• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

页岩纳米有机孔结构表征技术研究进展

陈维堃, 腾格尔, 张春贺, 方镕慧, 张聪, 白名岗, 王梓, 夏响华

陈维堃, 腾格尔, 张春贺, 方镕慧, 张聪, 白名岗, 王梓, 夏响华. 页岩纳米有机孔结构表征技术研究进展[J]. 岩矿测试, 2022, 41(6): 906-919. DOI: 10.15898/j.cnki.11-2131/td.202111170175
引用本文: 陈维堃, 腾格尔, 张春贺, 方镕慧, 张聪, 白名岗, 王梓, 夏响华. 页岩纳米有机孔结构表征技术研究进展[J]. 岩矿测试, 2022, 41(6): 906-919. DOI: 10.15898/j.cnki.11-2131/td.202111170175
CHEN Weikun, Tenger, ZHANG Chunhe, FANG Ronghui, ZHANG Cong, BAI Minggang, WANG Zi, XIA Xianghua. A Review of Research Progress on Characterization Technology of Nano Organic Pore Structure in Shale[J]. Rock and Mineral Analysis, 2022, 41(6): 906-919. DOI: 10.15898/j.cnki.11-2131/td.202111170175
Citation: CHEN Weikun, Tenger, ZHANG Chunhe, FANG Ronghui, ZHANG Cong, BAI Minggang, WANG Zi, XIA Xianghua. A Review of Research Progress on Characterization Technology of Nano Organic Pore Structure in Shale[J]. Rock and Mineral Analysis, 2022, 41(6): 906-919. DOI: 10.15898/j.cnki.11-2131/td.202111170175

页岩纳米有机孔结构表征技术研究进展

基金项目: 

国家自然科学基金项目“FIB-TEM-ASM原位研究页岩有机质结构演化与成孔机制” 42172171

详细信息
    作者简介:

    陈维堃,硕士,助理工程师,主要从事沉积储层方面的实验分析和研究工作。E-mail: 1059687070@qq.com

    通讯作者:

    腾格尔,博士,研究员,主要从事地球化学与石油地质综合研究和实验地质研究。E-mail: tenggeer@mail.cgs.gov.cn

  • 中图分类号: O657.31

A Review of Research Progress on Characterization Technology of Nano Organic Pore Structure in Shale

  • 摘要:

    页岩气开发利用已成为保障国家能源安全和实现全球碳中和目标的重要路径。页岩气储层是页岩气勘探开发的直接目的层,是以有机孔为主的纳米孔隙系统,具有源储一体、低孔低渗和非达西流动等特性,对其评价需要突破传统的无机孔隙评价思路的束缚和纳米尺度表征技术的瓶颈,采用更高精度、高分辨率的实验技术表征纳米孔隙并刻画有机孔,已成为页岩气储层研究和实验技术攻关的焦点。有机孔于2009年在北美Barnett页岩中首次发现以来,对其表征技术和发育特征研究进展显著:①建立了多尺度多类型的纳米孔隙表征技术,其中以压汞-吸附联合测定法和脉冲衰减法为主的微观结构定量表征技术,可准确获得孔径为0.35~10000nm、渗透率<1μD范围内页岩物性和全孔径分布的定量参数;以场发射扫描电镜和显微计算机断层扫描(CT)技术为主的高分辨率显微镜扫描则形成了纳米孔隙的多尺度结构重构技术,可提供二维-三维图像信息;②有机孔的形成演化受有机质类型和成岩演化等诸多因素协同控制,揭示各影响因素间的内在联系及有机质分子结构的物理演化规律是查明页岩储层非均质性的关键,初步认为有机孔形成与保持的实质在于成烃过程中分解与缩合反应竞争的空间效应;③前人建立了一系列干酪根和沥青结构模型,为分子层面上研究有机孔成因机制和演化规律提供了理论基础,透射电镜、原子力显微镜能够立体观测分子空间排列和微观结构内部形态,从纳米尺度上认识有机孔形成与保存机制成为可能;④原位结构成像与成分扫描技术联用,储层描述、成分分析与数字岩心融合,向结构与成分、孔渗性与脆延性一体化动态评价发展,实现微观结构分析到宏观大数据预测的跨越,以满足页岩气地质-工程一体化高效勘探开发的需要。

    要点

    (1) 十年来随着纳米尺度物性定量分析与结构成像技术的发展,实现了页岩纳米孔隙表征和有机孔精细刻画。

    (2) 页岩储层非均质性主控因素是页岩气储层评价面临的重要挑战。

    (3) 多类型多尺度实验技术联用及数据融合是实现页岩储层物性-结构-成分一体化定量表征、动态评价与智能预测的重要途径。

    HIGHLIGHTS

    (1) In the past decade, with the development of nanoscale physical quantitative property analysis and structural imaging technology, shale nanopore characterization and fine characterization of organic pores have been realized.

    (2) The main controlling factor of the heterogeneity in shale reservoir is the important challenge of shale reservoir evaluation.

    (3) Multi-type and multi-scale experimental technology combination and data integration are important ways to realize the quantitative characterization, dynamic evaluation and intelligent prediction of shale reservoir properties, structure and component.

  • 多环芳烃(PAHs)是一种自然界中广泛分布的半挥发性有机污染物,该类化合物由两个及以上的苯环结构组成,其主要来源是化石燃料的不完全燃烧[1]。该类污染物对动物体具有较大的致癌、致畸、致突变的危害,其中致癌性最大的是4~6环的稠环PAHs[2]。该类化合物在环境中分布广泛,但由于环境基体复杂且其含量较低,很难直接、快速地对样品中PAHs进行分析[3-4],常常需要结合样品前处理技术进行富集。常规的样品前处理方法,如索氏提取、加速溶剂提取、液液萃取等方式耗时长,且使用大量有机溶剂,容易对环境造成二次污染,因此有必要建立一种样品前处理过程高效绿色、分析检测快速灵敏的新方法。

    固相微萃取(SPME)是一种集分离、富集、进样于一体的样品前处理技术[5-6],在操作过程中避免了大量有机试剂的使用,在保证绿色环保的基础上具有提高目标物富集效率[7-10]的优点。已有很多研究者将SPME技术应用于PAHs的检测中并取得了较好的萃取效果[4, 11]。对于SPME技术而言,涂层的性能是制约萃取效率和目标分析物种类的关键因素[12-14],是目前SPME技术研究的热点问题。金属有机骨架化合物(MOFs)是一类独特的多孔材料[15-16],其永久性纳米孔隙率、高比表面积、均匀且可调节的孔径、易于功能化和表面改性[17]的特点,使MOFs材料在分离、气体储存、分子传感、富集和催化等方面具有广阔的应用前景[18-22]。然而,包括MOF-5和HKUST-1在内的MOFs材料在水溶液中稳定性较差,一定程度上了限制了它的实际应用。研究得到MIL-53(M=Al,Cr,Fe)是一种常见的金属骨架有机化合物,其中心金属离子可以是三价铁、铝或铬离子,配体为对苯二甲酸,是一类合成简便、性能优良、化学稳定性较好的MOFs材料,且在吸附水时其孔隙率没有明显变化[23]。Chen等[24]采用中性硅酮胶黏接法制备了MIL-53(Al,Cr,Fe)SPME涂层纤维,进行了浸入式萃取研究,并结合GC-MS/MS检测,结果显示三种MIL-53(M)涂层对PAHs都具有较好的萃取效率。该研究结果表明,该类水稳定性MOFs材料的SPME涂层对水样中芳香族化合物的富集和检测具有很好的应用前景,特别是对于浸入式萃取模式下萃取环境水样中难挥发的PAHs类物质具有较大的优势。传统的MOFs涂层制作方式,如水热原位沉积法、溶胶-凝胶法(sol-gel)、黏合固定法等往往存在步骤复杂、涂层机械强度较差等不足[21, 25-26]

    本研究在MOFs材料优良的吸附性能以及较好的水稳定性的基础上,采用金属基质材料原位自转化的方式[27],在铁丝基质上直接生长MOFs涂层,该过程使得金属丝不仅作为支撑吸附剂的基质材料,而且还作为铁源参与MOFs材料的形成,不需要再添加金属盐,一定程度上节约了成本,避免重金属离子对环境的二次污染。将该涂层应用于环境水体中PAHs的萃取,并结合GC-MS进行检测,建立了环境水样中7种PAHs的SPME检测方法,以期为高效SPME涂层的简单、快速制备提供新思路。

    铁丝(直径为0.2mm,纯度99.9%,赛维精密金属材料有限公司)。

    苯并(a)蒽(BaA,99.8%);䓛(CHR,99.8%);苯并(b)荧蒽(BbF,99.7%);苯并(k)荧蒽(BKF,100%);苯并(a)芘(BaP,99.8%);茚苯(1, 2, 3-cd)芘(IPY,98.8%);二苯并(a, n)蒽(DBA,98.3%);苯并(ghi)芘(二萘嵌苯)(BPE,98.4%,美国AccuStandard公司);100μm PDMS聚二甲基硅氧烷涂层(美国Supelco公司)。

    对苯二甲酸(H2BDC,98%)、六水氯化铁(FeCl3·6H2O,麦克林生化科技有限公司);三乙胺(TEA,国药集团);超纯水;N, N-二甲基甲酰胺(DMF,国药集团);乙醇(国药集团)。丙酮(美国Tedia公司);甲醇(美国Tedia公司)。

    上述试剂除丙酮和甲醇为色谱纯,其余试剂为分析纯。

    气相色谱-质谱仪(GCMS-QP2010plus,日本岛津公司)。该仪器测试PAHs条件:载气为高纯氦(99.999%);色谱柱为Rtx-1MS(30m×0.25mm×0.25μm);流量1.2mL/min,不分流进样;进样口260℃;离子源温度250℃;接口温度260℃;升温程序:初始温度50℃,保持2min,以20℃/min升至230℃,再以2.5℃/min升至250℃,保持2min。检测方式特征离子扫描(SIM)。

    X射线粉晶衍射仪(D8-FOCUS,德国布鲁克科技有限公司);傅里叶变换红外光谱仪(Nicolet 6700,美国ThermoFisher公司);高分辨率场发射扫描电子显微镜(SU8010,日本日立公司);全自动进样装置(MPS,德国Gerstel科技有限公司)。

    将直径为0.2mm的铁丝截为3cm的一段,置于10mol/L盐酸中反应15min,待反应至合适尺寸后取出铁丝,随后将其依次置于丙酮、甲醇、超纯水的条件下超声处理30min,取出铁丝于65℃烘箱中干燥12h备用。取0.65g对苯二甲酸溶于50mL N, N-二甲基甲酰胺中,加入5mL三乙胺,室温下搅拌15min;将反应液置于100mL高压反应釜中,将处理好的铁丝放入反应液中,并将密封好的高压反应釜置于180℃的条件下反应12h。将制作好的涂层置于100℃的真空烘箱中12h。将自制涂层在GC进样口280℃老化2h用以去除多余的溶剂。

    将810mg六水氯化铁和498mg对苯二甲酸溶于15mL N, N-二甲基甲酰胺中,常温搅拌10min,置于50mL反应釜中150℃保持6h,带溶液冷却至室温后,超纯水清洗,转移至600mL超纯水中分散24h后,过滤,60℃烘干24h[23, 28-29]

    将制好的样品溶液转移到MPS自动进样平台特定区域,由自动进样器控制自制涂层装置在设定的萃取温度、萃取时间的条件下完成对PAHs的萃取,接着萃取了目标物的涂层被转移到GC-MS的进样口进行解吸分析。

    样品一采自东湖(武汉);样品二采自长江(武汉)。采集时间均为同一天的上午8:00~10:00。将采集的环境水样放置在25℃的室温下静置1h后经0.45μm微孔滤膜过滤,将处理好的水样取10mL于20mL顶空瓶中并放置在4℃的条件下备用。

    自制IW@MIL涂层通过扫描电子显微镜进行表征(图 1)。图 1a为经盐酸蚀刻的铁丝,可以看出经盐酸处理后铁丝表面呈“鳞片状”,该表面形状与光滑的铁丝表面相比,可以增大铁丝表面与反应液的接触面积;图 1b为经过水热反应后铁丝表面的变化,一层均匀的“树皮褶皱”材料覆盖在铁丝表面,铁丝反应前后直径无明显变化,由161μm变为163μm,局部放大(图 1c)可以看出该层状物质是由小的片状颗粒堆积而成;图 1d为该涂层的截面图,从该图中可以得出涂层平均厚度为10μm;为保护涂层外侧的吸附材料,避免在浸入式萃取过程中脱落和污染,涂层外涂覆了一层薄薄的中性硅酮胶加以固定,如图 1e1f所示,通过与图 1b的对比,可以看出中性硅酮胶将吸附材料紧紧地包覆在胶层内部,其厚度约为15μm。

    图  1  自制IW@MIL-53(Fe)涂层扫描电子显微镜图像
    a—铁丝;b—涂层表面;c—涂层表面细节放大图;d—涂层横截面;e—胶层包裹的涂层表面;f—胶层包裹的涂层横截面。
    Figure  1.  SEM diagrams of self-made IW@MIL-53(Fe) coating

    从X射线衍射图谱(图 2a)可以看出,水热合成的MIL-53(Fe)与原位转化的材料在衍射峰的位置上对应良好,可以证明为同一种物质,表明铁丝上已原位转化出一层MIL-53(Fe)的薄膜。通过红外光谱图(图 2b)可以看出,红外光谱的所有振动带与水热合成的MIL-53(Fe)的数据吻合良好。红外光谱在近1645cm-1处表现出羧基的强烈伸缩振动,证明了对苯二甲酸中的—COOH基团与Fe金属离子成功结合。

    图  2  水热合成MIL-53(Fe)与原位转化涂层的对比:(a)X射线衍射谱图对比; (b)红外光谱谱图对比
    Figure  2.  Comparison between hydrothermal synthesis MIL-53(Fe) and self-made IW@MIL-53(Fe) coating: (a) X-ray diffraction diagrams; (b) infrared spectra

    SPME在萃取的过程温度可以促进待测物在基质中的扩散以及扩大待测物的分配系数,加快与涂层之间的分配平衡,从而缩短达到平衡所需的时间。但随着温度的升高,涂层本身萃取相的分配系数也会下降,导致涂层灵敏度的降低[30-32]。为获取最佳的萃取温度以发挥SPME涂层最佳的萃取性能,实验中在萃取时间为50min,解吸温度为280℃,解吸时间为4min的条件下对萃取温度进行优化。图 3a结果表明,随着温度的升高,涂层的萃取性能也随之增强,直到80℃达到最佳性能,随之性能略有下降。因此该自制涂层的最佳萃取温度为80℃。

    图  3  自制IW@MIL-53(Fe)涂层萃取条件的优化
    a—萃取温度;b—萃取时间;c—解吸时间;d—解吸温度。
    Figure  3.  Optimization of extraction performance self-made IW@MIL-53(Fe) coating

    由于SPME技术是建立在平衡吸附基础上的样品前处理技术,需要使待测组分与萃取相达到平衡状态时,才能够保证测试数据的准确性和萃取过程的重现性。为保证在最短的时间内完成有效的萃取过程,实验设置了自制涂层在萃取温度为80℃,解吸温度为280℃,解吸时间为4min的条件下分别萃取5、10、20、25、30、40、50、60min。图 3b结果表明,随着时间的增加,自制涂层在萃取50min后逐渐达到萃取平衡。因此选取的最佳萃取时间为50min。

    为确定一个最佳的解吸时间,实验在萃取温度为80℃,萃取时间为50min,解吸温度为280℃的条件下设置了1、2、3、4、5min五个解吸时间。图 3c结果表明,解吸4min后,涂层上的目标分析物已经解吸完全。因此该自制涂层的最佳解吸时间为4min。

    SPME进样的解吸温度需要稍高于直接进样的温度,温度越高,涂层上的物质解吸得越完全,但这也存在着目标分析物分解以及高温降低涂层使用寿命的问题,因此解吸时不宜使用过高的温度。为确定一个合适的解吸温度,实验在萃取温度为80℃,萃取时间为50min,解吸时间为4min的条件下设置了240℃、250℃、260℃、270℃、280℃、290℃六个解吸温度进行测试。图 3d结果表明,解吸温度在280℃的条件下,测试性能最佳。因此该自制涂层的最佳解吸温度为280℃。

    无机盐的加入一方面可以改变样品溶液中的相界面性质,进而影响组分之间的分配系数;另一方面,加入无机盐之后样品溶液的离子强度增强,产生盐析效应,降低了目标分析物在溶液中的溶解度,有利于涂层的萃取。为了确定加入无机盐的用量,实验设计了萃取温度为80℃,萃取时间为50min,解吸温度为280℃,解吸时间为4min,以饱和食盐水为盐溶液的最大浓度,将其稀释为0%、15%、30%、50%、65%、80%、100%的氯化钠溶液。图 4结果表明,在氯化钠浓度为50%的条件下萃取效率达到最佳。因此该自制涂层的最佳盐浓度为50%的饱和氯化钠溶液。

    图  4  萃取溶液离子强度的优化
    Figure  4.  Optimization of ion strength of extraction solution

    为了考察自制涂层的萃取性能,实验选取性能稳定的商用PDMS涂层为参照,以7种多环芳烃为目标分析物,在最优萃取条件下与商用100μm PDMS涂层萃取多环芳烃的性能进行了比较,对比结果如图 5a所示。实验结果表明,自制涂层的萃取性能略优于商用涂层1~2倍,表现出良好的萃取性能。同时比较了外涂的硅酮胶的吸附能力,得到IW@MIL-53(Fe)涂层的吸附性能主要是来自MIL-53(Fe)材料。

    图  5  自制IW@MIL-53(Fe)涂层与商用100μm PDMS的(a)萃取性能和(b)使用寿命对比
    优化的实验条件:萃取温度80℃,萃取时间50min,解吸温度280℃,解吸时间4min,盐浓度50%。
    Figure  5.  Comparison of (a) the extraction performance and (b) service life of self-made IW@MIL-53(Fe) coating with commercial 100μm PDMS

    为了测试涂层的使用次数,实验比较了涂层使用1次、60次、90次、120次萃取目标分析物的萃取性能,对比结果如图 5b所示。从图中可以看出,该涂层在使用120次之后萃取性能并没有明显下降,因此,该自制涂层具有较长的使用寿命,使用次数大于120次,显著优越于商用涂层的有效使用次数(< 80次)[33]。自制涂层良好的稳定性,是由于MIL-53(Fe)本身具有良好的水稳定性,此外外涂的硅酮胶也起到了很好的保护作用,避免了外层涂层材料的脱落,提高了涂层的重复使用次数。

    在最佳的实验条件下,考察了IW@MIL-53(Fe)涂层结合GC-MS测定7种多环芳烃的分析性能(表 1),得到该方法的检出限(LOD)为0.03~2.25ng/L,定量限(LOQ)为0.10~7.50ng/L,线性范围为250~10000ng/L,相关系数为0.9903~0.9991;同一根涂层测定结果的相对标准偏差(RSD,n=5)为3.1%~10.4%;不同根涂层测定结果的相对标准偏差(RSD,n=3)为3.0%~9.5%。

    表  1  IW@MIL-53(Fe)涂层SPME-GC-MS分析7种PAHs的分析性能
    Table  1.  Analysis performance of 7 kinds of PAHs by IW@MIL-53(Fe) coating with SPME-GC-MS
    分析物 线性范围(ng/L) R2 LOD (ng/L, S/N=3) LOQ (ng/L, S/N=10) RSD(%)
    涂层内(n=5) 涂层间(n=3)
    BaA 250~10000 0.9991 0.03 0.10 3.1 6.7
    CHR 250~10000 0.9922 0.13 0.43 6.2 3.0
    BbF 250~10000 0.9922 0.11 0.37 8.9 5.7
    BKF 250~10000 0.9903 0.26 0.87 5.2 5.5
    BaP 250~10000 0.9933 0.36 1.20 7.7 6.0
    IPY 250~10000 0.9962 1.50 5.00 10.4 9.5
    BPE 250~10000 0.9982 2.25 7.50 10.4 2.5
    下载: 导出CSV 
    | 显示表格

    按照1.3节的实验方法,采用自制IW@MIL-53(Fe)涂层结合GC-MS分析方法对东湖和长江的实际水样进行分析,目标分析物浓度低于检出限,结果未检出。对样品进行加标回收实验,得到该方法的回收率为80.1%~108.5%(表 2)。

    表  2  实际水样中PAHs分析结果
    Table  2.  Analytical results of PAHs in actual water samples
    分析物 东湖水样 长江水样
    浓度(ng/L) 加标浓度(ng/L) RSD (%, n=3) 回收率(%) 浓度(ng/L) 加标浓度(ng/L) RSD (%, n=3) 回收率(%)
    BaA ND 500 11.6 89.3 ND 500 3.5 80.1
    CHR ND 500 8.0 102.3 ND 500 7.0 92.5
    BbF ND 500 8.8 96.5 ND 500 10.6 84.6
    BKF ND 500 5.5 91.1 ND 500 6.4 89.5
    BaP ND 500 11.1 90.6 ND 500 9.6 83.0
    IPY ND 500 8.6 91.8 ND 500 5.1 108.5
    BPE ND 500 4.9 99.7 ND 500 14.4 91.8
    注:ND表示未检出。
    下载: 导出CSV 
    | 显示表格

    为了提高固相微萃取涂层的萃取效率和机械强度,本文通过原位自转化的方式在铁丝上生长出一层MIL-53(Fe)的MOFs膜,该方法在转化过程中,铁丝既作为涂层纤维的基质又可以为MIL-53(Fe)的生成提供铁离子,不需要向反应体系中额外添加金属盐。研究结果表明:采用金属基质原位自转化的方式制备固相微萃取涂层,具有涂层制备快速简便、环境友好、性质稳定等优点。

    将该新材料用作固相微萃取涂层,以7种PAHs作为目标分析物,以浸入式萃取的模式并结合GC-MS作为检测手段验证了其萃取性能,应用于长江及东湖水样中PAHs的测定,得到加标回收率为80.1%~108.5%。建立的SPME-GC-MS方法实现了有机污染物的快速、灵敏检测,显示出良好的应用前景。

  • 图  1   多尺度、多类型的页岩物性及微观结构实验分析技术系列

    Figure  1.   Multi-scale and multi-type experimental analysis technology series of shale physical properties and microstructure

    图  2   页岩孔隙结构的(a)FIB-SEM三维重构与(b)定量分析

    Figure  2.   (a) FIB-SEM 3D reconstruction and (b) quantitative analysisof shalepore structure

  • [1] 金之钧. 页岩革命及其意义[J]. 经济导刊, 2019(10): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDK201910012.htm

    Jin Z J. Shale revolution and its significance[J]. Economic Herald, 2019(10): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDK201910012.htm

    [2]

    Jarvie D M. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068

    [3] 马永生, 蔡勋育, 赵培荣, 等. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm

    Ma Y S, Cai X Y, Zhao P R, et al. China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm

    [4] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 31(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm

    Zou C N, Zhao Q, Cong L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm

    [5]

    Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79: 848-861. doi: 10.2110/jsr.2009.092

    [6]

    Ambrose R J, Hartman R C, Diaz-Campos M, et al. New pore-scale considerations for shale gas in place calculations[C]//Proceedings of Unconventional Gas Conference. Pittsburgh, Pennsylvania: Society of Petroleum Engineers, 2010.

    [7]

    Milner M, Mclin R, Petriello J, et al. Imaging texture and porosity in mudstones and shales: Comparison of secondary and ionmilled backscatter SEM methods[C]//Proceedings of Canadian Unconventional Resources & Intemational Petroleum Conference. Alberta: Society of Petroleum Engineers, 2010.

    [8] 徐旭辉, 申宝剑, 李志明, 等. 页岩气实验地质评价技术研究现状及展望[J]. 油气藏评价与开发, 2020, 10(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001002.htm

    Xu X H, Shen B J, Li Z M, et al. Status and prospect of experimental technologies of geological evaluation for shale gas[J]. Reservoir Evaluation and Development, 2020, 10(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001002.htm

    [9] 王红岩, 周尚文, 刘德勋, 等. 页岩气地质评价关键实验技术的进展与展望[J]. 天然气工业, 2020, 40(6): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006001.htm

    Wang H Y, Zhou S W, Liu D X, et al. Progress and prospect of key experimental technologies for shale gas geological evaluation[J]. Natural Gas Industry, 2020, 40 (6): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006001.htm

    [10]

    Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061

    [11]

    Zhang W T, Hu W X, Borjigin T, et al. Pore charac-teristics of different organic matter in black shale: A case study of the Wufeng—Longmaxi Formation in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 33-43. doi: 10.1016/j.marpetgeo.2019.08.010

    [12] 马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm

    Ma X H, Xie J, Yong R, et al. Geological characteristics and high production control factors of shale gas in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm

    [13]

    Curis M E, Cardott B J, Sondergeld C H, et al. Devel-opment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. doi: 10.1016/j.coal.2012.08.004

    [14] 腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm

    Tenger, Lu L F, Yu L J, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48 (4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm

    [15] 姜振学, 李鑫, 王幸蒙, 等. 中国南方典型页岩孔隙特征差异及其控制因素[J]. 石油与天然气地质, 2021, 42(1): 41-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101005.htm

    Jiang Z X, Li X, Wang X M, et al. Characteristic differences and controlling factors of pores in typical South China shale[J]. Oil & Gas Geology, 2021, 42(1): 41-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101005.htm

    [16] 魏志红. 富有机质页岩有机质孔发育差异性探讨——以四川盆地五峰组—龙马溪组笔石页岩为例[J]. 成都理工大学学报(自然科学版), 2015, 42(3): 361-365. doi: 10.3969/j.issn.1671-9727.2015.03.13

    Wei Z H. Difference of organic pores in organic matter: A cace from graptolite shales of Wufeng—Longmaxi Formation in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(3): 361-365. doi: 10.3969/j.issn.1671-9727.2015.03.13

    [17] 宋岩, 高凤琳, 唐相路, 等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报, 2020, 41(21): 1501-1512. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012005.htm

    Song Y, Gao F L, Tang X L, et al. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J]. Acat Petrolei Sinica, 2020, 41(21): 1501-1512. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012005.htm

    [18] 何治亮, 聂海宽, 胡东风, 等. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm

    He Z L, Nie H K, Hu D F, et al. Geological problems hindering effective development of deep shale gas: Taking Upper Ordovician Wufeng—Lower Silurian Longmaxi Formations in Sichuan Basin and its periphery as an example[J]. Acta Petrolei Sinica, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm

    [19] 田华, 柳少波, 洪峰, 等. 关于页岩孔隙度与渗透率测定国家标准(GB/T 34533—2017)的思考与建议[J]. 中国标准化, 2018, 12(增刊): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBZ2018S1007.htm

    Tian H, Liu S B, Hong F, et al. Consideration and suggestion on shale porosity and permeability measurement standard (GB/T 34533—2017)[J]. China Standardization, 2018, 12(Supplement): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBZ2018S1007.htm

    [20] 陈思宇, 田华, 柳少波, 等. 致密储层样品体积测量对孔隙度误差的影响[J]. 石油实验地质, 2016, 38(6): 850-856. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606021.htm

    Chen S Y, Tian H, Liu S B, et al. Influence of bulk volume measurement on porosity error in tight reservoir core plug analysis[J]. Petroleum Geology & Experiment, 2016, 38(6): 850-856. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606021.htm

    [21]

    Sun W J B, Zuo Y J, Wu Z H, et al. Fractal analysis of pores and the pore structure of the Lower Cambrian Niutitang shale in northern Guizhou Province: Investigations using NMR, SEM and image analyses[J]. Marine and Petroleum Geology, 2019, 99: 416-428. doi: 10.1016/j.marpetgeo.2018.10.042

    [22] 孙中良, 李志明, 申宝剑, 等. 核磁共振技术在页岩油气储层评价中的应用[J/OL]. 石油实验地质, 2022(5): 930-940.

    Sun Z L, Li Z M, Shen B J, et al. NMR technology in reservoir evaluation for shale oil and shale gas[J/OL]. Petroleum Geology & Experiment, 2022(5): 930-940.

    [23]

    Jones S C. A technique for faster pulse-decay permea-bility measurements in tight rocks[J]. SPE Formation Evaluation, 1997, 12(1): 19-25. doi: 10.2118/28450-PA

    [24]

    Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. doi: 10.1306/04011312194

    [25] 俞凌杰, 范明. 中国石化无锡石油地质研究所实验地质技术之脉冲衰减法超低渗透率测试技术[J]. 石油实验地质, 2015, 37(3): 264. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201503001.htm

    Yu L J, Fan M. Pulse attenuation method for ultra low permeability testing technology of experimental geology technology of Sinopec Wuxi Petroleum Geology Institute[J]. Petroleum Geology & Experiment, 2015, 37(3): 264. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201503001.htm

    [26] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm

    Tenger, Shen B J, Yu L J, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng—Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm

    [27] 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702002.htm

    Wei X F, Li Y P, Wei Z H, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702002.htm

    [28] 田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203011.htm

    Tian H, Zhang S C, Liu S B, et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption method[J]. Acta Petrolei Sinica, 2012, 33(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203011.htm

    [29] 马真乾, 王英滨, 于炳松. 渝东南地区下寒武统牛蹄塘组页岩孔径分布测试方法研究[J]. 岩矿测试, 2018, 37(3): 244-255. doi: 10.15898/j.cnki.11-2131/td.201801090003

    Ma Z Q, Wang Y B, Yu B S. Study on analytical method for pore size distribution of the Lower Cambrian Niutitang Formation shale in southeastern Chongqing[J]. Rock and Mineral Analysis, 2018, 37(3): 244-255. doi: 10.15898/j.cnki.11-2131/td.201801090003

    [30] 马勇, 钟宁宁, 程礼军, 等. 渝东南两套富有机质页岩的孔隙结构特征——来自FIB-SEM的新启示[J]. 石油实验地质, 2015, 37 (1): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201501019.htm

    Ma Y, Zhong N N, Cheng L J, et al. Pore structure of two organic-rich shales in southeastern Chongqing area: Insight from focused ion beam scanning electron microscope (FIB-SEM)[J]. Petroleum Geology & Experiment, 2015, 37(1): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201501019.htm

    [31] 白名岗, 夏响华, 张聪, 等. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J]. 岩矿测试, 2018, 37(3): 225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

    Bai M G, Xia X H, Zhang C, et al. Study on shale organic porosity in the Longmaxi Formation, AnYe-1 well using field emission-scanning electron microscopy and PerGeos system[J]. Rock and Mineral Analysis, 2018, 37(3): 225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

    [32] 戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

    Qi M H, Li J J, Cao Q. The pore structure characterization of shale based on scanning electron microscopy and JMicroVision[J]. Rock and Mineral Analysis, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

    [33]

    Wang P F, Jiang Z X, Chen L, et al. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-computerized tomography and gas adsorption analysis[J]. Marine and Petroleum Geology, 2016, 77: 1323-1337.

    [34] 王羽, 汪丽华, 王建强, 等. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构[J]. 岩矿测试, 2018, 37(3): 235-243. doi: 10.15898/j.cnki.11-2131/td.201612210188

    Wang Y, Wang L H, Wang J Q, et al. Three-dimension characterization of organic matter pore structures of shale using focused ion beam-scanning electron microscope[J]. Rock and Mineral Analysis, 2018, 37(3): 235-243. doi: 10.15898/j.cnki.11-2131/td.201612210188

    [35] 苟启洋, 徐尚, 郝芳, 等. 纳米CT页岩孔隙结构表征方法研究——以JY-1井为例[J]. 石油学报, 2018, 39(11): 1253-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201811005.htm

    Gou Q Y, Xu S, Hao F, et al. CharacterIzation method of shale pore structure based on nano-CT: A case study of Well JY-1[J]. Acta Petrolei Sinica, 2018, 39 (11): 1253-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201811005.htm

    [36] 李磊, 郝景宇, 肖继林, 等. 微米级X射线断层成像技术对四川元坝地区页岩微裂缝的定量表征[J]. 岩矿测试, 2020, 39(3): 362-372. doi: 10.15898/j.cnki.11-2131/td.202001150011

    Li L, Hao J Y, Xiao J L, et al. Quantitative characterization of chale micro-fracture in the Yuanba area of the Sichuan Basin by micro X-ray tomography[J]. Rock and Mineral Analysis, 2020, 39(3): 362-372. doi: 10.15898/j.cnki.11-2131/td.202001150011

    [37] 王羽, 汪丽华, 王建强, 等. 利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征[J]. 岩矿测试, 2020, 39(4): 566-577. doi: 10.15898/j.cnki.11-2131/td.202003110030

    Wang Y, Wang L H, Wang J Q, et al. Investigation on pore structures of Yanchang Formation shale using micro X-ray microscopy[J]. Rock and Mineral Analysis, 2020, 39(4): 566-577. doi: 10.15898/j.cnki.11-2131/td.202003110030

    [38] 朱如凯, 金旭, 王晓琦, 等. 复杂储层多尺度数字岩石评价[J]. 地球科学, 2018, 43(5): 1773-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201805038.htm

    Zhu R K, Jin X, Wang X Q, et al. Multi-scale digital rock evaluation on complex reservoir[J]. Earth Science, 2018, 43(5): 1773-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201805038.htm

    [39] 宋土顺, 李轩, 张颖, 等. QEMSCAN矿物定量分析技术在成岩作用研究中的运用: 以扶余油层致密砂岩为例[J]. 地质科技情报, 2016, 35(3): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603025.htm

    Song T S, Li X, Zhang Y, et al. QEMSCAN mineral quantitative anlysis of tight sandstone diagenesis in Fuyu oil layer, Daqing placanticline[J]. Geological Science and Technology Information, 2016, 35(3): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603025.htm

    [40] 马晓潇, 黎茂稳, 庞雄奇, 等. 手持式X荧光光谱仪在济阳坳陷古近系陆相页岩岩心分析中的应用[J]. 石油实验地质, 2016, 38(2): 278-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201602021.htm

    Ma X X, Li M W, Pang X Q, et al. Application of hand-held X-ray fluorescence spectrometry in the core analysis of Paleogene lacustrine shales in the Jiyang Depression[J]. Petroleum Geology & Experiment, 2016, 38(2): 278-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201602021.htm

    [41] 陈康, 纪广轩, 朱有峰, 等. 基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征[J]. 岩矿测试, 2020, 39(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202005060005

    Chen K, Ji G X, Zhu Y F, et al. Study on alteration characteristics of the Chengmenshan Tielukan copper deposit by a hyperspectral core scanning system[J]. Rock and Mineral Analysis, 2020, 39(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202005060005

    [42]

    Lu X C, Li F C, Watson A T. Adsorption measurements in Devonian shales[J]. Fuel, 1995, 74(4): 599-603.

    [43]

    Hickey J J, Hen K B. Lithofacies summary of the Mississippian Barnett shale, mitchell 2 SIMS well T P, Wise Country, Texas[J]. AAPG Bulletin, 2007, 91(4): 437-443.

    [44] 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm

    Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27 (6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm

    [45] 琚宜文, 黄骋, 孙岩, 等. 纳米地球科学: 内涵与意义[J]. 地球科学, 2018, 43(5): 1367-1383. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201805002.htm

    Ju Y W, Huang P, Sun Y, et al. Nanogeoscience: Connotation and significance[J]. Earth Science, 2018, 43(5): 1367-1383. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201805002.htm

    [46] 邹才能, 杨智, 陶士振, 等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发, 2012, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm

    Zou C N, Yang Z, Tao S Z, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm

    [47] 卢双舫, 张亚念, 李俊乾, 等. 纳米技术在非常规油气勘探开发中的应用[J]. 矿物岩石地球化学通报, 2016, 35(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201601008.htm

    Lu S F, Zhang Y N, Li J Q, et al. Nanotechnology and its application in the exploration and development of unconventional oil and gas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201601008.htm

    [48]

    Brydson R, Brown A, Benning L G, et al. Analytical transmission electron microscopy[J]//Henderson G S, Neuville D R, Downs R T. Spectroscopic methods in mineralogy and materials sciences[J]. Reviews in Mineralogy & Geochemistry, 2014, 78: 219-269.

    [49] 李金华, 潘永信. 透射电子显微镜在地球科学研究中的应用[J]. 中国科学: 地球科学, 2015, 45(9): 1359-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509010.htm

    Li J H, Pan Y X. Applications of transmission electron microscopy in the Earth sciences[J]. Scientia Sinica Terrae, 2015, 45(9): 1359-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509010.htm

    [50] 傅家谟, 秦匡宗. 干酪根地球化学[M]. 广州: 广州科技出版社, 1995: 375-441.

    Fu J M, Qin K Z. Kerogen geochemistry[M]. Guangzhou: Guangzhou Science and Technology Press, 1995: 375-441.

    [51] 王飞宇, 傅家谟, 刘德汉, 等. 煤和烃源岩镜质体中超微类脂体检出及意义[J]. 科学通报, 1993, 38(2): 151-154. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199302016.htm

    Wang F Y, Fu J M, Liu D H, et al. Detection and significance of ultramicro liposomes in vitrinite of coal and source rock[J]. Chinese Science Bulletin, 1993, 38(2): 151-154. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199302016.htm

    [52]

    Sharma A, Kyotani T, Tomita A. Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy[J]. Energy & Fuels, 2000, 14(6): 1219-1225. http://www.onacademic.com/detail/journal_1000035826446310_b3a9.html

    [53]

    Burlingame A L, Haug P A, Schnoes H K, et al. Fatty acids derived from the Green River Formation oil shale by extractions and oxidations—A review[C]//Schenck P A, Havenaar I. Advances in organic geochemistry. Oxford: Pergamon Press, 1969: 85-129.

    [54]

    Behar F, Vandenbroucke M. Chemical modeling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24.

    [55]

    Largeau C, Derenne S, Casadevall E, et al. Occurrence and origin of ultralaminar structures in amorphous kerogens of various source rocks and oil shales[J]. Organic Geochemistry, 1990, 16(4/6): 889-895.

    [56] 于冰, 曹庆英, 张井, 等. 干酪根类型划分及评价的TEM新技术[J]. 电子显微学报, 1993(2): 184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV199302074.htm

    Yu B, Cao Q Y, Zhang J, et al. New TEM technology for classification and evaluation of kerogen types[J]. Journal of Chinese Electron Microscopy Society, 1993(2): 184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV199302074.htm

    [57]

    Benitez J J, Matas A J, Heredia A. Molecular characteri-zation of the plant biopolyester cutin by AFM and spectroscopic techniques[J]. Journal of Structural Biology, 2004, 147: 179-184.

    [58] 姚素平, 焦堃, 张科, 等. 煤纳米孔隙结构的原子力显微镜研究[J]. 科学通报, 2011, 56(22): 1820-1827. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201122011.htm

    Yao S P, Jiao K, Zhang K, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(22): 1820-1827. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201122011.htm

    [59] 杨起, 潘治贵, 汤达祯, 等. 煤结构的STM和AFM研究[J]. 科学通报, 1994, 39(7): 633-635. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199407017.htm

    Yang Q, Pan Z G, Tang D Z, et al. STM and AFM study on coal structure[J]. Chinese Science Bulletin, 1994, 39(7): 633-635. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199407017.htm

    [60]

    Loeber L, Sutton O, Morel J, et al. New direct obser-vations of asphalts and asphalt binder by scanning electron microscopy and atomic force microscopy[J]. Journal of Microscopy, 1996, 182(1): 32-39.

    [61]

    Golubev Y A, Kovaleva O V, Yushkin N P. Observations and morphological analysis of supermolecular structure of natural bitumens by atomic force microscopy[J]. Fuel, 2008, 87(1): 32-38.

    [62]

    Hirono T, Lin W, Nakashima S. Pore space visualization of rocks using an atomic force microscope[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43: 317-320.

    [63] 王坤阳, 杜谷. 利用原子力显微镜与能谱-扫描电镜研究页岩孔隙结构特征[J]. 岩矿测试, 2020, 39(6): 839-846. doi: 10.15898/j.cnki.11-2131/td.202004180053

    Wang K Y, Du G. Study on the pore structure charact-eristics of shale by atomic force microscope and energy spectrum-scanning electron microscope[J]. Rock and Mineral Analysis, 2020, 39(6): 839-846. doi: 10.15898/j.cnki.11-2131/td.202004180053

    [64]

    Wirth R. Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale[J]. Chemical Geology, 2009, 261: 217-229.

    [65]

    Bernard S, Horsfield B, Schulz H M, et al. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia shale[J]. Marine and Petroleum Geology, 2012, 31: 70-89.

    [66]

    Sisk C, Diaz E, Walls J, et al. 3D visualization and classification of pore structure and pore filling in gas shale[C]//SPE Annual Technical Conference and Exhibition Florence. Italy: Society of Petroleum Engineers, 2010: 1-4.

    [67] 王玉满, 李新景, 陈波海, 等. 海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发, 2018, 45(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm

    Wang Y M, Li X J, Chen B H, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm

    [68] 高玉巧, 蔡潇, 何希鹏, 等. 渝东南盆缘转换带五峰组—龙马溪组页岩压力体系与有机孔发育关系[J]. 吉林大学学报(地球科学版), 2020, 50(2): 662-674. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002031.htm

    Gao Y Q, Cai X, He X P, et al. Relationship between shale pressure system and organic pore development in Wufeng—Longmaxi Formation of basin margin transition zone in southeast Chongqing[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 662-674. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002031.htm

    [69] 卢龙飞, 刘伟新, 俞凌杰, 等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003008.htm

    Lu L F, Liu W X, Yu L J, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 2020, 42(3): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003008.htm

    [70] 朱洪建, 琚宜文, 孙岩, 等. 构造变形作用下页岩孔裂隙结构演化特征及其模式——以四川盆地及其周缘下古生界海相页岩为例[J]. 石油与天然气地质. 2021, 42(1): 186-200. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101017.htm

    Zhu H J, Ju Y W, Sun Y, et al. Evolution characteristics and models of shale pores and fractures under tectonic deformation: A case study of the Lower Paleozoic marine shale in the Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2021, 42(1): 186-200. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101017.htm

    [71] 郭旭升, 胡东风, 黄仁春, 等. 四川盆地深层-超深层天然气勘探进展与展望[J]. 天然气工业, 2020, 40(5): 1-14.

    Guo X S, Hu D F, Huang R C, et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin: Progress and prospect[J]. Natural Gas Industry, 2020, 40(5): 1-14.

    [72] 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    Guo X S, Li Y P, Tenger, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Wufeng—Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    [73] 卢龙飞, 刘伟新, 魏志红, 等. 四川盆地志留系页岩成岩特征及其对孔隙发育与保存的控制[J]. 沉积学报, 2022, 40(1): 73-87. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202201006.htm

    Lu L F, Liu W X, Wei Z H, et al. Diagenesis of the Silurian shale, Sichuan Basin: Focus on pore development and preservation[J]. Acta Sedimentologica Sinica, 2022, 40(1): 73-87. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202201006.htm

    [74]

    Tissot B P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration[J]. AAPG Bulletin, 1984, 68(5): 545-563.

    [75]

    Faulon J L, Vandenbroucke M, Drappier J M, et al. 3D chemical model for geological macromolecules[C]//Durand B, Behar F. Advances in Organic Geochemistry. Oxford: Pergamon Press, 1990: 981-993.

    [76]

    Vandenbroucke M. Kerogen: From types to models of chem-ical structure[J]. Oil & Gas Science and Technology-Revue de L' Institut Francais Du Petrole, 2003, 58(2): 243-269.

    [77] 腾格尔, 陶成, 胡广, 等. 排烃效率对页岩气形成与富集的影响[J]. 石油实验地质, 2020, 42(3): 325-334. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003004.htm

    Tenger, Tao C, Hu G, et al. Effect of hydrocarbon expulsion efficiency on shale gas formation and enrichment[J]. Petroleum Geology & Experiment, 2020, 42(3): 325-334. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003004.htm

  • 期刊类型引用(2)

    1. 李丙阳,陈佳,邱洪灯. 骨架材料在固相微萃取方面的应用研究进展. 分析测试学报. 2025(02): 195-210 . 百度学术
    2. 乔淞汾,秦冲,刘爱琴,安彩秀,刘安,杨利娟,孙凯茜,冉卓. 超声萃取-高效液相色谱-串联质谱法测定土壤中三种硝基酚类化合物. 岩矿测试. 2024(03): 501-508 . 本站查看

    其他类型引用(0)

图(2)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  462
  • PDF下载量:  23
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2022-02-17
  • 录用日期:  2022-03-12
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2022-11-27

目录

/

返回文章
返回