Determination of Tin, Tungsten, Zinc, Copper, Iron, and Manganese in Tin Ore by Lithium Metaborate Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry Combined with Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry
-
摘要:
锡石不溶于盐酸、硝酸及王水,测定其中元素含量时通常采用碱熔融分解样品,电感耦合等离子体发射光谱法(ICP-OES)测定。而传统的过氧化钠或其他氧化性熔剂会引入大量的盐类,酸化提取后的溶液需要进一步分离或稀释,这样不仅影响分析的准确度及较低含量元素的测定限,长时间测定还会引起等离子体信号降低,造成仪器损伤。本文将锡矿石经偏硼酸锂熔融,超声波水浴处理,用ICP-OES法同时测定锡、钨、铁、锰、铜、锌元素含量,在标准溶液中匹配等量锂盐,各待测元素之间无明显干扰,操作简单快捷,环境污染小。实验过程中结合扫描电镜-能谱(SEM-EDX)微区分析技术,观察和分析不同熔剂量下样品熔珠的形貌特征和成分差异,发现随着熔剂与样品比例从小至大,熔珠表面结构呈现由松散、易碎向细粒、致密均匀的规律性变化,当熔剂与样品的比例达到7∶1后,熔珠表面形态无明显变化,当熔剂与样品的比例为8∶1时,熔珠表面能明显检测出硼元素的存在,说明此时的熔剂过量,从而实现了应用SEM-EDX技术来确定ICP-OES法分析中熔剂与样品的最佳配比。本研究还探讨了锡矿石样品的熔融温度和时间、介质酸度,对锡矿石标准物质GBW07281进行分析测定,方法精密度(RSD)为1.20%~8.06%,方法检出限为0.0012%~0.0098%,满足了样品中元素定量分析的要求。
-
关键词:
- 锡矿石 /
- 金属元素 /
- 偏硼酸锂熔融 /
- 电感耦合等离子体发射光谱法 /
- 扫描电镜-能谱
要点(1) 采用非氧化性熔剂偏硼酸锂熔融分解锡矿石,超声波振荡提取熔盐,前处理简单快捷、准确度高,环境污染小。
(2) 通过扫描电镜-能谱微区分析发现随着熔剂的增加,熔珠表面结构呈松散向致密均匀的规律性变化,硼残留也逐渐增多,以此确定了熔剂与样品的最佳配比7:1可实现样品完全熔融。
(3) 在标准溶液中加入与样品分解流程中引入的0.7%锂盐,基体干扰可以忽略不计。
HIGHLIGHTS(1) Tin ore samples were melted by non-oxidizing flux lithium metaborate, and the molten sample was extracted by ultrasonic vibration. The sample pretreatment was simple and fast, with high accuracy and low environmental pollution.
(2) Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) analysis revealed that with the increase of flux, the surface structure of the molten bead changed regularly from loose to dense and uniform, and the residual boron gradually increased. The optimal ratio of flux to sample was determined to be 7:1, which melted the sample completely.
(3) The 0.7% lithium salt introduced in the sample decomposition was added to the standard solution, and the matrix interference was negligible.
Abstract:BACKGROUNDTin is widely distributed in the crust, and more than 20 kinds of tin minerals are known, mainly in the form of cassiterite SnO2.Cassiterite is insoluble in hydrochloric acid, nitric acid and aqua regia.Even when sulfuric acid is heated for a long time or treated with hydrofluoric acid-sulfuric acid, only a small part of it is dissolved.Therefore, for the analysis of tin ore, the alkali fusion method is usually used for sample pretreatment.
The determination methods of tin in ore include polarography, spectrophotometry, hydride generation atomic fluorescence spectrometry, emission spectrometry, inductively coupled plasma-optical emission spectrometry (ICP-OES), and inductively coupled plasma-mass spectrometry (ICP-MS).The selection of these methods mainly depends on the characteristics of the ore itself and the content of tin, but also depends on the operating conditions, the selection of reagents and other objective factors.
The ICP-OES has high sensitivity, a wide linear range and low matrix effect, which can not only be used to simultaneously determine the main and secondary elements of tin ore, but also has good precision and reproducibility, and can greatly improve the test efficiency.However, when the elemental contents are determined by ICP-OES, traditional sodium peroxide or other oxidizing fluxes introduce a large amount of salts, and the solution after acidification and extraction needs to be further separated or diluted, which not only affects the accuracy of the analysis and the determination limit of lower content elements, but also causes the signal to decrease and cause damage to the instrument during the long-term determination.
Lithiummetaborate is a non-oxidizing flux with high melting point and has strong resolution.Since Ingamells reported in 1964 that lithium metaborate is a good flux, it has been successfully applied in the decomposition of soil, silicate rocks, and even some refractory rock and mineral samples.In this study, the analysis of the elemental contents of tin ores are attempted, which are fused by lithium metaborate and measured by ICP-OES.
OBJECTIVESTo develop a method for simultaneous determination of Sn, W, Zn, Cu, Fe and Mn in tin ores which is decomposed by lithium metaborate and determined by ICP-OES.
METHODSLithium metaborate, a non-oxidizing flux with a high melting point, was used to replace the traditional sodium peroxide and other oxidizing fluxes to melt the sample.After ultrasonic water treatment, Sn, W, Zn, Cu, Fe and Mn of tin ores were determined by ICP-OES.Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) was used to observe the morphological characteristics of the sample molten beads under different flux amounts and analyze the elemental content in the molten beads.It was found that the surface structure of molten beads changed from loose and brittle to fine and compact with the proportion of flux to sample from small to large.When the ratio of flux to sample reached 7:1, the surface morphology of the molten bead had no obvious change.When the ratio of flux to sample was 8:1, the Boron element was detected on the surface of the molten bead, indicating that the flux was excessive at this time.In this way the optimal ratio of flux and sample was finally determined.
RESULTSThe optimal ratio of flux to sample was 7:1, the sample was melted at 1000℃ and extracted by 5% nitric acid solution.The method precision (RSD) was 1.20%-8.06% by determination of tin ore standard substance GBW07281.The method detection limit was 0.0012%-0.0098%.Each element was compared by this method with classical chemical analysis methods and the relative error was within 7%.
CONCLUSIONSThe content of tin, tungsten, zinc, copper, iron and manganese in tin ore is determined by ICP-OES method by means of matrix matching.There is no obvious interference between the elements to be measured.The sample pretreatment is simple, the molten salt extraction is fast, the analysis cost is low, and the environmental pollution is small.The method meets the requirement of content analysis of tin, tungsten, zinc, copper, iron and manganese in tin ore.Compared with the traditional chemical analysis method, this method is more convenient, saves a lot of time and cost, and is easy to master.
SEM-EDX is used to observe and analyze the morphology characteristics and composition content of sample residue and bead under different flux amounts, which provides a theoretical basis for determining the optimal ratio of flux and sample.
The low result of lead in the experiment may be due to the high melting temperature of lithium metaborate and the low melting point of lead oxide, which can be further studied in future work.The limitations of a single instrument in detection sensitivity, resolution, analysis rate and efficiency can be solved by the combination of a variety of analysis means, to obtain more abundant information and accurate results, which is one of the most important directions in the development of modern instrument technology.
-
-
表 1 仪器参考工作条件
Table 1 Reference operating conditions of the instrument
工作参数 设定值 工作参数 设定值 射频功率 1150W 冲洗泵速 50r/min 雾化气流速 0.2L/min 分析泵速 50r/min 辅助气流速 0.5L/min 积分时间 长波段5s 样品冲洗时间 30s 短波段7s 垂直观测高度 10mm 氩气 99.999% 表 2 标准溶液系列
Table 2 Standard solution series
元素 浓度(μg/mL) STD0 STD1 STD2 STD3 STD4 STD5 Sn 0 0.5 5 10 20 - W 0 0.1 0.5 5 20 - Zn 0 0.1 0.5 5 20 50 Cu 0 0.1 1 10 50 100 Fe 0 5 20 100 200 500 Mn 0 0.1 0.5 5 20 - 表 3 各元素测定波长和背景扣除模式
Table 3 Measurement wavelength and background subtraction mode
分析
项目波长
(nm)级次 左背景 右背景 峰位 位置 主要干扰 位置 主要干扰 Sn 189.989 477 1+2 / 11+12 / 7+8 W 239.709 141 1+2 / 11+12 / 6+7 Zn 206.200 164 1+2 / 11+12 / 6+7 Cu 327.396 103 2+3 / 11+12 / 7+8 Fe 259.940 130 2+3 / 11+12 / 7+8 Mn 257.610 131 1+2 / 11+12 / 7+8 表 4 熔融温度的影响
Table 4 Effects of fusion temperature
元素 不同熔融温度下的测定值(%) 标准值
(%)900℃ 950℃ 1000℃ 1050℃ 1100℃ Sn 3.96 4.32 4.36 4.39 4.28 4.47±0.08 W 0.047 0.058 0.062 0.059 0.056 0.068±0.005 Zn 0.68 0.75 0.71 0.68 0.69 0.74±0.02 Cu 0.25 0.27 0.26 0.25 0.24 0.26±0.01 Fe 24.72 25.16 25.06 25.23 25.09 25.13±0.25 Mn 0.76 0.89 0.93 0.92 0.88 0.91±0.05 表 5 方法精密度和准确度
Table 5 Precision and accuracy tests of the method
项目 Sn W Zn Cu Fe Mn 含量测定均值(%) 4.31 0.056 0.76 0.23 24.61 0.87 标准值(%) 4.47±0.08 0.068±0.005 0.74±0.02 0.26±0.01 25.31±0.25 0.91±0.05 相对误差(%) 4.20 8.80 1.33 6.12 1.40 2.25 RSD(%) 1.20 8.06 2.01 3.21 2.36 3.87 表 6 本文ICP-OES方法与GB/T 15924—2010方法测定Sn含量数据对比
Table 6 Comparison of Sn content determined by ICP-OES and GB/T 15924—2010 method
样品
编号Sn含量4次平行测定值(μg/g) Sn含量测定平均值(μg/g) GB/T 15924 —2010方法Sn测定值(μg/g) 相对误差(%) DZ/T 0130.3 —2006规定允许相对误差(%) 锡矿
样品112218 11962
12019 1088911772 12166 3.24 6.39 锡矿
样品28398 8466
8019 79058182 7854 4.18 7.12 锡矿
样品35005 4879
5612 47845070 4783 6.01 8.06 GBW07282 11876 11634
12959 1201512121 11827 2.48 6.39 表 7 酸溶和偏硼酸锂熔融法测定铁、铜、锌、锰、钨数据比对
Table 7 Comparison of iron, copper, zinc, manganese, and tungsten content determined by acid dissolution and lithium metaborate fusion
样品编号 W含量(%) Zn含量(%) Cu含量(%) Fe含量(%) Mn含量(%) 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 锡矿样品1 0.0080 0.0068 8.11 0.014 0.011 12.00 0.010 0.0089 5.82 0.89 0.81 4.71 0.041 0.036 6.49 锡矿样品2 0.037 0.038 1.33 0.015 0.018 9.09 0.022 0.018 10.00 1.75 1.69 1.74 0.17 0.14 9.68 锡矿样品3 0.040 0.034 8.11 0.017 0.020 8.11 0.0044 0.0051 7.37 1.52 1.38 1.38 0.15 0.16 3.23 锡矿样品4 0.036 0.030 9.09 0.28 0.25 5.66 0.070 0.082 7.89 1.84 1.69 4.25 0.068 0.059 7.09 锡矿样品5 0.041 0.040 1.23 0.14 0.13 3.70 0.035 0.039 5.41 1.76 1.70 1.73 0.075 0.062 9.49 GBW07281 0.068 0.057 8.80 0.74 0.76 1.33 0.26 0.23 6.12 25.31 24.29 2.06 0.91 0.81 5.81 GBW07282 0.015 0.013 7.14 0.91 0.96 2.67 0.32 0.29 4.92 24.06 23.80 0.54 0.33 0.34 1.49 -
[1] 曹斌, 卢静, 夏建新. 重金属锡的测定方法综述[J]. 中央民族大学学报(自然科学版), 2007(16): 350-355. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYMZ200704016.htm Chao B, Lu J, Xia J X. Summary of determination methods of tin[J]. Journal of Central University for Nationalities (Natural Science Edition), 2007(16): 350-355. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYMZ200704016.htm
[2] 陈波, 胡兰, 陈园园, 等. 地质样品中总锡测定方法的研究进展[J]. 理化检验(化学分册), 2017, 53(2): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201702029.htm Chen B, Hu L, Chen Y Y, et al. Recent progress of research on methods for determination of total tin in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(2): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201702029.htm
[3] 陈慰娟. 矿石中锡的测定方法研究[J]. 世界有色金属, 2018(21): 141-143. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201821086.htm Chen W J. Study on the determination method of tin in ore[J]. World Nonferrous Metals, 2018(21): 141-143. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201821086.htm
[4] 张灿. 矿物岩石中锡的催化极谱测定[J]. 岩矿测试, 1986, 2(5): 137-139. http://www.ykcs.ac.cn/cn/article/id/ykcs_19860242 Zhang C. Catalytic polarographic determination of tin in rocks and minerals[J]. Rock and Mineral Analysis, 1986, 2(5): 137-139. http://www.ykcs.ac.cn/cn/article/id/ykcs_19860242
[5] 朱尚志, 李红, 刘钢, 等. 矿石中高含量锡的示波极谱法测定[J]. 冶金分析, 1989, 9(4): 48-49. Zhu S Z, Li H, Liu G, et al. Determination of high content tin in ore by oscillo polarography[J]. Metallurgical Analysis, 1989, 9(4): 48-49.
[6] 黄桂芳, 李文涛. 分光光度法测定痕量锡[J]. 岩矿测试, 1991, 10(1): 38-40. http://www.ykcs.ac.cn/cn/article/id/ykcs_19910115 Huang G F, Li W T. Spectrophotometric determination of trace tin-multicomponent complex of Sn(Ⅳ)-NTA-SAF-CTMAB[J]. Rock and Mineral Analysis, 1991, 10(1): 38-40. http://www.ykcs.ac.cn/cn/article/id/ykcs_19910115
[7] 杨旭东. 原子荧光法对矿物中痕量锡的测定[J]. 世界有色金属, 2017(19): 226-227. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201719132.htm Yang X D. Determination of trace tin in minerals by atomic fluorescence spectrometry[J]. World Nonferrous Metals, 2017(19): 226-227. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201719132.htm
[8] 姚建贞, 郝志红, 唐瑞玲, 等. 固体发射光谱法测定地球化学样品中的高含量锡[J]. 光谱学与光谱分析, 2013, 33(11): 3124-3127. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201311060.htm Yao J Z, Hao Z H, Tang R L, et al. Determination of high content of tin in geochemical samples by solid emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 3124-3127. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201311060.htm
[9] 丁春霞, 王琳, 孙慧莹, 等. 发射光谱法测定生态地球化学调查样品中的银锡硼[J]. 黄金, 2012, 33(10): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201210016.htm Ding C X, Wang L, Sun H Y, et al. Determination of sliver, tin and boron in ecological geochemistry samples by emission spectrometry[J]. Gold, 2012, 33(10): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201210016.htm
[10] 刘江斌, 武永芝. 原子发射光谱法快速测定矿石中锡[J]. 冶金分析, 2013, 33(3): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201303014.htm Liu J B, Wu Y Z. Rapid determination of tin in ore by atomic emission spectrometry[J]. Metallurgical Analysis, 2013, 33(3): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201303014.htm
[11] 朱英. 改进电极发射光谱法测定地球化学样品中Ag、B、Sn[J]. 资源环境与工程, 2007, 21(4): 489-491. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200704032.htm Zhu Y. Measuring Ag, B, Sn in the geochemical sample based on modified electrode emission spectra method[J]. Resources Environment & Engineering, 2007, 21(4): 489-491. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200704032.htm
[12] 颜忠国, 白家源, 杨绍辉, 等. 电感耦合等离子体发射光谱仪测定锡精矿中锌、铜、铁、铅、镉、硫、锰、钨八种杂质元素含量[J]. 世界有色金属, 2019(19): 201-203. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201919117.htm Yan Z G, Bai J Y, Yang S H, et al. Determination of the contents of eight impurity elements of zinc, copper, iron, lead, cadmium, sulfur, manganese, and tungsten in tin concentrate by inductively coupled plasma emission spectrometer[J]. World Nonferrous Metals, 2019(19): 201-203. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201919117.htm
[13] 王凤祥. 电感耦合等离子体原子发射光谱法测定锡矿石中锡[J]. 冶金分析, 2017, 37(11): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201711013.htm Wang F X. Determination of tin in tin ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(11): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201711013.htm
[14] 杨惠玲, 夏辉, 杜天军, 等. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J]. 岩矿测试, 2013, 32(6): 887-892. http://www.ykcs.ac.cn/cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c Yang H L, Xia H, Du T J, et al. Simultaneous determination of Sn, W, Mo, Cu, Pb and Zn in tin ores by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 887-892. http://www.ykcs.ac.cn/cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c
[15] 王明芳, 耿海燕, 韩文娟. ICP-AES法测定锡矿石中的锡[J]. 广东化工, 2019, 46(8): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201908079.htm Wang M F, Geng H Y, Han W J. Determination of tin in tin ore by ICP-AES[J]. Guangdong Chemical Industry, 2019, 46(8): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201908079.htm
[16] 王艳超, 刘金龙. 电感耦合等离子体发射光谱法测定含锡矿石中的锡[J]. 化工矿产地质, 2016, 38(4): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201604012.htm Wang Y C, Liu J L. Determination of tin in tin ore containing by inductively coupled plasma-atomic emission spectrometry[J]. Geology of Chemical Minerals, 2016, 38(4): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201604012.htm
[17] 韩轲. X射线荧光光谱法同时测定钨钼锡矿石中钨、钼、锡元素含量的分析方法[J]. 中国金属通报, 2018(4): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201804134.htm Han K. X-ray fluorescence spectrometry analysis method for simultaneous determination of tungsten, moly-bdenum and tin in tungsten-molybdenum-tin ore[J]. China Metal Bulletin, 2018(4): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201804134.htm
[18] 马生凤, 赵文博, 朱云, 等. 碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素[J]. 岩矿测试, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047 Ma S F, Zhao W B, Zhu Y, et al. Determination of symbiotic and associated elements in tin ore by ICP-MS combined with pressurized acid digestion and detinning process[J]. Rock and Mineral Analysis, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047
[19] 雷占昌, 范志平, 蒋常菊, 等. 过氧化钠熔融电感耦合等离子体质谱测定锡矿石中锡量的方法[P]. CN110031535A[2019.07.19]. Lei Z C, Fan Z P, Jiang C J, et al. Method for measuring tin content in tin ore with sodium peroxide melting by inductively coupled plasma mass spectrometry[P]. CN110031535A[2019.07.19].
[20] 陈义, 曲兰, 李明旭, 等. 岩石矿物高含量锡的测定[J]. 吉林地质, 2019, 38(3): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201903017.htm Chen Y, Qu L, Li M X, et al. Determination of high content tin in rocks and minerals[J]. Jilin Geology, 2019, 38(3): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201903017.htm
[21] 梁文先, 张孟星. X射线荧光压片法测定矿石中锡的过程分析[J]. 现代科学仪器, 2017(4): 93-98. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-LFYY201610001022.htm Liang W X, Zhang M X. Determination of tin in ores by X-ray fluorescence spectrometer (XRF)[J]. Modern Scientific Instruments, 2017(4): 93-98. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-LFYY201610001022.htm
[22] 刘恒杰, 贾海峰, 谭清月. 熔融制样-X射线荧光光谱法测定钨钼锡矿中的主次成分[J]. 中国无机分析化学, 2020, 10(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202001015.htm Liu H J, Jia H F, Tan Q Y. Determination of primary and secondary components in tunggium-molybdenum tin mine by X-ray fluorescence with melt sample[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202001015.htm
[23] 陈丽梅, 罗正波, 彭琴, 等. 电感耦合等离子体原子发射光谱测定铜浸出渣中的锡[J]. 湖南有色金属, 2020, 36(3): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ202003021.htm Chen L M, Luo Z B, Peng Q, et al. Determination of tin in copper leaching residue by ICP-AES[J]. Hunan Nonferrous Metals, 2020, 36(3): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ202003021.htm
[24] 肖细炼, 王亚夫, 张春林, 等. 交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究[J]. 岩矿测试, 2020, 39(5): 699-708. doi: 10.15898/j.cnki.11-2131/td.201908020116 Xiao X L, Wang Y F, Zhang C L, et al. Simultaneous determination of silver, boron and tin in carbonate minerals by alternating current-arc optoelectronic direct reading-emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 699-708. doi: 10.15898/j.cnki.11-2131/td.201908020116
[25] 马龙, 付东磊, 马明, 等. 过氧化钠熔融-电感耦合等离子体质谱法测定锡矿石中锡[J]. 冶金分析, 2020, 40(8): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008010.htm Ma L, Fu D L, Ma M, et al. Determination of tin in tin ore by inductively coupled plasma mass spectrometry after fusion with sodium peroxide[J]. Metallurgical Analysis, 2020, 40(8): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008010.htm
[26] 杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm Yang X N, Chen D, Li X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm
[27] 王学田, 丁力, 李艳娟, 等. X射线荧光光谱法同时测定矿石中钨钼锡[J]. 分析试验室, 2015, 34(9): 1031-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201509016.htm Wang X T, Ding L, Li Y J, et al. Simultaneous determination of W, Mo and Sn in ore by X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(9): 1031-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201509016.htm
[28] 童晓民, 王楠. 熔片X射线荧光光谱法测定锡矿石中八种重金属元素[J]. 分析试验室, 2016, 35(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201601025.htm Tong X M, Wang N. X-ray fluorescence analysis of eight heavy metallic elements in tin ore using fused glass disc method[J]. Chinese Journal of Analysis Laboratory, 2016, 35(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201601025.htm
[29] 高才生, 张宝川, 呼世富. 硅酸盐岩石主要成份的快速分析-偏硼酸锂熔样和原子吸收测定[J]. 分析化学, 1985, 13(2): 139-141. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198502018.htm Gao C S, Zhang B S, Hu S F. Quick analysis of the main components of silicate rocks-lithium metaborate sample and atomic absorption determination[J]. Analytical Chemistry, 1985, 13(2): 139-141. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198502018.htm
[30] 凌进中. 含锂硼酸盐熔剂及其在近代硅酸盐快速分析中的应用[J]. 地质地球化学, 1981(6): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198106021.htm Ling J Z. Lithium-containing borate flux and its application in the rapid analysis of modern silicate[J]. Geo-Earth Chemistry, 1981(6): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198106021.htm
[31] 马生凤, 温宏利, 巩爱华, 等. 偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定硫化物矿中硅酸盐相的主成分[J]. 岩矿测试, 2009, 28(6): 535-540. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090607 Ma S F, Wen H L, Gong A H, et al. Determination of major components in silicate phase of sulphide ores by ICP-AES with lithium metaborate fusion sample pretreatment[J]. Rock and Mineral Analysis, 2009, 28(6): 535-540. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090607
[32] 姜守君, 高永宏, 胡小耕, 等. 偏硼酸锂熔融ICP-AES测定锰矿石中次量元素[J]. 甘肃科技, 2012, 28(14): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ201214013.htm Jiang S J, Gao Y H, Hu X G, et al. ICP-AES determination of minor elements in manganese ore with lithium metaborate fusion[J]. Gansu Science and Technology, 2012, 28(14): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ201214013.htm
[33] 刘虎生, 王耐芬, 刘明, 等. 偏硼酸锂熔样ICP-MS法测定土壤样品中15种痕量稀土元素[J]. 光谱学与光谱分析, 1996, 16(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN606.013.htm Liu H S, Wang N F, Liu M, et al. Determination of 15 trace rare earth elements of soil samples by ICP-MS[J]. Spectroscopy and Spectral Analysis, 1996, 16(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN606.013.htm
[34] 鲁慧文, 王英杰. 用偏硼酸锂熔样ICP-AES法测定岩石中Si、Zr等12个元素[J]. 吉林地质, 2005, 24(2): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200502023.htm Lu H W, Wang Y J. Determination of 12 elements such as Si and Zr in rock by ICP-AES with lithium metaborate fusion sample[J]. Jilin Geology, 2005, 24(2): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200502023.htm
[35] 黄劲. 电感耦合等离子体光谱仪测定锡矿石中锡钨钼铜铅锌含量[J]. 西部探矿工程, 2016(10): 151-153. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201610049.htm Huang J. Determination of tin, tungsten, molybdenum, copper, lead and zinc in tin ore by inductively coupled plasma spectrometer[J]. Western Prospecting Project, 2016(10): 151-153. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201610049.htm