Study on Geochemical Characteristics and REE Mineralization of S-enriched Monazite in the Dabie Orogenic Belt by Electron Probe Microanalysis
-
摘要:
独居石是常见的赋稀土矿物,也是许多稀土矿床中重要的矿石矿物,而含硫独居石却相对罕见,只在为数不多的一些碳酸岩、金伯利岩、变质岩中被发现。本文在大别造山带蕲春县白羊沟地区发现的富稀土矿样品中,利用偏光显微镜镜下鉴定、电子探针定性和定量分析相结合的技术手段测定富硫独居石中的硫、稀土元素等主要化学成分的含量,研究其地球化学特征以及成因。结果表明:研究区稀土矿化角闪片岩中的富硫独居石大多呈胶状、团块状,部分呈现板状、柱状自形晶体,且呈粒状集合体状,和磷灰石之间存在相互交生、包含、半包含的空间关系,或呈网脉状交代切割磷灰石,岩相学表明富硫独居石与磷灰石之间存在着类似热液蚀变的交代关系。富稀土矿样品中富硫独居石SO3含量最高达14.57%,平均含量为10.54%,是目前国内外已知的硫含量最高的独居石,同时测得富硫独居石CaO含量较高,NdO含量偏低,与花岗岩成因的独居石和热液交代的不含硫独居石成分差异较大,地球化学显示S6+与P5+呈负相关性以及(Sr, Ca)2+、S6+与REE3+、P5+呈负相关性,并可以用“硬石膏耦合”置换反应来解释其独居石含S的原因,即(Sr, Ca)2++S6+↔REE3++P5+,也就意味着白羊沟地区存在着与稀土矿化相关的热液活动,结合白羊沟地区的地质背景推断其热液来源可能与白垩世以来该地区经历了强烈的岩石圈伸展运动和岩浆活动晚期热液有关。研究结果为白羊沟地区的稀土多金属矿化成因研究提供了新线索。
要点(1) 大别造山带白羊沟稀土矿化点的富硫独居石含有异常高的硫,SO3含量最高达14.47%,平均10.54%,是目前国内外已知的硫含量最高的独居石。
(2) 应用电子探针精确测定了富硫独居石的主要成分为LREE2O3、P2O5、SO3、ThO2、Ca、F等,其中LREE2O3含量约为48.2%。
(3) 可以用“硬石膏耦合”置换反应来解释其独居石含S的原因,即:(Sr, Ca)2++S6+↔REE3++P5+,结合岩相学研究证明白羊沟地区存在着与稀土矿化相关的热液活动。
(4) 热液蚀变作用是富硫独居石形成和稀土矿化的主要地质作用。
HIGHLIGHTS(1) S-enriched monazite at the rare earth mineralization occurrence of Baiyanggou in the Dabie orogenic belt has unusually high sulfur content, with a maximum SO3 content of 14.47% and an average of 10.54%, which is the known monazite with the highest sulfur content.
(2) The composition of S-enriched monazite was accurately determined by electron probe microanalysis. The main components were LREE2O3, P2O5, SO3, ThO2, Ca and F, of which the LREE2O3 content was about 48.2%.
(3) The "anhydrite coupling" substitution reaction can be used to explain the high content of S in monazite, namely: (Sr, Ca)2++S6+↔REE3++P5+. Combined with petrographic studies, it has been proved that there is hydrothermal activity related to rare earth mineralization in the Baiyanggou area.
(4) Hydrothermal alteration is the main geological process for the formation of S-enriched monazite and rare earth mineralization.
Abstract:BACKGROUNDMonazite is a common rare earth mineral and an important ore mineral in many rare earth deposits, while sulfur-containing monazite is relatively rare and is only found in a few carbonate rocks, kimberlites, and metamorphic rocks.
OBJECTIVESTo accurately analyze the chemical composition of S-enriched monazite, and to infer its genesis.
METHODSThe main chemical components of S-enriched monazite from the REE ores in the Baiyanggou area of Puchun County, Dabie orogenic belt were determined by polarized light microscopy and electron probe microanalysis.
RESULTSThe sulfur-enriched monazite in the rare-earth mineralized amphibole schist in the study area was mostly colloidal and agglomerate, some were plate-like and columnar euhedral crystals, which were granular aggregates. There was mutual interaction, inclusion, and a semi-inclusion spatial relationship between sulfur-enriched monazite and apatite. Crosscut of apatite by network veins was also present. Petrography showed that there was a metasomatism similar to hydrothermal alteration between sulfur-enriched monazite and apatite. The SO3 content of S-enriched monazite in the rare earth-enriched mineral samples was as high as 14.57%, with an average content of 10.54%, which was the monazite with the highest S content. The S-enriched monazite has a higher CaO content and a low NdO content, which was quite different from the composition of the granite genesis monazite and hydrothermal metasomatic sulfur-deficient monazite. According to the negative correlation between S6+ and P5+, as well as the negative correlation between (Sr, Ca)2+, S6+ and REE3+, P5+, the S-containing monazatite can be explained by the "anhydrite coupling" displacement reaction, that is, (Sr, Ca)2++S6+↔REE3++P5+. This indicated that hydrothermal activity related to REE mineralization in the Baiyanggou area was present.
CONCLUSIONSCombined with the geological background of the Baiyanggou area, it is inferred that the source of the hydrothermal fluid may be related to the intense lithospheric extensional movement and the late magmatic activity in the study area since the Cretaceous period. This provides new clues for research on the origin of rare earth polymetallic mineralization in this area.
-
一百多年前Alfred Elis Törnebohm在其发表的论文中第一次采用“矽卡岩(grönskarn)”一词,用以描述Norborg铁矿中的辉石-石榴石岩[1]。从此之后地质学者们对矽卡岩型矿床中含矿岩石的矿物成分、共生组合、交代关系等方面进行了系统研究,并以此探讨成矿作用过程中成矿流体物理、化学环境的变化,从而了解矿床的形成原因和形成过程[2-4]。譬如辉石、绿泥石,以及石榴石的生长环带可以有效地保存其形成时热液流体的性质和组成信息,有助于了解热液流体的演化过程[5],并指示矿床金属矿化的类型[6-7]。这些研究极大地促进了对于矽卡岩矿床形成过程的认识。
中国矽卡岩型矿床所包含的矿种丰富,常见矽卡岩型Cu、Fe、Pb、Zn、W、Sn等矿床。这一类型的矿床在中国的分布展现出“东多西少”的局面,但近些年来随着找矿勘探工作投入的增加,在中国西部地区也接连发现和探明了一大批矽卡岩型矿床[8],仅在天山及其邻区就发现了赛博、查岗诺尔、备战等多处矽卡岩型矿床。根据相关统计,中国已探明的矽卡岩型矿床合计918处,其中有207处是矽卡岩型铜矿[8],约占总数的22.5%,其探明储量约占中国铜矿总储量的27%[9]。作为中国天山地区重要的金属矿床类型,对新发现的矽卡岩型矿床进行矿物学方面的研究,对于深化这一地区矽卡岩矿床成矿过程的认识具有积极意义,能够对南天山地区矽卡岩矿床的找矿工作提供帮助。
阿合塔拉铜矿位于塔里木板块以北的南天山缝合带。铜矿矿体形成于碳酸盐岩与岩浆岩的接触带。前人对该矿床矽卡岩矿物石榴石进行了较为详细的研究[10],而目前对该矿床中其他矽卡岩矿物的矿物学特征还缺乏分析与研究。因此,本文将阿合塔拉铜矿床中典型的矽卡岩矿物作为研究对象,将宏观矿床尺度野外地质考察与微观矿物尺度显微镜观察,以及地球化学尺度电子探针分析相结合,开展了系统、综合的研究。对该矿床的形成原因、成矿环境,以及成矿过程进行了深入详细探讨,拟为下一步找矿勘探工作提供数据资料和科学依据。
1. 矿床地质背景
矿区范围内可见出露托什罕组第二段(D2t2)的地层,主要分布在矿区西北和西南部地区,为一套生物碎屑灰岩。托什罕组第四段(D2t-mb)的地层主要分布在矿区中部与岩浆岩发生接触,与成矿密切相关,为一套大理岩。乌恰组第一段(N2w1)的地层主要分布在矿区西部,为一套中-粗砾岩。乌恰组第二段(N2w2)的地层主要分布在矿区东北部,为一套粉砂质泥岩和泥质粉砂岩。矿区内乌恰组与托什罕组共同组成一个单斜构造,倾向南东,产状较缓。矿区内断裂构造发育,主要发育了若干条北北东向的断层。矿区内与成矿相关的岩浆岩为花岗闪长岩岩体(图 1)[10]。
2. 实验部分
2.1 样品采集及处理
本文研究的样品全部采集于矿区内侵入岩与大理岩的接触部位,包括石榴石矽卡岩、石榴石-辉石矽卡岩、石榴石-绿帘石矽卡岩等。在先后进行野外实地勘查、手标本观察和室内电子显微镜观察后,选取有研究意义的新鲜样品,对其中的矽卡岩矿物进行电子探针成分分析。选取辉石样品5件,编号分别为AHTL-005、AHTL-012D、AHTL-B5、AHTL-B5B、AHTL-B6;硅灰石样品5件,编号分别为AHTL-Wo1至AHTL-Wo5;绿泥石样品5件,编号分别为AHTL-Chl1至AHTL-Chl5;绿帘石样品5件,编号分别为AHTL-Ep1至AHTL-Ep5。
2.2 样品分析测试
电子探针分析使用中国地质大学(北京)科学研究院电子探针实验室EPMA-1600型电子探针仪,使用的标样为美国SPI公司提供的天然矿物标样,实验电压为15kV,束斑直径为1μm,依据ZAF法进行修正。
3. 矽卡岩样品电子探针分析结果
阿合塔拉铜矿中的矽卡岩矿物主要包括石榴石、辉石、硅灰石、绿泥石、绿帘石,根据矽卡岩矿物的生成顺序,其矿物学特征和电子探针数据分析如下。
3.1 石榴石
在采集到的石榴石-辉石矽卡岩手标本中,石榴石晶体较小显黄绿色(图 2a)。在石榴石-磁铁矿矽卡岩手标本中,石榴石晶体较大显褐红色(图 2b)。经过光学显微镜观察,石榴石-辉石矽卡岩中的石榴石呈无色,他形粒状,与无水硅酸盐矿物(透辉石、硅灰石)共生,未见金属矿物(图 2中c~d);石榴石-磁铁矿矽卡岩中的石榴石呈棕黄色,自形六边形(图 2e),可见其颗粒间或生长环带中常包裹或充填黄铁矿、磁铁矿等(图 2中f~i)。根据石榴石与硅酸盐矿物和金属矿物的共-伴生关系可以看出,石榴石的形成明显分为两个不同的阶段。石榴石-辉石矽卡岩中石榴石的形成时间较早,石榴石-磁铁矿矽卡岩中石榴石的形成时间较晚,并且只有后期形成的石榴石能够见到清晰的结晶环带[10](图 2中e~h)。
本文作者在前期工作中已将石榴石-辉石矽卡岩中的早期石榴石,以及石榴石-磁铁矿矽卡岩中的晚期石榴石进行了电子探针分析,数据证实其分别为钙铝(Gro58.24~74.61)-钙铁(And22.60~38.50)榴石系列和钙铁(And52.90~98.79)-钙铝(Gro0.23~44.66)榴石系列[10]。矿床中的石榴石存在着从钙铝榴石系列向几乎纯净的钙铁榴石系列演化的趋势,表明石榴石在演化过程中,铁质在不断增加。
3.2 辉石
石榴石-辉石矽卡岩样品中的辉石显绿色或浅绿色(图 3a)。在单偏光镜下观察,辉石显淡绿色(图 2c),呈柱状半自形结构,正高凸起。在正交偏光镜下观察,其干涉色能够达到二级蓝绿(图 2d)。
在辉石的电子探针分析测试结果中(表 1),SiO2含量介于50.66%~53.75%,平均值为52.12%;CaO含量介于22.30%~25.49%,平均值为24.22%;MgO含量介于12.74%~17.31%,平均值为14.68%;TFeO含量介于3.60%~8.77%,平均值为6.10%。Mn/Fe值介于0.00~0.12之间。透辉石端元组分介于77.74%~95.46%,表明阿合塔拉铜矿中的辉石几乎为纯净的透辉石系列。端元组分图解中实验数据全部落入透辉石区域(图 4),并与全球典型矽卡岩型铜矿床中的辉石相一致。
表 1 辉石电子探针分析数据Table 1. Electron probe microanalysis data of pyroxene组分 含量(wB/%) AHTL-005 AHTL-012D AHTL-B5 AHTL-B5B AHTL-B6 SiO2 50.66 52.36 51.98 51.85 53.75 TiO2 0.64 - 0.21 0.13 0.18 Al2O3 2.83 2.75 0.23 0.49 0.03 Cr2O3 0.25 0.14 0.11 - 0.07 TFeO 5.76 3.94 8.45 8.77 3.60 MnO 0.32 - 0.89 0.50 0.43 MgO 14.67 17.31 12.87 12.74 15.81 CaO 23.88 22.30 24.77 24.67 25.49 Na2O 0.68 0.10 0.27 0.27 0.15 K2O - 0.29 - - 0.01 Σ 99.69 99.19 99.78 99.42 99.52 以6个氧原子为基准计算的阳离子数 Si 1.89 1.93 1.97 1.97 1.99 AlⅣ 0.11 0.07 0.01 0.00 0.01 AlⅥ 0.01 0.05 0.00 0.00 0.00 Ti 0.02 0.00 0.01 0.00 0.01 Cr 0.01 0.00 0.00 0.00 0.00 Fe3+ 0.15 0.06 0.09 0.09 0.04 Fe2+ 0.03 0.06 0.17 0.19 0.07 Mn 0.01 0.00 0.03 0.02 0.01 Mg 0.82 0.95 0.73 0.72 0.87 Ca 0.95 0.88 1.00 1.00 1.01 Na 0.05 0.01 0.02 0.02 0.01 K 0.00 0.01 0.00 0.00 0.00 端元组分(%) Wo 47.56 44.94 49.13 49.27 50.08 En 40.65 48.53 35.52 35.40 43.22 Fs 9.35 6.16 14.38 14.36 6.17 Di 95.46 94.42 78.26 77.74 90.79 Hd 3.35 5.58 18.66 20.53 7.81 Jo 1.18 0.00 3.07 1.73 1.40 注:端元组分由Geokit软件计算得出,“-”表示实验结果未达到检测线。Wo—硅灰石;En—顽火辉石;Fs—斜方铁辉石;Di—透辉石;Hd—钙铁辉石;Jo—锰钙辉石。 3.3 硅灰石
硅灰石属于单链结构的无水硅酸盐矿物。阿合塔拉铜矿中的硅灰石,其粒径普遍小于0.5mm,呈片状。在电子探针背散射图像中可以看出硅灰石与石榴石、透辉石间的接触边较为平滑,是典型的共生关系(图 3c),同时可见硅灰石又被后期形成的斑铜矿所交代(图 3d)。
硅灰石的电子探针实验数据中,SiO2含量介于50.22%~50.98%,平均值为50.54%;CaO含量介于48.57%~49.03%,平均值为48.81%。端元组分Wo介于90.04%~99.37%(表 2)。
表 2 硅灰石电子探针分析数据Table 2. Electron probe microanalysis data of wollastonite组分 含量(wB/%) AHTL-Wo1 AHTL-Wo2 AHTL-Wo3 AHTL-Wo4 AHTL-Wo5 SiO2 50.22 50.48 50.98 50.59 50.42 TiO2 0.17 0.20 0.06 0.02 0.16 Al2O3 0.05 0.03 - 0.01 - Cr2O3 0.14 0.13 0.18 0.24 0.14 TFeO - 0.03 - - 0.06 MnO 0.01 0.06 - - - MgO - 0.12 - 0.04 - CaO 48.92 48.57 48.60 48.95 49.03 Na2O 0.23 0.13 0.26 0.14 0.15 K2O - - - - - Σ 99.74 99.75 100.08 99.99 99.96 以6个氧原子为基准计算的阳离子数 Si 1.96 1.97 1.98 1.97 1.96 AlⅣ 0.01 0.01 0.00 0.00 0.00 AlⅥ 0.00 0.00 0.00 0.00 0.00 Ti 0.01 0.01 0.00 0.00 0.00 Cr 0.00 0.00 0.01 0.01 0.00 Fe3+ 0.11 0.08 0.08 0.09 0.10 Fe2+ 0.00 0.00 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.01 0.00 0.00 0.00 Ca 2.05 2.03 2.02 2.04 2.05 Na 0.02 0.01 0.02 0.01 0.01 K 0.00 0.00 0.00 0.00 0.00 端元组分(%) Wo 99.14 99.04 99.04 99.37 99.36 En 0.00 0.34 0.00 0.11 0.00 Fs 0.02 0.14 0.00 0.00 0.09 Ac 0.84 0.48 0.96 0.51 0.55 注:端元组分由Geokit软件计算得出,“-”表示实验结果未达到检测线。Wo—硅灰石;En—顽火辉石;Fs—斜方铁辉石; Ac—阳起石。 3.4 绿泥石
矽卡岩样品中绿泥石的颜色显示为淡绿色,呈他形粒状结构。在显微镜单偏光下呈橄榄绿色,突起较低,为不规则的鳞片状,多产出在石榴石的边部和裂隙之间并对其进行交代(图 3中e~f),表明其形成时间应该晚于石榴石。
在绿泥石的电子探针分析数据中,其SiO2含量介于25.36%~26.39%,平均值为25.85%;Al2O3含量介于19.63%~20.14%,平均值为19.93%;TFeO含量介于24.34%~27.80%,平均值为26.86%;MgO含量介于13.05%~15.91%,平均值为13.83%(表 3)。
表 3 绿泥石电子探针分析数据Table 3. Electron probe microanalysis data of chlorite组分 含量(w/%) AHTL-Chl1 AHTL-Chl2 AHTL-Chl3 AHTL-Chl4 AHTL-Chl5 SiO2 26.39 26.06 25.82 25.62 25.36 Al2O3 19.63 19.96 20.00 20.14 19.93 Cr2O3 0.37 0.23 0.28 0.08 0.05 TFeO 24.34 26.99 27.80 27.60 27.55 MnO 0.20 0.35 0.37 0.36 0.41 MgO 15.91 13.62 13.43 13.16 13.05 P2O5 0.07 0.07 0.14 0.02 0.18 CaO 0.06 0.05 0.11 0.07 0.13 Na2O 0.41 0.37 0.30 0.26 0.23 Σ 87.54 87.93 88.26 87.64 87.07 3.5 绿帘石
阿合塔拉铜矿中的绿帘石在光学显微镜下呈浅黄绿色,突起较高,颜色分布不均,有着较弱的多色性,呈不规则的粒状产出。在电子探针背散射图像中可见绿帘石交代透辉石(图 3g)、黄铜矿交代绿帘石的现象(图 3中h~i)。表明其形成时间应该在早期无水硅酸岩矿物形成之后,并在铁铜硫化物形成之前,属于晚期矽卡岩阶段(退化蚀变阶段)的产物。
阿合塔拉铜矿中的绿帘石电子探针分析结果(表 4)显示,SiO2含量介于37.69%~38.14%,平均值为37.92%;CaO含量介于22.58%~23.32%,平均值为22.96%;Al2O3含量介于18.07%~18.57%,平均值为18.33%;TFeO含量介于16.46%~17.16%,平均值为16.83%。
表 4 绿帘石电子探针分析数据Table 4. Electron probe microanalysis data of epidote组分 含量(w/%) AHTL-Ep1 AHTL-Ep2 AHTL-Ep3 AHTL-Ep4 AHTL-Ep5 Si2O 37.87 38.05 37.84 37.69 38.14 TiO2 - 0.13 - - 0.07 Al2O3 18.42 18.28 18.07 18.57 18.31 Cr2O3 0.17 - 0.07 0.11 0.03 TFeO 17.14 16.46 17.16 16.84 16.57 MnO 0.26 0.12 0.11 0.43 0.11 MgO - - 0.08 - 0.02 CaO 22.58 23.32 23.15 22.62 23.14 Na2O 0.12 0.10 0.07 0.05 0.09 K2O - 0.03 0.02 0.03 - Σ 96.56 96.49 96.57 96.34 96.48 注:“-”表示实验结果未达到检测线。 4. 矿床成因和成矿过程分析
4.1 矿床的成因类型
目前普遍将矽卡岩分为两类:一类是将经历了区域或者接触等变质作用后形成的矽卡岩称为变质矽卡岩; 另一类是将经历了各种交代作用形成的矽卡岩称为交代矽卡岩[12]。通常又将交代矽卡岩根据其围岩属于钙质或者镁质碳酸盐岩,再细分为钙矽卡岩或者镁矽卡岩。此外,也有学者曾提出锰质和碱质矽卡岩的概念[13-14]。
显微镜下可见阿合塔拉铜矿矽卡岩矿物、金属矿物发育典型的交代结构。多见含水硅酸盐矿物交代无水硅酸盐矿物,如绿帘石交代透辉石(图 3g)、绿泥石交代石榴石(图 3中e~f),以及斑铜矿、黄铜矿等铁、铜硫化物矿物交代早期硅酸盐矿物(图 3中d,h~i)后造成的交代残余现象。表明阿合塔拉铜矿属于典型的交代矽卡岩型矿床。
此外,阿合塔拉铜矿的围岩是钙质碳酸盐岩大理岩,矿体主要呈层状产出(图 1),具备典型钙矽卡岩型矿床的特征[15]。矽卡岩矿物组合以钙铝榴石、钙铁榴石、透辉石为主,其次为硅灰石、绿帘石、绿泥石等。这样的矿物组合,依照Einaudi等[12]对于矽卡岩的分类标准,同样属于交代矽卡岩中经典的钙矽卡岩类型。
4.2 矽卡岩矿物对矿化的指示
在矽卡岩型矿床中,矽卡岩化的过程就伴随着矿化过程,两者在时间和空间上有着密切的联系[13]。对于典型矽卡岩矿物的研究,能够帮助我们了解矽卡岩型矿床的形成与演化,同时指导针对不同矿化类型的矽卡岩型矿床进行找矿勘查工作[16]。
矽卡岩型矿床中成矿流体的酸碱度可以利用石榴石的成分变化进行反演,并指示其矿化类型[17]。有学者对全球不同矿种矽卡岩矿床中的石榴石成分进行了梳理与对比,认为钙铁-钙铝榴石系列主要与铜矿化相关[2],这与阿合塔拉铜矿中石榴石电子探针分析结果相一致。此外,分析辉石中锰-铁比值的方法也可以指示矽卡岩型矿床金属矿化的种类[18]。对于矽卡岩型铜、铁矿床而言,辉石的锰-铁比值普遍小于0.1[18]。在阿合塔拉铜矿的辉石数据中,有四件样品的锰-铁比值小于0.1,一件样品的锰-铁比值为0.12,这表明阿合塔拉铜矿具备铜(铁)矿化的条件。
阿合塔拉铜矿绿泥石中氧化钠、氧化钾、氧化钙的质量分数之和小于0.5%,表明其在形成过程中不存在混染现象[19],并且阿合塔拉铜矿中的绿泥石全部属于铁绿泥石。Inoue[20]曾指出成矿流体的沸腾作用可能伴随着绿泥石的生成,成矿流体的沸腾作用还能够打破铜在成矿热液中的稳定状态,降低其溶解度,促进铜矿的成矿作用[21-22]。
4.3 矽卡岩成矿过程的探讨
对矽卡岩矿物的化学成分、结构构造、共生和交代关系的研究,有助于划分矿床的成矿阶段,并且指示矽卡岩成矿系统的氧化、还原状态[12]。阿合塔拉铜矿的成矿阶段主要经历了早期矽卡岩阶段、晚期矽卡岩(退化蚀变)阶段、氧化物阶段和早期硫化物阶段。
(1) 早期矽卡岩阶段
阿合塔拉铜矿的花岗闪长岩岩浆,从地下携带大量热量上涌侵位,与大理岩发生接触,并在接触带范围内开始了交代作用。随着交代作用的不断进行,热液流体中产生并汇聚了大量高温气液。这一阶段成矿热液的温度很高,环境中的水解作用极弱,铝、铁、钙、镁等离子主要融入硅酸盐矿物的晶格,共同形成无水硅酸盐矿物,故将这一阶段称为干矽卡岩阶段(这一阶段并没有发生矿化)。
有的学者认为在早期矽卡岩阶段,钙铝榴石形成于酸性、弱氧化且氧逸度较低的环境,而钙铁榴石多形成于碱性溶液中[23]。梁祥济等[24]通过实验分析得出:钙铝榴石一般在中-酸性溶液的弱氧化-弱还原条件下,当温度达到550~700℃时形成;而钙铁榴石一般在偏碱性溶液的氧化-弱氧化环境下,当温度达到450~600℃时形成。阿合塔拉铜矿中的石榴石明显具有从钙铝榴石向钙铁榴石转化的趋势,反映出在早期矽卡岩阶段,其成矿流体由中-酸性向碱性、由弱还原-弱氧化环境向弱氧化-氧化环境转变,并且温度有所降低。
同时,在成矿流体亚稳定的情况下,阿合塔拉铜矿形成了具有特殊结晶环带的晚期石榴石晶体,其环带记录了当时成矿热液亚稳定条件下的演化过程[25-26],铁质含量由内向外逐渐波动增长[10]。证明晚期石榴石生长时的成矿环境并不是一个稳定且封闭的独立环境,此时成矿热液的碱性、氧逸度和铁质含量仍有波动,并且在不断升高[10, 27]。
(2) 晚期矽卡岩阶段
随着交代作用的继续进行,成矿流体的温度进一步下降,并聚集了二氧化碳、硫化氢以及氟等大量挥发份[28-29]。同时,由于流体中氧逸度的升高从而导致在这一阶段形成了大量的绿帘石、绿泥石等含水硅酸盐矿物[30-31]。Inoue[20]认为绿泥石富Fe证明其形成于相对还原的环境中,而绿泥石富Mg则形成于低氧逸度和低pH值的环境。阿合塔拉铜矿中绿泥石Fe/(Fe+Mg)值介于0.46~0.54,平均值为0.52,指示其可能形成于弱氧化-弱还原的过渡环境中。在此阶段石榴石、透辉石等早期矽卡岩矿物开始被绿帘石、绿泥石等退化蚀变矿物所交代(图 3中e~g)。因为这些含有氢氧根的矿物大量生成,也将这一阶段称为湿矽卡岩阶段。
大量的研究表明,铁元素主要通过络合物的形式被运移。随着绿帘石、绿泥石等含氢氧根的退化蚀变矿物不断形成,消耗了热液中大量的氢离子,从而导致溶液更加偏向碱性。正是在这种高氧逸度的碱性条件下,铁的络合物在水解之后,除了少量继续参与形成矽卡岩矿物之外,其他大量形成磁铁矿,所以这一阶段也称为磁铁矿阶段[27, 32]。这也与阿合塔拉铜矿晚期石榴石中常包裹磁铁矿产出的现象相吻合。随着磁铁矿的大量形成,成矿流体中铜铁比值变大,高价态的硫离子也更易被还原成低价态的硫离子[33-34],三价铁与二价铁的比值增大[15],这些都为后期硫化物阶段铁铜硫化物的形成做好了准备。
(3) 氧化物阶段
随着磁铁矿以及长石类矿物等氧化物的大量形成,这时成矿流体中的氧逸度开始逐渐降低,硫逸度开始逐渐升高,从而为之后的硫化物阶段铁铜硫化物的形成创造了有利的外部条件。
(4) 早期硫化物阶段
阿合塔拉铜矿的石英-硫化物期,主要为早期铁铜硫化物阶段。随着硫逸度的升高,SiO2不再与铝、铁、钙、镁等离子形成矽卡岩矿物,而是形成大量的石英。随着H2S、SO2等酸性挥发份的持续挥发,在硫逸度和碱性较高的环境中,大量还原性的硫离子造成铜在成矿热液中的溶解度降低,并与硫离子结合形成黄铜矿、黄铁矿等铁铜硫化物。成矿环境也由相对氧化环境转变为相对还原环境[15, 31]。此外,矽卡岩化会在成矿接触带及其附近形成诸多有利于热液同围岩接触的裂隙,这些裂隙在环境有利于成矿的阶段则作为金属矿物的成矿空间[35]。
结合矿床中与矽卡岩矿物生成顺序有关的矿相学现象、电子探针数据,以及前人的大量研究,获得矽卡岩矿物形成时的物理化学环境特征,在此基础上,推断得出阿合塔拉铜矿床的成矿期次和矿物生成顺序如图 5所示。
5. 结论
通过电子探针分析证明阿合塔拉铜矿中的矽卡岩矿物主要有石榴石(钙铝榴石和钙铁榴石)、透辉石、硅灰石、铁绿泥石、绿帘石。矽卡岩矿物组合和交代现象表明阿合塔拉铜矿中的含矿矽卡岩属于典型交代矽卡岩大类中的钙矽卡岩型。矽卡岩矿物石榴石、透辉石、绿泥石的成分特征,指示了矿床的铜矿化。此外,矽卡岩化作用所产生的构造裂隙,是金属矿物良好的成矿空间。
阿合塔拉铜矿主要的矿化阶段可划分为:①早期矽卡岩阶段,形成石榴石、透辉石、硅灰石等无水硅酸盐矿物;②晚期矽卡岩阶段(退化蚀变阶段),主要形成绿帘石、绿泥石等含水硅酸盐蚀变矿物,以及大量磁铁矿。这段时期成矿流体总体上从中-酸性(弱氧化/弱还原)环境转变为偏碱性(弱氧化/氧化)环境,氧逸度不断升高;③氧化物阶段,主要形成磁铁矿和长石类矿物;④早期硫化物阶段,形成大量黄铜矿、黄铁矿等硫化物矿物。这段时期成矿环境中的氧逸度降低,硫逸度升高,逐渐由氧化环境转变为还原环境。本次研究对深化中国南天山地区矽卡岩型铜矿成矿过程的认识具有积极意义。
致谢: 感谢湖北省核工业地质调查院孟涛、王闯以及李孝坤等野外项目部人员对本文野外工作的支持,感谢东华理工大学李满根教授对论文工作的指导,感谢中南大学谷湘平教授对实验工作的指导。 -
图 1 白羊沟地区地质简图
1—K1ηγ中细粒(片麻状)黑云二长花岗岩;2—Pt1Db2大别山岩群变火山岩组;3—Pt3ηγ片麻状花岗岩;4—Pt3N变基性岩;5—vψoψ辉石角闪岩脉;6—Pt3hm红安岩群黄麦岭岩组;7—Qhal 全新世冲积物;8—断层;9—放射性异常晕(蓝、黄、红为伽玛偏高场、高场、异常场界限);10—铀矿点;11—钍、稀土矿点;12—钨矿点;13—铜钼矿点;14—铜矿点;15—取样位置。地质底图由湖北地质调查院2015年湖北蕲春狮子口地区地质矿产图修编,放射性异常晕为2019年实测。
Figure 1. Geological map of the Baiyanggou area
表 1 白羊沟地区富硫独居石EPMA定量点分析数据
Table 1 Analysis data of EPMA quantitative points of S-enriched monazite in the Baiyanggou area
元素 富硫独居石中各成分含量(%) P2O5 18.99 20.15 20.20 19.57 21.49 21.85 29.41 21.99 20.90 22.69 20.50 21.18 25.07 SO3 13.64 13.06 14.04 14.57 10.27 10.83 1.44 10.91 13.20 4.42 14.46 13.60 2.57 CaO 5.36 5.08 5.33 5.53 5.22 4.98 3.72 5.04 5.56 5.22 5.42 5.30 4.27 TiO2 ND 0.85 ND ND ND 0.15 0.10 2.06 0.32 0.37 ND ND 0.02 ThO2 4.10 2.35 3.08 2.72 11.91 0.26 0.54 2.60 3.44 0.47 0.58 0.82 8.24 UO2 ND 0.18 ND ND 0.12 ND ND 0.02 0.12 ND ND ND 0.05 F 0.42 ND 0.45 0.58 0.61 0.80 1.37 0.78 0.43 0.92 0.96 0.78 0.74 Al2O3 0.20 0.11 0.12 0.13 0.16 0.16 0.38 0.15 0.13 0.12 0.09 0.05 0.27 SrO 1.04 0.75 0.99 1.20 1.35 0.58 0.50 0.52 0.72 0.69 0.78 0.92 0.83 SiO2 0.27 0.01 0.15 0.08 0.18 0.14 0.04 0.09 0.24 0.14 0.08 0.13 0.04 La2O3 12.36 13.44 13.80 12.61 11.56 10.38 13.33 9.53 8.15 10.82 8.44 8.78 8.81 Ce2O3 26.31 27.43 26.96 27.30 23.23 29.30 27.16 26.46 26.97 28.96 28.31 27.41 25.14 Pr2O3 1.99 2.43 2.13 2.26 1.84 7.36 6.82 6.76 6.67 7.49 7.17 7.84 7.60 Nd2O3 6.48 6.58 6.32 6.91 5.98 4.30 4.86 3.66 3.74 4.02 4.49 4.35 4.01 Total 91.15 92.41 93.57 93.47 93.92 91.10 89.65 90.57 90.58 86.32 91.28 91.16 87.66 P 10.70 11.36 11.38 11.03 12.11 12.31 16.57 12.39 11.78 12.78 11.55 11.93 14.13 S 5.46 5.23 5.62 5.83 4.11 4.34 0.58 4.37 5.28 1.77 5.79 5.45 1.03 Ca 3.83 3.63 3.81 3.95 3.73 3.56 2.66 3.60 3.97 3.73 3.87 3.79 3.05 Ti ND 0.51 ND ND ND 0.09 0.06 1.23 0.19 0.22 ND ND 0.01 Th 3.60 2.06 2.71 2.39 10.47 0.23 0.47 2.28 3.02 0.41 0.51 0.72 7.24 U ND 0.16 ND ND 0.11 ND ND 0.02 0.10 ND ND ND 0.04 F 0.42 ND 0.45 0.58 0.61 0.80 1.37 0.78 0.43 0.92 0.96 0.78 0.74 Al 0.11 0.06 0.06 0.07 0.08 0.09 0.20 0.08 0.07 0.06 0.05 0.02 0.14 Sr 0.88 0.64 0.84 1.01 1.14 0.49 0.42 0.44 0.61 0.58 0.66 0.78 0.70 Si 0.13 ND 0.07 0.04 0.08 0.07 0.02 0.04 0.11 0.06 0.04 0.06 0.02 La 10.54 11.46 11.76 10.75 9.86 8.85 11.37 8.12 6.95 9.23 7.20 7.49 7.51 Ce 22.46 23.42 23.01 23.31 19.83 25.02 23.18 22.59 23.02 24.72 24.17 23.41 21.47 Pr 1.70 2.07 1.82 1.93 1.57 6.29 5.82 5.78 5.70 6.40 6.13 6.69 6.49 Nd 5.56 5.64 5.42 5.92 5.13 3.69 4.17 3.13 3.20 3.44 3.85 3.73 3.44 P 10.70 11.36 11.38 11.03 12.11 12.31 16.57 12.39 11.78 12.78 11.55 11.93 14.13 La/Nd 1.90 2.03 2.17 1.82 1.92 2.40 2.73 2.59 2.17 2.68 1.87 2.01 2.18 注:ND表示低于检测限,未检出。 -
[1] Williams M L, Jercinovic M J, Hetherington C J. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology[J]. Annual Review of Earth & Planetary Sciences, 2007, 35: 137-175.
[2] Chakhmouradian A R, Wall F. Rare earth elements: Min-erals, mines, magnets (and more)[J]. Elements, 2012, 8(5): 333-340. doi: 10.2113/gselements.8.5.333
[3] 梁晓, 徐亚军, 訾建威, 等. 独居石成因矿物学特征及其对U-Th-Pb年龄解释的制约[J]. 地球科学, 2022, 47(4): 1383-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202204014.htm Liang X, Xu Y J, Zi J W, et al. Genetic mineralogy of monazite and constraints on the interpretation of U-Th-Pb ages[J]. Earth Science, 2022, 47(4): 1383-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202204014.htm
[4] Verplanck P L. The role of fluids in the formation of rare earth element deposits[J]. Procedia Earth and Planetary Science, 2017, 17: 758-761. doi: 10.1016/j.proeps.2017.01.014
[5] 洪文兴, 朱祥坤. 独居石微粒微区成分分布的研究[J]. 高校地质学报, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009 Hong W X, Zhu X K. A microanalysis study on monazite composition distribution[J]. Geological Journal of China Universities, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009
[6] 邱昆峰, 杨立强. 独居石成因特征与U-Th-Pb定年及三江特提斯构造演化研究例析[J]. 岩石学报, 2011, 27(9): 2721-2732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109021.htm Qiu K F, Yang L Q. Genetic feature of monazite and its U-Th-Pb dating: Critical considerations on the tectonic evolution of Sanjiang Tethys[J]. Acta Petrologica Sinica, 2011, 27(9): 2721-2732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109021.htm
[7] Engi M. Petrochronology based on REE-minerals: Monazite, allanite, xenotime, apatite[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 365-418. doi: 10.2138/rmg.2017.83.12
[8] 吴黎光, 李献华. 独居石微区同位素和元素分析及地质应用[J]. 矿物岩石地球化学通报, 2020, 39(6): 18. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202006003.htm Wu L G, Li X H. Isotopic and elemental microanalyses of monazite and its geological application[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2020, 39(6): 18. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202006003.htm
[9] 王濮, 潘兆橹, 翁玲宝, 等. 系统矿物学[M]. 北京: 地质出版社, 1987. Wang P, Pan Z L, Weng L B, et al. Systematic mineralogy[M]. Beijing: Geological Publishing House, 1987.
[10] Krenn E, Putz H, Finger F, et al. Sulfur-rich monazite with high common Pb in ore-bearing schists from the Schellgaden mining district (Tauern Window, eastern Alps)[J]. Mineralogy and Petrology, 2011, 102(1-4): 51-62. doi: 10.1007/s00710-011-0170-x
[11] Enkhbayar D, Seo J, Choi S G, et al. Mineral chemistry of REE-rich apatite and sulfur-rich monazite from the Mushgai Khudag, alkaline volcanic-plutonic complex, South Mongolia[J]. International Journal of Geosciences, 2016, 7(1): 20-31. doi: 10.4236/ijg.2016.71003
[12] Prokopyev I R, Doroshkevich A G, Ponomarchuk A V, et al. Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (central Aldan, Russia)[J]. Ore Geology Reviews, 2017, 81: 296-308. doi: 10.1016/j.oregeorev.2016.10.012
[13] Chakhmouradian A R, Mitchell R H. Niobian ilmenite, hydroxylapatite and sulfatian monazite: Alternative hosts for incompatible elements in calcite kimberlite from Internatsional'naya, Yakutia[J]. Canadian Mineralogist, 1999, 37: 1177-1189.
[14] Suzuki K, Kato T. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data[J]. Gondwana Research, 2008, 14(4): 569-586. doi: 10.1016/j.gr.2008.01.005
[15] Prsek J, Ondrejka M, Baík P, et al. Metamorphic-hydrothermal REE minerals in the Bacúch magnetite deposit, western Carpathians, Slovakia: (Sr, S)-rich monazite-(Ce) and Nd-dominant hingganite[J]. The Canadian Mineralogist, 2010, 48(1): 81-94. doi: 10.3749/canmin.48.1.81
[16] Ondrejka M, Putiš M, Uher P, et al. Fluid-driven destab-ilization of REE-bearing accessory minerals in the granitic orthogneisses of North Veporic basement (western Carpathians, Slovakia)[J]. Mineralogy and Petrology, 2016, 110(5): 561-580. doi: 10.1007/s00710-016-0432-8
[17] Laurent A T, Seydoux-Guillaume A M, Duchene S, et al. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts[J]. Contributions to Mineralogy and Petrology, 2016, 171(11): 94. doi: 10.1007/s00410-016-1301-5
[18] Chen W, Honghui H, Bai T, et al. Geochemistry of monazite within carbonatite related REE deposits[J]. Resources, 2017, 6(4): 51. doi: 10.3390/resources6040051
[19] 张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学: 地球科学, 1996, 26(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603000.htm Zhang G W, Meng Q R, Yu Z P, et al. Orogenic process and dynamic characteristics of Qinling orogenic belt[J]. Science in China: Earth Sciences, 1996, 26(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603000.htm
[20] 许长海. 大别造山带碰撞后构造热/岩浆演化过程[D]. 上海: 同济大学, 2002. Xu C H. Tectonic thermal/magmatic evolution after collision in the Dabieshan Orogen[D]. Shanghai: Tongji University, 2002.
[21] 张国伟, 董云鹏, 赖绍聪, 等. 秦岭—大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学: 地球科学, 2003, 33(12): 1121-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312000.htm Zhang G W, Dong Y P, Lai S C, et al. The Mianlue structural belt and the Mianlue suture in the southern margin of the Qinling—Dabie orogenic belt[J]. Science in China: Earth Sciences, 2003, 33(12): 1121-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312000.htm
[22] Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: An overview on the Qinling—Tongbai—Hong'an—Dabie—Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007
[23] 刘晓春, 李三忠, 江博明. 桐柏—红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞[J]. 中国科学: 地球科学, 2015, 45(8): 1088-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508002.htm Liu X C, Li S Z, Jiang B M. Tectonic evolution of the Tongbai—Hong'an orogen in central China: From oceanic subduction/accretion to continent-continent collision[J]. Science in China: Earth Sciences, 2015, 45(8): 1088-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508002.htm
[24] 李锦铁. 中朝地块与扬子地块碰撞的时限与方式——长江中下游地区震旦纪—侏罗纪沉积环境的演变[J]. 地质学报, 2001, 75(1): 25-34. doi: 10.3321/j.issn:0001-5717.2001.01.003 Li J T. Pattern and time of the collision between the Sino—Korean and Yangtze blocks: Evolution of the Sinian—Jurassic sedimentary settings in the middle-lower reaches of the Yangtze River[J]. Acta Geologica Sinica, 2001, 75(1): 25-34. doi: 10.3321/j.issn:0001-5717.2001.01.003
[25] 许长海, 周祖翼, 马昌前, 等. 大别造山带140~85Ma热窿伸展作用——年代学约束[J]. 中国科学: 地球科学, 2001, 31(11): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200111006.htm Xu C H, Zhou Z Y, Ma C Q, et al. Thermal extension of the Dabie orogenic belt from 140 to 85Ma—Chronological constraints[J]. Science in China: Earth Sciences, 2001, 31(11): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200111006.htm
[26] 张超, 马昌前. 大别山晚中生代巨量岩浆活动的启动: 花岗岩锆石U-Pb年龄和Hf同位素制约[J]. 矿物岩石, 2008, 28(4): 71-79. doi: 10.3969/j.issn.1001-6872.2008.04.013 Zhang C, Ma C Q. Large-scale late mesozoic magmatism in the Dabie mountain: Constraints from zircon U-Pb dating and Hf isotopes[J]. Mineralogy and Petrology, 2008, 28(4): 71-79. doi: 10.3969/j.issn.1001-6872.2008.04.013
[27] 刘玉龙, 陈江峰, 李惠民, 等. 白云鄂博矿床白云石型矿石中独居石单颗粒U-Th-Pb-Sm-Nd定年[J]. 岩石学报, 2005, 21(3): 881-888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503028.htm Liu Y L, Chen J F, Li H M, et al. Single-grain U-Th-Pb-Sm-Nd dating of monazite from dolomite type ore of the Bayan Obo deposit[J]. Acta Petrologica Sinica, 2005, 21(3): 881-888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503028.htm
[28] 陈益平, 潘家永, 胡凯, 等. 贵州遵义镍-钼富集层中独居石的发现及成因意义[J]. 岩石矿物学杂志, 2007, 26(4): 340-344. doi: 10.3969/j.issn.1000-6524.2007.04.007 Chen Y P, Pan J Y, Hu K, et al. Discovery of monazite in the Ni-Mo sulfide layer of Zunyi, Guizhou Province, and its genetic significance[J]. Acta Petrological et Mineralogica, 2007, 26(4): 340-344. doi: 10.3969/j.issn.1000-6524.2007.04.007
[29] Al Ani T, Sarapää O. Geochemistry and mineral phases of REE in Jammi carbonatite veins and fenites, southern end of the Sokli complex, NE Finland[J]. Geochemistry: Exploration, Environment, Analysis, 2013, 13(3): 217-224. doi: 10.1144/geochem2011-088
[30] 张龙, 陈振宇, 汪方跃, 等. 电子探针技术研究粤北龙华山岩体中独居石蚀变晕圈的结构与成分特征[J]. 岩矿测试, 2022, 41(2): 174-184. doi: 10.15898/j.cnki.11-2131/td.202109070118 Zhang L, Chen Z Y, Wang F Y, et al. Application of electron microprobe to textural and compositional characteristics of alteration coronas of monazite from the Longhuashan granite, northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(2): 174-184. doi: 10.15898/j.cnki.11-2131/td.202109070118
[31] 汪双双, 吴春俊, 李艳广, 等. 西秦岭阳山金矿带花岗斑岩中独居石的矿物学特征及成因指示[J]. 矿物岩石地球化学通报, 2018, 37(3): 529-538. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803015.htm Wang S S, Wu C J, Li Y G, et al. Mineralogical characteristics and their genetic implication of monazite in granite porphyries from the Yangshan gold metallogenic belt, West Qinling mountains[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 529-538. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803015.htm
[32] 王芳, 朱丹, 鲁力, 等. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670-679. doi: 10.15898/j.cnki.11-2131/td.202006090086 Wang F, Zhu D, Lu L, et al. Occurrence of niobium and rare earth elements in related ores by electron microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670-679. doi: 10.15898/j.cnki.11-2131/td.202006090086
[33] 万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145-155. doi: 10.15898/j.cnki.11-2131/td.202005060009 Wan J J, Pan C R, Yan J, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uraniumare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145-155. doi: 10.15898/j.cnki.11-2131/td.202005060009
[34] Broom-Fendley S, Smith M P, Andrade M B, et al. Sulfur-bearing monazite-(Ce) from the Eureka carbonatite, Namibia: Oxidation state, substitution mechanism, and formation conditions[J]. Mineralogical Magazine, 2019, 84(1): 35-48.
[35] Wu L G, Li X H, Ling X X, et al. Further characterization of the RW-1 monazite: A new working reference material for oxygen and neodymium isotopic microanalysis[J]. Minerals, 2019, 9(10): 583. doi: 10.3390/min9100583
[36] Kukharenko A A, Orlova M P, Bulakh A G, et al. The Caledonian Complex of ultrabasic alkaline rocks and carbonatites of the Kola Peninsula and northern Karelia[R]. Russia: Nedra Press Leningrad, 1965.
[37] Nikolenko A M, Redina A A, Doroshkevich A G, et al. The origin of magnetite-apatite rocks of Mushgai—Khudag Complex, South Mongolia: Mineral chemistry and studies of melt and fluid inclusions[J]. Lithos, 2018, 320: 567-582.
[38] Okay A I, Xu S, Sengor A M C. Coesite from the Dabie Shan eclogites, central China[J]. European Journal of Mineralogy, 1989, 1(4): 595-598. doi: 10.1127/ejm/1/4/0595
[39] Jahn B, Wu F, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 1999, 157(1): 119-146.
[40] 马昌前, 杨坤光, 明厚利, 等. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学: 地球科学, 2003, 33(9): 817-827. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200309000.htm Ma C Q, Yang K G, Ming H L, et al. The time when the Mesozoic crust in the Dabie Mountains changed from compression to extension: Evidence for granites[J]. Science in China: Earth Sciences, 2003, 33(9): 817-827. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200309000.htm
[41] 杨谦, 施炜, 侯贵廷. 中国东部及邻区晚中生代伸展拆离构造——综述与新认识[J]. 地球学报, 2019, 40(4): 511-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201904002.htm Yang Q, Shi W, Hou G T. Late mesozoic extensional detachment structures in eastern China and adjacent areas: Overview and new insight[J]. Acta Geoscientica Sinica, 2019, 40(4): 511-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201904002.htm
[42] 李石, 王彤. 桐柏山—大别山花岗岩类地球化学[M]. 武汉: 中国地质大学出版社, 1991. Li S, Wang T. Geochemistry of granitoids in Tongbaishan—Dabieshan, central China[M]. Wuhan: China University of Geosciences Press, 1991.
[43] 龚银杰, 朱江, 陈冬明, 等. 大别山南麓梨木岭钼矿床辉钼矿Re-Os同位素年龄及地质意义[J]. 矿床地质, 2017, 36(4): 992-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704013.htm Gong Y J, Zhu J, Chen D M, et al. Re-Os isotopic ages of Limuling molybdenum deposit in southern Dabie Mountain and their geological significance[J]. Mineral Deposits, 2017, 36(4): 992-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704013.htm
-
期刊类型引用(9)
1. 付玉蕾,史淼,曹沁元,马世玉. 黑青和田玉宝石矿物学及地球化学特征研究. 岩石矿物学杂志. 2024(03): 630-642 . 百度学术
2. 廖宗廷,景璀,李平,沈俊逸,金雪萍. 和田玉研究的关键问题. 同济大学学报(自然科学版). 2022(08): 1073-1080+1070 . 百度学术
3. 张晓晖,冯玉欢,张勇,买托乎提·阿不都瓦衣提. 新疆且末—若羌地区黄绿色和田玉分析测试及特性表征. 岩矿测试. 2022(04): 586-597 . 本站查看
4. 崔中良,黄怡祯,郭心雨. 闪石玉研究进展的文献计量学分析. 宝石和宝石学杂志(中英文). 2022(05): 155-169 . 百度学术
5. 闵红,刘倩,张金阳,周海明,严德天,邢彦军,李晨,刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征. 岩矿测试. 2021(01): 74-84 . 本站查看
6. 黄倩心,王时麒,梁国科,杨晓东,吴祥珂. 广西巴马玉的矿物学特征及其成因探讨. 岩石矿物学杂志. 2021(05): 977-990 . 百度学术
7. 杨凌岳,王雨嫣,王朝文,沈梦颖,殷科. “撒金花黑青玉”的宝石学特征与成因矿物学研究. 宝石和宝石学杂志(中英文). 2020(04): 1-12 . 百度学术
8. 刘喜锋,贾玉衡,刘琰. 新疆若羌—且末戈壁料软玉的地球化学特征及成因类型研究. 岩矿测试. 2019(03): 316-325 . 本站查看
9. 郑奋,刘琰,张红清. 辽宁岫岩河磨玉岩石地球化学组成及锆石U-Pb定年研究. 岩矿测试. 2019(04): 438-448 . 本站查看
其他类型引用(14)