• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜-能谱测定锡矿石中锡钨锌铜铁锰

王冠, 董俊, 徐国栋, 胡志中

王冠, 董俊, 徐国栋, 胡志中. 偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜-能谱测定锡矿石中锡钨锌铜铁锰[J]. 岩矿测试, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023
引用本文: 王冠, 董俊, 徐国栋, 胡志中. 偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜-能谱测定锡矿石中锡钨锌铜铁锰[J]. 岩矿测试, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023
WANG Guan, DONG Jun, XU Gongdong, HU Zhizhong. Determination of Tin, Tungsten, Zinc, Copper, Iron, and Manganese in Tin Ore by Lithium Metaborate Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry Combined with Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023
Citation: WANG Guan, DONG Jun, XU Gongdong, HU Zhizhong. Determination of Tin, Tungsten, Zinc, Copper, Iron, and Manganese in Tin Ore by Lithium Metaborate Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry Combined with Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023

偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜-能谱测定锡矿石中锡钨锌铜铁锰

基金项目: 

中国地质调查局地质调查项目 12120113021800

详细信息
    作者简介:

    王冠,硕士,高级工程师,主要从事扫描电子显微镜及岩石矿物分析工作。E-mail: 38380020@qq.com

  • 中图分类号: O657.31

Determination of Tin, Tungsten, Zinc, Copper, Iron, and Manganese in Tin Ore by Lithium Metaborate Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry Combined with Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry

  • 摘要:

    锡石不溶于盐酸、硝酸及王水,测定其中元素含量时通常采用碱熔融分解样品,电感耦合等离子体发射光谱法(ICP-OES)测定。而传统的过氧化钠或其他氧化性熔剂会引入大量的盐类,酸化提取后的溶液需要进一步分离或稀释,这样不仅影响分析的准确度及较低含量元素的测定限,长时间测定还会引起等离子体信号降低,造成仪器损伤。本文将锡矿石经偏硼酸锂熔融,超声波水浴处理,用ICP-OES法同时测定锡、钨、铁、锰、铜、锌元素含量,在标准溶液中匹配等量锂盐,各待测元素之间无明显干扰,操作简单快捷,环境污染小。实验过程中结合扫描电镜-能谱(SEM-EDX)微区分析技术,观察和分析不同熔剂量下样品熔珠的形貌特征和成分差异,发现随着熔剂与样品比例从小至大,熔珠表面结构呈现由松散、易碎向细粒、致密均匀的规律性变化,当熔剂与样品的比例达到7∶1后,熔珠表面形态无明显变化,当熔剂与样品的比例为8∶1时,熔珠表面能明显检测出硼元素的存在,说明此时的熔剂过量,从而实现了应用SEM-EDX技术来确定ICP-OES法分析中熔剂与样品的最佳配比。本研究还探讨了锡矿石样品的熔融温度和时间、介质酸度,对锡矿石标准物质GBW07281进行分析测定,方法精密度(RSD)为1.20%~8.06%,方法检出限为0.0012%~0.0098%,满足了样品中元素定量分析的要求。

    要点

    (1) 采用非氧化性熔剂偏硼酸锂熔融分解锡矿石,超声波振荡提取熔盐,前处理简单快捷、准确度高,环境污染小。

    (2) 通过扫描电镜-能谱微区分析发现随着熔剂的增加,熔珠表面结构呈松散向致密均匀的规律性变化,硼残留也逐渐增多,以此确定了熔剂与样品的最佳配比7:1可实现样品完全熔融。

    (3) 在标准溶液中加入与样品分解流程中引入的0.7%锂盐,基体干扰可以忽略不计。

    HIGHLIGHTS

    (1) Tin ore samples were melted by non-oxidizing flux lithium metaborate, and the molten sample was extracted by ultrasonic vibration. The sample pretreatment was simple and fast, with high accuracy and low environmental pollution.

    (2) Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) analysis revealed that with the increase of flux, the surface structure of the molten bead changed regularly from loose to dense and uniform, and the residual boron gradually increased. The optimal ratio of flux to sample was determined to be 7:1, which melted the sample completely.

    (3) The 0.7% lithium salt introduced in the sample decomposition was added to the standard solution, and the matrix interference was negligible.

  • 图  1   残渣形貌图(扫描电镜图片)

    Figure  1.   Scanning electron microscope pictures of the residue.

    图  2   残渣成分能谱数据图

    Figure  2.   Energy spectrum diagrams of residue composition.

    图  3   熔珠形貌图(扫描电镜图片)

    Figure  3.   Scanning electron microscope picture of the residue.

    图  4   熔珠成分能谱图

    Figure  4.   Energy spectrum diagrams of molten bead.

    表  1   仪器参考工作条件

    Table  1   Reference operating conditions of the instrument

    工作参数 设定值 工作参数 设定值
    射频功率 1150W 冲洗泵速 50r/min
    雾化气流速 0.2L/min 分析泵速 50r/min
    辅助气流速 0.5L/min 积分时间 长波段5s
    样品冲洗时间 30s 短波段7s
    垂直观测高度 10mm 氩气 99.999%
    下载: 导出CSV

    表  2   标准溶液系列

    Table  2   Standard solution series

    元素 浓度(μg/mL)
    STD0 STD1 STD2 STD3 STD4 STD5
    Sn 0 0.5 5 10 20 -
    W 0 0.1 0.5 5 20 -
    Zn 0 0.1 0.5 5 20 50
    Cu 0 0.1 1 10 50 100
    Fe 0 5 20 100 200 500
    Mn 0 0.1 0.5 5 20 -
    下载: 导出CSV

    表  3   各元素测定波长和背景扣除模式

    Table  3   Measurement wavelength and background subtraction mode

    分析
    项目
    波长
    (nm)
    级次 左背景 右背景 峰位
    位置 主要干扰 位置 主要干扰
    Sn 189.989 477 1+2 / 11+12 / 7+8
    W 239.709 141 1+2 / 11+12 / 6+7
    Zn 206.200 164 1+2 / 11+12 / 6+7
    Cu 327.396 103 2+3 / 11+12 / 7+8
    Fe 259.940 130 2+3 / 11+12 / 7+8
    Mn 257.610 131 1+2 / 11+12 / 7+8
    下载: 导出CSV

    表  4   熔融温度的影响

    Table  4   Effects of fusion temperature

    元素 不同熔融温度下的测定值(%) 标准值
    (%)
    900℃ 950℃ 1000℃ 1050℃ 1100℃
    Sn 3.96 4.32 4.36 4.39 4.28 4.47±0.08
    W 0.047 0.058 0.062 0.059 0.056 0.068±0.005
    Zn 0.68 0.75 0.71 0.68 0.69 0.74±0.02
    Cu 0.25 0.27 0.26 0.25 0.24 0.26±0.01
    Fe 24.72 25.16 25.06 25.23 25.09 25.13±0.25
    Mn 0.76 0.89 0.93 0.92 0.88 0.91±0.05
    下载: 导出CSV

    表  5   方法精密度和准确度

    Table  5   Precision and accuracy tests of the method

    项目 Sn W Zn Cu Fe Mn
    含量测定均值(%) 4.31 0.056 0.76 0.23 24.61 0.87
    标准值(%) 4.47±0.08 0.068±0.005 0.74±0.02 0.26±0.01 25.31±0.25 0.91±0.05
    相对误差(%) 4.20 8.80 1.33 6.12 1.40 2.25
    RSD(%) 1.20 8.06 2.01 3.21 2.36 3.87
    下载: 导出CSV

    表  6   本文ICP-OES方法与GB/T 15924—2010方法测定Sn含量数据对比

    Table  6   Comparison of Sn content determined by ICP-OES and GB/T 15924—2010 method

    样品
    编号
    Sn含量4次平行测定值(μg/g) Sn含量测定平均值(μg/g) GB/T 15924 —2010方法Sn测定值(μg/g) 相对误差(%) DZ/T 0130.3 —2006规定允许相对误差(%)
    锡矿
    样品1
    12218 11962
    12019 10889
    11772 12166 3.24 6.39
    锡矿
    样品2
    8398 8466
    8019 7905
    8182 7854 4.18 7.12
    锡矿
    样品3
    5005 4879
    5612 4784
    5070 4783 6.01 8.06
    GBW07282 11876 11634
    12959 12015
    12121 11827 2.48 6.39
    下载: 导出CSV

    表  7   酸溶和偏硼酸锂熔融法测定铁、铜、锌、锰、钨数据比对

    Table  7   Comparison of iron, copper, zinc, manganese, and tungsten content determined by acid dissolution and lithium metaborate fusion

    样品编号 W含量(%) Zn含量(%) Cu含量(%) Fe含量(%) Mn含量(%)
    酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差 酸溶 偏硼酸锂熔融 相对误差
    锡矿样品1 0.0080 0.0068 8.11 0.014 0.011 12.00 0.010 0.0089 5.82 0.89 0.81 4.71 0.041 0.036 6.49
    锡矿样品2 0.037 0.038 1.33 0.015 0.018 9.09 0.022 0.018 10.00 1.75 1.69 1.74 0.17 0.14 9.68
    锡矿样品3 0.040 0.034 8.11 0.017 0.020 8.11 0.0044 0.0051 7.37 1.52 1.38 1.38 0.15 0.16 3.23
    锡矿样品4 0.036 0.030 9.09 0.28 0.25 5.66 0.070 0.082 7.89 1.84 1.69 4.25 0.068 0.059 7.09
    锡矿样品5 0.041 0.040 1.23 0.14 0.13 3.70 0.035 0.039 5.41 1.76 1.70 1.73 0.075 0.062 9.49
    GBW07281 0.068 0.057 8.80 0.74 0.76 1.33 0.26 0.23 6.12 25.31 24.29 2.06 0.91 0.81 5.81
    GBW07282 0.015 0.013 7.14 0.91 0.96 2.67 0.32 0.29 4.92 24.06 23.80 0.54 0.33 0.34 1.49
    下载: 导出CSV
  • [1] 曹斌, 卢静, 夏建新. 重金属锡的测定方法综述[J]. 中央民族大学学报(自然科学版), 2007(16): 350-355. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYMZ200704016.htm

    Chao B, Lu J, Xia J X. Summary of determination methods of tin[J]. Journal of Central University for Nationalities (Natural Science Edition), 2007(16): 350-355. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYMZ200704016.htm

    [2] 陈波, 胡兰, 陈园园, 等. 地质样品中总锡测定方法的研究进展[J]. 理化检验(化学分册), 2017, 53(2): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201702029.htm

    Chen B, Hu L, Chen Y Y, et al. Recent progress of research on methods for determination of total tin in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(2): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201702029.htm

    [3] 陈慰娟. 矿石中锡的测定方法研究[J]. 世界有色金属, 2018(21): 141-143. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201821086.htm

    Chen W J. Study on the determination method of tin in ore[J]. World Nonferrous Metals, 2018(21): 141-143. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201821086.htm

    [4] 张灿. 矿物岩石中锡的催化极谱测定[J]. 岩矿测试, 1986, 2(5): 137-139. http://www.ykcs.ac.cn/cn/article/id/ykcs_19860242

    Zhang C. Catalytic polarographic determination of tin in rocks and minerals[J]. Rock and Mineral Analysis, 1986, 2(5): 137-139. http://www.ykcs.ac.cn/cn/article/id/ykcs_19860242

    [5] 朱尚志, 李红, 刘钢, 等. 矿石中高含量锡的示波极谱法测定[J]. 冶金分析, 1989, 9(4): 48-49.

    Zhu S Z, Li H, Liu G, et al. Determination of high content tin in ore by oscillo polarography[J]. Metallurgical Analysis, 1989, 9(4): 48-49.

    [6] 黄桂芳, 李文涛. 分光光度法测定痕量锡[J]. 岩矿测试, 1991, 10(1): 38-40. http://www.ykcs.ac.cn/cn/article/id/ykcs_19910115

    Huang G F, Li W T. Spectrophotometric determination of trace tin-multicomponent complex of Sn(Ⅳ)-NTA-SAF-CTMAB[J]. Rock and Mineral Analysis, 1991, 10(1): 38-40. http://www.ykcs.ac.cn/cn/article/id/ykcs_19910115

    [7] 杨旭东. 原子荧光法对矿物中痕量锡的测定[J]. 世界有色金属, 2017(19): 226-227. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201719132.htm

    Yang X D. Determination of trace tin in minerals by atomic fluorescence spectrometry[J]. World Nonferrous Metals, 2017(19): 226-227. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201719132.htm

    [8] 姚建贞, 郝志红, 唐瑞玲, 等. 固体发射光谱法测定地球化学样品中的高含量锡[J]. 光谱学与光谱分析, 2013, 33(11): 3124-3127. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201311060.htm

    Yao J Z, Hao Z H, Tang R L, et al. Determination of high content of tin in geochemical samples by solid emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 3124-3127. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201311060.htm

    [9] 丁春霞, 王琳, 孙慧莹, 等. 发射光谱法测定生态地球化学调查样品中的银锡硼[J]. 黄金, 2012, 33(10): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201210016.htm

    Ding C X, Wang L, Sun H Y, et al. Determination of sliver, tin and boron in ecological geochemistry samples by emission spectrometry[J]. Gold, 2012, 33(10): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201210016.htm

    [10] 刘江斌, 武永芝. 原子发射光谱法快速测定矿石中锡[J]. 冶金分析, 2013, 33(3): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201303014.htm

    Liu J B, Wu Y Z. Rapid determination of tin in ore by atomic emission spectrometry[J]. Metallurgical Analysis, 2013, 33(3): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201303014.htm

    [11] 朱英. 改进电极发射光谱法测定地球化学样品中Ag、B、Sn[J]. 资源环境与工程, 2007, 21(4): 489-491. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200704032.htm

    Zhu Y. Measuring Ag, B, Sn in the geochemical sample based on modified electrode emission spectra method[J]. Resources Environment & Engineering, 2007, 21(4): 489-491. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200704032.htm

    [12] 颜忠国, 白家源, 杨绍辉, 等. 电感耦合等离子体发射光谱仪测定锡精矿中锌、铜、铁、铅、镉、硫、锰、钨八种杂质元素含量[J]. 世界有色金属, 2019(19): 201-203. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201919117.htm

    Yan Z G, Bai J Y, Yang S H, et al. Determination of the contents of eight impurity elements of zinc, copper, iron, lead, cadmium, sulfur, manganese, and tungsten in tin concentrate by inductively coupled plasma emission spectrometer[J]. World Nonferrous Metals, 2019(19): 201-203. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201919117.htm

    [13] 王凤祥. 电感耦合等离子体原子发射光谱法测定锡矿石中锡[J]. 冶金分析, 2017, 37(11): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201711013.htm

    Wang F X. Determination of tin in tin ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(11): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201711013.htm

    [14] 杨惠玲, 夏辉, 杜天军, 等. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J]. 岩矿测试, 2013, 32(6): 887-892. http://www.ykcs.ac.cn/cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c

    Yang H L, Xia H, Du T J, et al. Simultaneous determination of Sn, W, Mo, Cu, Pb and Zn in tin ores by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 887-892. http://www.ykcs.ac.cn/cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c

    [15] 王明芳, 耿海燕, 韩文娟. ICP-AES法测定锡矿石中的锡[J]. 广东化工, 2019, 46(8): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201908079.htm

    Wang M F, Geng H Y, Han W J. Determination of tin in tin ore by ICP-AES[J]. Guangdong Chemical Industry, 2019, 46(8): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201908079.htm

    [16] 王艳超, 刘金龙. 电感耦合等离子体发射光谱法测定含锡矿石中的锡[J]. 化工矿产地质, 2016, 38(4): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201604012.htm

    Wang Y C, Liu J L. Determination of tin in tin ore containing by inductively coupled plasma-atomic emission spectrometry[J]. Geology of Chemical Minerals, 2016, 38(4): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201604012.htm

    [17] 韩轲. X射线荧光光谱法同时测定钨钼锡矿石中钨、钼、锡元素含量的分析方法[J]. 中国金属通报, 2018(4): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201804134.htm

    Han K. X-ray fluorescence spectrometry analysis method for simultaneous determination of tungsten, moly-bdenum and tin in tungsten-molybdenum-tin ore[J]. China Metal Bulletin, 2018(4): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201804134.htm

    [18] 马生凤, 赵文博, 朱云, 等. 碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素[J]. 岩矿测试, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047

    Ma S F, Zhao W B, Zhu Y, et al. Determination of symbiotic and associated elements in tin ore by ICP-MS combined with pressurized acid digestion and detinning process[J]. Rock and Mineral Analysis, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047

    [19] 雷占昌, 范志平, 蒋常菊, 等. 过氧化钠熔融电感耦合等离子体质谱测定锡矿石中锡量的方法[P]. CN110031535A[2019.07.19].

    Lei Z C, Fan Z P, Jiang C J, et al. Method for measuring tin content in tin ore with sodium peroxide melting by inductively coupled plasma mass spectrometry[P]. CN110031535A[2019.07.19].

    [20] 陈义, 曲兰, 李明旭, 等. 岩石矿物高含量锡的测定[J]. 吉林地质, 2019, 38(3): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201903017.htm

    Chen Y, Qu L, Li M X, et al. Determination of high content tin in rocks and minerals[J]. Jilin Geology, 2019, 38(3): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201903017.htm

    [21] 梁文先, 张孟星. X射线荧光压片法测定矿石中锡的过程分析[J]. 现代科学仪器, 2017(4): 93-98. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-LFYY201610001022.htm

    Liang W X, Zhang M X. Determination of tin in ores by X-ray fluorescence spectrometer (XRF)[J]. Modern Scientific Instruments, 2017(4): 93-98. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-LFYY201610001022.htm

    [22] 刘恒杰, 贾海峰, 谭清月. 熔融制样-X射线荧光光谱法测定钨钼锡矿中的主次成分[J]. 中国无机分析化学, 2020, 10(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202001015.htm

    Liu H J, Jia H F, Tan Q Y. Determination of primary and secondary components in tunggium-molybdenum tin mine by X-ray fluorescence with melt sample[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202001015.htm

    [23] 陈丽梅, 罗正波, 彭琴, 等. 电感耦合等离子体原子发射光谱测定铜浸出渣中的锡[J]. 湖南有色金属, 2020, 36(3): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ202003021.htm

    Chen L M, Luo Z B, Peng Q, et al. Determination of tin in copper leaching residue by ICP-AES[J]. Hunan Nonferrous Metals, 2020, 36(3): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ202003021.htm

    [24] 肖细炼, 王亚夫, 张春林, 等. 交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究[J]. 岩矿测试, 2020, 39(5): 699-708. doi: 10.15898/j.cnki.11-2131/td.201908020116

    Xiao X L, Wang Y F, Zhang C L, et al. Simultaneous determination of silver, boron and tin in carbonate minerals by alternating current-arc optoelectronic direct reading-emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 699-708. doi: 10.15898/j.cnki.11-2131/td.201908020116

    [25] 马龙, 付东磊, 马明, 等. 过氧化钠熔融-电感耦合等离子体质谱法测定锡矿石中锡[J]. 冶金分析, 2020, 40(8): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008010.htm

    Ma L, Fu D L, Ma M, et al. Determination of tin in tin ore by inductively coupled plasma mass spectrometry after fusion with sodium peroxide[J]. Metallurgical Analysis, 2020, 40(8): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008010.htm

    [26] 杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm

    Yang X N, Chen D, Li X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm

    [27] 王学田, 丁力, 李艳娟, 等. X射线荧光光谱法同时测定矿石中钨钼锡[J]. 分析试验室, 2015, 34(9): 1031-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201509016.htm

    Wang X T, Ding L, Li Y J, et al. Simultaneous determination of W, Mo and Sn in ore by X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(9): 1031-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201509016.htm

    [28] 童晓民, 王楠. 熔片X射线荧光光谱法测定锡矿石中八种重金属元素[J]. 分析试验室, 2016, 35(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201601025.htm

    Tong X M, Wang N. X-ray fluorescence analysis of eight heavy metallic elements in tin ore using fused glass disc method[J]. Chinese Journal of Analysis Laboratory, 2016, 35(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201601025.htm

    [29] 高才生, 张宝川, 呼世富. 硅酸盐岩石主要成份的快速分析-偏硼酸锂熔样和原子吸收测定[J]. 分析化学, 1985, 13(2): 139-141. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198502018.htm

    Gao C S, Zhang B S, Hu S F. Quick analysis of the main components of silicate rocks-lithium metaborate sample and atomic absorption determination[J]. Analytical Chemistry, 1985, 13(2): 139-141. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198502018.htm

    [30] 凌进中. 含锂硼酸盐熔剂及其在近代硅酸盐快速分析中的应用[J]. 地质地球化学, 1981(6): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198106021.htm

    Ling J Z. Lithium-containing borate flux and its application in the rapid analysis of modern silicate[J]. Geo-Earth Chemistry, 1981(6): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198106021.htm

    [31] 马生凤, 温宏利, 巩爱华, 等. 偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定硫化物矿中硅酸盐相的主成分[J]. 岩矿测试, 2009, 28(6): 535-540. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090607

    Ma S F, Wen H L, Gong A H, et al. Determination of major components in silicate phase of sulphide ores by ICP-AES with lithium metaborate fusion sample pretreatment[J]. Rock and Mineral Analysis, 2009, 28(6): 535-540. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090607

    [32] 姜守君, 高永宏, 胡小耕, 等. 偏硼酸锂熔融ICP-AES测定锰矿石中次量元素[J]. 甘肃科技, 2012, 28(14): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ201214013.htm

    Jiang S J, Gao Y H, Hu X G, et al. ICP-AES determination of minor elements in manganese ore with lithium metaborate fusion[J]. Gansu Science and Technology, 2012, 28(14): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ201214013.htm

    [33] 刘虎生, 王耐芬, 刘明, 等. 偏硼酸锂熔样ICP-MS法测定土壤样品中15种痕量稀土元素[J]. 光谱学与光谱分析, 1996, 16(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN606.013.htm

    Liu H S, Wang N F, Liu M, et al. Determination of 15 trace rare earth elements of soil samples by ICP-MS[J]. Spectroscopy and Spectral Analysis, 1996, 16(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN606.013.htm

    [34] 鲁慧文, 王英杰. 用偏硼酸锂熔样ICP-AES法测定岩石中Si、Zr等12个元素[J]. 吉林地质, 2005, 24(2): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200502023.htm

    Lu H W, Wang Y J. Determination of 12 elements such as Si and Zr in rock by ICP-AES with lithium metaborate fusion sample[J]. Jilin Geology, 2005, 24(2): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200502023.htm

    [35] 黄劲. 电感耦合等离子体光谱仪测定锡矿石中锡钨钼铜铅锌含量[J]. 西部探矿工程, 2016(10): 151-153. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201610049.htm

    Huang J. Determination of tin, tungsten, molybdenum, copper, lead and zinc in tin ore by inductively coupled plasma spectrometer[J]. Western Prospecting Project, 2016(10): 151-153. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201610049.htm

图(4)  /  表(7)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  179
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-09
  • 修回日期:  2021-04-04
  • 录用日期:  2022-01-26
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-01-27

目录

    /

    返回文章
    返回