• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

典型工业城市土壤重金属元素形态特征及生态风险评估

Speciation Characteristics and Ecological Risk Assessment of Heavy Metal Elements in Soils of Typical Industrial City

  • 摘要: 城市工业化发展易造成土壤重金属污染等环境问题。已有研究表明, 土壤重金属对生态环境的危害不仅与其总量有关,更大程度上取决于重金属的赋存形态。为查明河套平原某典型工业城市城区土壤重金属的含量特征、赋存状态和风险状况,本文在该市不同功能区采集土壤样品52件,利用电感耦合等离子体质谱法(ICP-MS)、原子荧光光谱法(AFS)等分析技术测定土壤重金属元素含量和赋存形态状况的基础上,采用风险评价编码法(RAC)对城区土壤重金属的生态风险进行评价。结果表明: ①表层土壤重金属元素含量(除As外)均不同程度地高于河套平原背景值,Pb、Cr、Mn、Cd、Zn的变异系数较大,空间分布不均匀,受人类活动影响显著;工业区重金属含量超过背景值程度最重,尤其是Cd(背景值的5.83倍)和Pb(背景值的3.58倍);道路重金属含量也明显高于背景值,Cd是背景值的近4倍。②重金属Cr、Mn、Ni、Cu、Zn、Pb、As元素形态以残渣态为主;Cr、Ni、Cu和As的残渣态平均占比都大于70%,Cd的残渣态在各功能区约占30%。③RAC风险评价结果显示各功能区的Cd和工业区的Pb达到高风险等级,生态风险较大。研究结果可为城区土壤重金属潜在生态风险防范提供科学依据。

     

    Abstract:
    BACKGROUND The development of urban industrialization causes soil heavy metal pollution and other environmental problems. Studies have shown that the damage caused by soil heavy metals to the ecological environment is not only related to the total content, but also depends on the speciation of heavy metals.
    OBJECTIVES To investigate the content characteristics, speciation and risk status of heavy metals in soil of a city in the Hetao Plain.
    METHODS 52 soil samples were collected from different functional areas of the Hetao Plain, heavy metals were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), atomic fluorescence spectrometry (AFS) and other analytical methods to study the total content and speciation. The ecological risk of soil heavy metals was evaluated using the RAC risk assessment method.
    RESULTS The results showed that the contents of heavy metal elements (except As) in surface soil were higher than the background values in the Hetao Plain, the variation coefficients of Pb, Cr, Mn, Cd and Zn were large and the spatial distribution was not uniform, which were significantly affected by human activities. The heavy metal content in the industrial area exceeded the background value, especially Cd (5.83 times of background value) and Pb (3.58 times of background value). Road heavy metal contents were also significantly higher than the background value, Cd was nearly 4 times the background value. Except for Cd in industrial areas, other heavy metals were mainly in residual fraction. The residual fractions of Cr, Ni, Cu and As were more than 70%. The residual fraction of Cd in each functional region accounted for about 30%. RAC risk assessment results showed that Cd and Pb in industrial areas reached the high-risk level.
    CONCLUSIONS The research results provide scientific basis for identifying the potential environmental risks in urban area soil and proposing effective prevention.

     

/

返回文章
返回