mining area

    图  3   白云鄂博矿区不同区域植物中的稀土总量对比

    Figure  3.   Comparison of total REE contents in plant samples from different areas of Bayan Obo mining area

    图  4   土壤及植物样品中(a)稀土总量和(b)重金属总量对比

    Figure  4.   Comparison of (a) total REEs and (b) total heavy metals contents of soil and plant samples

    图  5   (a) 土壤及(b)植物样品中稀土总量和重金属总量相关关系

    Figure  5.   Correlation relationship between total rare earths and total heavy metals contents of (a) soil and (b) plant samples

    图  6   土壤重金属含量与农用地土壤质量标准对比

    注:横坐标“Cd×100”表示Cd扩大100倍的数值。

    Figure  6.   Comparison of heavy metal contents and heavy metal threshold values

    表  1   白云鄂博矿区各类型样品稀土元素和重金属含量测试结果

    Table  1   Contents of rare earth elements and heavy metals of samples collected from Bayan Obo mining area

    样品编号 样品类型 采样位置 矿区稀土元素含量(mg/kg)
    La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y
    B8915 岩石 本巴台 7.3 8.21 1.27 4.47 0.78 0.07 0.58 0.1 0.62 0.13 0.39 0.07 0.52 0.08 3.71
    B8916-1 土壤 本巴台(距白云鄂博矿区约80km) 83.4 153 17.5 63.6 9.45 1.76 6.48 1 5.84 1.13 3.31 0.47 3.26 0.49 32.7
    B8916-2 牛粪 本巴台(距白云鄂博矿区约80km) 18.8 35 3.74 13.5 1.98 0.35 1.16 0.17 0.96 0.18 0.47 0.06 0.42 0.06 5.84
    B8918 风毛菊 高磁异常区 387 703 70.5 238 23.2 4.55 8.52 0.77 2.73 0.36 0.58 0.05 0.31 ND 10.1
    B8919 铁花 主矿南侧板岩 425 783 79.6 267 27 5.03 9.61 0.9 3.31 0.44 0.76 0.07 0.37 ND 11.7
    B8920 铁花 主矿1626平台北侧 651 1163 118 397 38.8 7.31 13.7 1.25 4.43 0.6 0.96 0.08 0.50 0.05 15.4
    B8921-1 铁花 主矿北侧 695 1174 112 360 34.1 6.35 12.2 1.17 4.19 0.55 0.88 0.08 0.45 ND 13.8
    B8921-2 土壤 主矿北侧 9039 15368 1383 4358 402 77.2 132 14.9 53.5 6.75 11.4 0.93 5.56 0.61 141
    B8922-1 铁花 主矿北侧 380 652 64.5 216 20.2 3.85 8.18 0.72 2.57 0.35 0.59 0.05 0.30 ND 8.55
    B8922-2 土壤 主矿北侧 7188 12992 1198 3773 365 70.3 138 13.9 48.6 6.16 11.5 0.88 5.26 0.59 135
    B8924-1 铁花 东矿西侧 553 1009 100 327 32.6 6.07 12.1 1.15 4.01 0.52 0.96 0.07 0.42 ND 12.3
    B8924-2 土壤 东矿西侧 8880 16851 1608 5175 503 92.4 168 17.2 59 7.57 13.3 1.02 6.10 0.67 155
    B8925-1 铁花 东矿北侧 569 1025 102 338 32.7 6.06 12.2 1.14 3.98 0.54 0.95 0.07 0.43 ND 12.7
    B8925-2 土壤 东矿北侧 9044 17174 1622 5247 519 95.3 150 18.4 62.3 7.85 15.1 1.05 6.26 0.68 165
    B8926-1 铁花 东矿东侧 416 746 75.5 250 23.8 4.44 9.36 0.82 2.89 0.39 0.61 0.05 0.29 ND 10
    B8926-2 土壤 东矿东侧 4689 8856 870 2876 286 54.5 108 10.8 39.6 5.35 9.53 0.86 4.92 0.56 116
    B8929 铁花 东介勒格勒 430 761 75 240 23.4 4.3 8.79 0.82 2.79 0.36 0.70 ND 0.30 ND 8.96
    样品编号 样品类型 采样位置 矿区稀土元素总量(mg/kg) ΣLREE/ ΣHREE 矿区重金属元素含量(mg/kg)
    ΣREE ΣLREE ΣHREE Cr Mn Ni Cu Zn Cd Pb As 重金属总量
    B8915 岩石 本巴台 28.30 22.1 6.2 3.56 170 123 65.5 12.6 6.18 0.06 55.8 0.91 481.95
    B8916-1 土壤 本巴台(距白云鄂博矿区约80km) 383.39 328.71 54.68 6.01 71.3 743 35.7 29.8 87.4 0.15 21.7 12.7 1720.75
    B8916-2 牛粪 本巴台(距白云鄂博矿区约80km) 82.69 73.37 9.32 7.87 15.4 277 7.09 16.9 53.8 0.26 5.38 2.97 520.80
    B8918 风毛菊 高磁异常区 1449.67 1426.25 23.42 60.9 5.68 447 3.41 12.7 122 0.29 23.1 3.70 1579.88
    B8919 铁花 主矿南侧板岩 1613.79 1586.63 27.16 58.42 5.34 579 5.05 12.6 146 0.49 32.4 4.75 1866.63
    B8920 铁花 主矿1626平台北侧 2412.08 2375.11 36.97 64.24 7.46 705 5.08 11 137 0.43 32.2 3.57 2407.74
    B8921-1 铁花 主矿北侧 2414.77 2381.45 33.32 71.47 6.44 548 3.4 8.64 70.9 0.21 19.5 2.72 2080.81
    B8921-2 土壤 主矿北侧 30993.85 30627.2 366.65 83.53 54.3 6194 26 28.3 465 1.81 181 26.6 23807.01
    B8922-1 铁花 主矿北侧 1357.86 1336.55 21.31 62.72 2.77 326 2.14 7.04 64.6 0.21 14.8 2.08 1388.64
    B8922-2 土壤 主矿北侧 25946.19 25586.3 359.89 71.09 38.1 5297 26.6 32.6 583 1.73 202 28.9 24340.93
    B8924-1 铁花 东矿西侧 2059.2 2027.67 31.53 64.31 4.3 732 3.57 8.37 102 0.29 45 2.80 2299.33
    B8924-2 土壤 东矿西侧 33537.26 33109.4 427.86 77.38 40.4 9774 29.1 48.5 749 2.23 431 31.3 28893.53
    B8925-1 铁花 东矿北侧 2104.77 2072.76 32.01 64.75 4.24 631 3.2 7.31 75.2 0.19 32 2.38 2282.52
    B8925-2 土壤 东矿北侧 34127.94 33701.3 426.64 78.99 39.5 9454 29.2 37.7 778 2.21 420 32.1 31107.71
    B8926-1 铁花 东矿东侧 1540.15 1515.74 24.41 62.1 5.05 439 3.82 7.12 71.3 0.14 23.6 1.37 1877.40
    B8926-2 土壤 东矿东侧 17927.12 17631.5 295.62 59.64 58.7 5062 45.9 65 602 1.35 221 20.6 22317.55
    B8929 铁花 东介勒格勒 1556.42 1533.7 22.72 67.5 2.98 380 2.34 5.22 51.2 0.09 18.9 1.58 1573.31
    注:ND代表低于检出限(0.05mg/kg),未检出。
    下载: 导出CSV

    表  2   最新农用地土壤质量标准中土壤重金属筛选值及管制值与本研究土壤重金属含量对比

    Table  2   Comparison of latest threshold values of heavy metals from Chinese quality standards for agricultural land and heavy metals contents in soils in this study

    元素 筛选值(mg/kg) 管制值(mg/kg) 本研究土壤样品(mg/kg)
    Cd 0.3 1.5 1.35~2.23
    Cr 150 800 38.1~58.7
    Pb 70 400 181~431
    Zn 200 - 465~778
    Cu 50 - 28.3~65.0
    As 40 200 20.6~32.1
    Ni 60 - 26.0~45.9
    注:“-”表示国家标准中未给出该元素限制值。
    下载: 导出CSV
  • Khan A M, Yusoff I, Bakar N, et al. Assessing anthropogenic levels, speciation, and potential mobility of rare earth elements (REEs) in ex-tin mining area[J]. Environmental Science and Pollution Research, 2016, 23(24): 25039-25055. doi: 10.1007/s11356-016-7641-x

    Phan Q V, Dao T T, Nguyen P, et al. An assessment of natural radioactivity in the Namxe rare earth deposit, Laichau Province, Vietnam[J]. Minerals, 2019, 9(10): 602-614. doi: 10.3390/min9100602

    Raju K K, Raju A N. Biogeochemical investigation in south eastern Andhra Pradesh: The distribution of rare earths, thorium and uranium in plants and soils[J]. Environmental Geology, 2000, 39(10): 1102-1106. doi: 10.1007/s002540000111

    Pepi S, Sansone L, Chicca M, et al. Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. "Glera"[J]. Environmental Monitoring and Assessment, 2016, 188(8): 1-9. http://www.onacademic.com/detail/journal_1000039497774610_b953.html

    Khan A M, Yusoff I, Abubakar N K, et al. Accumulation, uptake and bioavailability of rare earth elements (REEs) in soil grown plants from ex-mining area in Perak, Malaysia[J]. Applied Ecology and Environmental Research, 2017, 15(3): 117-133. doi: 10.15666/aeer/1503_117133

    张立锋, 刘杰民, 张翼明. 白云鄂博矿区土壤和植物中稀土元素的分布特征[J]. 岩矿测试, 2019, 38(5): 556-564. doi: 10.15898/j.cnki.11-2131/td.201809200107

    Zhang L F, Liu J M, Zhang Y M. Distribution characteristics of rare earth elements in plants and soils from the Bayan Obo mining area[J]. Rock and Mineral Analysis, 2019, 38(5): 556-564. doi: 10.15898/j.cnki.11-2131/td.201809200107

    罗才贵, 罗仙平, 周娜娜, 等. 南方废弃稀土矿区生态失衡状况及其成因[J]. 中国矿业, 2014, 23(10): 65-70. doi: 10.3969/j.issn.1004-4051.2014.10.016

    Luo C G, Luo X P, Zhou N N, et al. Status and causes of ecological imbalance of abandoned rare-earth mine in South China[J]. China Mining Magazine, 2014, 23(10): 65-70. doi: 10.3969/j.issn.1004-4051.2014.10.016

    张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5): 726-738. doi: 10.15898/j.cnki.11-2131/td.201911050152

    Zhang S, Yu Y, Wang D H, et al. Forms distribution of heavy metals and their ecological risk evaluation in soils of ion adsorption type in the rare earth mining area of southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5): 726-738. doi: 10.15898/j.cnki.11-2131/td.201911050152

    陈明, 郑小俊, 陶美霞, 等. 桃江流域河流沉积物中重金属污染特征与风险评价[J]. 环境化学, 2020, 39(10): 2784-2791. doi: 10.7524/j.issn.0254-6108.2019072902

    Chen M, Zheng X J, Tao M X, et al. Pollution characteristics and risk assessment of heavy metals in sediment from Taojiang River Basin[J]. Environmental Chemistry, 2020, 39(10): 2784-2791. doi: 10.7524/j.issn.0254-6108.2019072902

    Pan Y, Li H. Investigating heavy metal pollution in mining brown-field and its policy implications: A case study of the Bayan Obo rare earth mine, Inner Mongolia, China[J]. Environmental Management, 2016, 57(4): 879-893. doi: 10.1007/s00267-016-0658-6

    王哲, 赵莹晨, 骆逸飞, 等. 内蒙古白云鄂博矿区土壤稀土元素污染特征及评价[J]. 环境科学, 2021, 42(3): 1503-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202103054.htm

    Wang Z, Zhao Y C, Luo Y F, et al. Characteristics and evaluation of soil rare earth element pollution in the Bayan Obo mining region of Inner Mongolia[J]. Environmental Science, 2021, 42(3): 1503-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202103054.htm

    陈耕. 白云鄂博主、东矿回顾性环境影响评价[D]. 呼和浩特: 内蒙古大学, 2012.

    Chen G. Retrospective environmental impact assessment of Bayan Obo main and east mine[D]. Hohhot: Inner Mongolia University, 2012.

    郭伟, 付瑞英, 赵仁鑫, 等. 内蒙古包头白云鄂博矿区及尾矿区周围土壤稀土污染现状和分布特征[J]. 环境科学, 2013, 34(5): 1895-1900. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201305036.htm

    Guo W, Fu R Y, Zhao R X, et al. Distribution characteristics and current situation of soil rare earth contamination in the Bayan Obo mining area and Baotou tailing reservoir in Inner Mongolia[J]. Environmental Science, 2013, 34(5): 1895-1900. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201305036.htm

    Ma Y H, Kuang L L, He X, et al. Effects of rare earth oxide nanoparticles on root elongation of plants[J]. Chemosphere, 2010, 78(3): 273-279. doi: 10.1016/j.chemosphere.2009.10.050

    Garcia A, Espinosa R, Delgado L, et al. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests[J]. Desalination, 2011, 269(1-3): 136-141. doi: 10.1016/j.desal.2010.10.052

    Wang L Q, Liang T. Accumulation and fractionation of rare earth elements in atmospheric particulates around a mine tailing in Baotou, China[J]. Atmospheric Environment, 2014, 23(6): 747-751. http://sourcedb.igsnrr.cas.cn/yw/lw/201402/P020140218385403239278.pdf

    Wei B G, Li Y H, Li H R, et al. Rare earth elements in human hair from a mining area of China[J]. Ecotoxicology and Environmental Safety, 2013, 96: 118-123. doi: 10.1016/j.ecoenv.2013.05.031

    梁青青, 阴海静, 郝金奇, 等. 白云鄂博矿区小学生尿中稀土元素镧铈钕水平的调查[J]. 环境与健康杂志, 2014, 31(11): 1003-1004. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201411020.htm

    Liang Q Q, Yin H J, Hao J Q, et al. Investigation of rare earth elements lanthanum, cerium and neodymium level in urine of pupils from Bayan Obo mining area[J]. Journal of Environment and Health, 2014, 31(11): 1003-1004. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201411020.htm

    Hao Z, Li Y, Li H, et al. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: A pilot study[J]. Chemosphere, 2015, 128: 161-170. doi: 10.1016/j.chemosphere.2015.01.057

    Gafur N A, Sakakibara M, Sano S, et al. A case study of heavy metal pollution in water of Bone River by artisanal small-scale gold mine activities in eastern part of Gorontalo, Indonesia[J]. Water, 2018, doi: 10.3390/w10111507.

    王爱云, 李以科, 李瑞萍, 等. 内蒙古白云鄂博稀土资源开发利用生态环境影响成本分析[J]. 地球学报, 2017, 38(1): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201701014.htm

    Wang A Y, Li Y K, Li R P, et al. Environmental cost analysis of the development and utilization of the Bayan Obo rare earth resources, Inner Mongolia[J]. Acta Geoscientica Sinica, 2017, 38(1): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201701014.htm

    高志强, 周启星. 稀土矿露天开采过程的污染及对资源和生态环境的影响[J]. 生态学杂志, 2011, 30(12): 2915-2922. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201112039.htm

    Gao Z Q, Zhou Q X. Contamination from rare earth ore strip mining and its impacts on resources and eco-environment[J]. Chinese Journal of Ecology, 2011, 30(12): 2915-2922. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201112039.htm

    王国珍. 对稀土冶炼"三废"及放射性污染治理的建议[J]. 四川稀土, 2007(3): 2-5.

    Wang G Z. Suggestions on "three types of wastes" of rare earth smelting and radioactive pollution control[J]. Sichuan Rare Earth, 2007(3): 2-5.

    关海波, 李金霞, 牟艳军, 等. 白云鄂博矿区外围土壤稀土元素累积空间分异[J/OL]. 稀土, 2021. https://doi.org/10.16533/J.CNKI.15-1099/TF.20210041.

    Guan H B, Li J X, Mu Y J, et al. Spatial heterogeneity of rare earth elements accumulation in the soil surrounding Bayan Obo mining area[J/OL]. Chinese Rare Earths, 2021. https://doi.org/10.16533/J.CNKI.15-1099/TF.20210041.

    王哲, 周铜, 赵莹晨, 等. 内蒙古白云鄂博矿区优势植物重金属和稀土元素富集特征[J/OL]. 中国稀土学报: 1-13[2021-07-04]. http://kns.cnki.net/kcms/detail/11.2365.TG.20210615.1007.002.html.

    Wang Z, Zhou T, Zhao Y C, et al. Enrichment characteristics of heavy metals and rare earth elements in dominant plants in Bayan Obo mining area of Inner Mongolia[J/OL]. Journal of the Chinese Society of Rare Earths: 1-13[2021-07-04]. http://kns.cnki.net/kcms/detail/11.2365.TG.20210615.1007.002.html.

    杨占峰, 柳建勇. 白云鄂博稀土矿床探矿的必要性与可行性探讨[J]. 稀土, 2007, 28(6): 84-87. doi: 10.3969/j.issn.1004-0277.2007.06.020

    Yang Z F, Liu J Y. Necessity and feasibility of Baiyunebo rare earth deposit prospecting[J]. Chinese Rare Earths, 2007, 28(6): 84-87. doi: 10.3969/j.issn.1004-0277.2007.06.020

    柳建勇, 苏胜旺, 张台荣, 等. 白云鄂博矿床东矿段深部及白云向斜核部探矿的可行性探讨[J]. 地质论评, 2006, 52(6): 821-825. doi: 10.3321/j.issn:0371-5736.2006.06.015

    Liu J Y, Su S W, Zhang T R, et al. A discussion on the practicability of prospecting in the deep part of the east mine and kernel part of the Bayan syncline, Bayan Obo ore field[J]. Geological Review, 2006, 52(6): 821-825. doi: 10.3321/j.issn:0371-5736.2006.06.015

    程建忠, 侯运炳, 车丽萍. 白云鄂博矿床稀土资源的合理开发及综合利用[J]. 稀土, 2007, 28(1): 70-74. doi: 10.3969/j.issn.1004-0277.2007.01.019

    Cheng J Z, Hou Y B, Che L P. Making rational multipurpose use of resources of REE in Baiyunebo deposit[J]. Chinese Rare Earths, 2007, 28(1): 70-74. doi: 10.3969/j.issn.1004-0277.2007.01.019

    程建忠, 车丽萍. 中国稀土资源开采现状及发展趋势[J]. 稀土, 2010, 31(2): 65-69, 85. doi: 10.3969/j.issn.1004-0277.2010.02.015

    Cheng J Z, Che L P. Current mining situation and potential development of rare earth in China[J]. Chinese Rare Earths, 2010, 31(2): 65-69, 85. doi: 10.3969/j.issn.1004-0277.2010.02.015

    柯昌辉, 孙盛, 赵永岗, 等. 内蒙古白云鄂博超大型REE-Nb-Fe矿床控矿构造特征及深部找矿方向[J]. 地质通报, 2021, 40(1): 95-109.

    Ke C H, Sun S, Zhao Y G, et al. Ore-controlling structure and deep prospecting of the Bayan Obo large-sized REE-Nb-Fe ore deposit Inner Mongolia[J]. Geological Bulletin of China, 2021, 40(1): 95-109.

    李强, 杨占峰. 白云鄂博主矿各矿石类型稀土配分特征研究[J/OL]. 稀土: 1-9[2021-07-04]. https://doi.org/10.16533/J.CNKI.15-1099/TF.20210042.

    Li Q, Yang Z F. Study on REE distribution characteristics of different ore types in Baiyunobo main orebody[J/OL]. Chinese Rare Earths: 1-9[2021-07-04]. https://doi.org/10.16533/J.CNKI.15-1099/TF.20210042.

    金海龙, 候少春, 魏威, 等. 白云鄂博东矿体深部不同类型矿石的地球化学特征研究[J/OL]. 稀土: 1-9[2021-07-04]. https://doi.org/10.16533/J.CNKI.15-1099/TF.20210033.

    Jin H L, Hou S C, Wei W, et al. Geochemistry characteristics of various types of ores at depth of east orebody in Bayan Obo[J]. Chinese Rare Earths: 1-9[2021-07-04] https://doi.org/10.16533/J.CNKI.15-1099/TF.20210033.

    苗莉, 徐瑞松, 徐金鸿. 粤西地区土壤-植物系统中稀土元素地球化学特征[J]. 土壤学报, 2007, 44(1): 54-62. doi: 10.3321/j.issn:0564-3929.2007.01.009

    Miao L, Xu R S, Xu J H. Geochemical characteristics of rare earth elements (REEs) in the soil-plant system in west Guangdong Province[J]. Acta Pedologica Sinica, 2007, 44(1): 54-62. doi: 10.3321/j.issn:0564-3929.2007.01.009

    汪振立, 魏正贵, 陶冶, 等. 岩石-土壤-铁芒萁系统中稀土元素的分布、迁移和累积[J]. 地质通报, 2002, 21(12): 881-889. doi: 10.3969/j.issn.1671-2552.2002.12.012

    Wang Z L, Wei Z G, Tao Y, et al. Distribution, migration and accumulation of rare earth elements (REE) in the rock-soil-dicranopteris dichotoma (R-S-D) system[J]. Geological Bulletin of China, 2002, 21(12): 881-889. doi: 10.3969/j.issn.1671-2552.2002.12.012

    张臻悦, 何正艳, 徐志高, 等. 中国稀土矿稀土配分特征[J]. 稀土, 2016, 37(1): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201601022.htm

    Zhang Z Y, He Z Y, Xu Z G, et al. Rare earth partitioning characteristics of China rare earth ore[J]. Chinese Rare Earths, 2016, 37(1): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201601022.htm

  • 期刊类型引用(6)

    1. 卢碧翠,张修华,王智青,张红进,刘丽立,潘晓瑜,杨明生,黄中伟,陈奇志. 提高电解二氧化锰中间控制磨粉样铁含量检测效率的研究. 中国锰业. 2024(03): 60-63 . 百度学术
    2. 杨精存,丁杭冰,施亚菁. 磁性固相萃取-电感耦合等离子体质谱(ICP-MS)法同时检测制革废水多种重金属元素. 皮革与化工. 2024(05): 20-25 . 百度学术
    3. 冯先进,杨斐. 电感耦合等离子体串联质谱技术特点及国内应用现状. 冶金分析. 2023(09): 1-13 . 百度学术
    4. 严煜,韩乃旭,卢水淼,夏晓峰,林黎,张秀丽. 工业在线-电感耦合等离子体发射光谱法分析湿法冶炼硫酸锌溶液中铜镉钴铁. 岩矿测试. 2022(01): 153-159 . 本站查看
    5. 王干珍,彭君,李力,秦毅,曹健,田宗平. 锰矿石成分分析标准物质研制. 岩矿测试. 2022(02): 314-323 . 本站查看
    6. 王凯凯. 等离子质谱在水环境重金属检测中的应用. 冶金管理. 2021(11): 163-164 . 百度学术

    其他类型引用(0)

图(6)  /  表(2)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  443
  • PDF下载量:  47
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-02-20
  • 修回日期:  2021-06-29
  • 录用日期:  2021-07-27
  • 发布日期:  2021-11-27

目录

/

返回文章
返回