Determination of Phenolic Compounds from Lignin Decomposition Products in Marine Sediments by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry
-
摘要:
木质素分解产物酚类化合物是指示海洋环境中陆源有机碳来源的重要生物标志物,因此,开发检测海洋沉积物中木质素分解产物酚类化合物的简便方法,对研究海洋有机碳的来源及生物地球化学循环过程具有重要意义。本文采用固相萃取(SPE)和超高效液相色谱-飞行时间质谱技术(UHPLC-TOF/MS),建立了一种同步测定海洋沉积物中木质素分解产物酚类化合物(11种)的方法。首先对海洋沉积物样品进行氧化铜氧化碱分解和SPE净化处理,再采用填料粒径为1.8μm的反相C18柱进行分离,电喷雾TOF/MS全扫描模式检测,内标法定量。结果表明:沉积物中木质素的11种主要分解产物酚类化合物在20min内分离良好;方法具有良好的精密度(相对标准偏差RSD均小于9.0%),在线性范围内相关系数(R2)均不小于0.9989,加标回收率在86.8%~93.2%之间。应用该方法对莱州湾表层沉积物中木质素分解产物酚类化合物进行测定,12个表层沉积物样品中11种目标化合物的检出率均为100%;相关诊断比值:肉桂基酚系列单体总量与香草基酚系列单体总量的比值C/V在0.18~0.81之间,均值为0.38;丁香基酚系列单体总量与香草基酚系列单体总量的比值S/V在0.18~0.45之间,均值为0.26;对羟基酚系列单体中酮的量与对羟基酚系列单体总量的比值PON/P在0.01~0.07之间,均值为0.03;P系列单体总量与V和S系列单体总量之和的比值P/(V+S)在0.55~3.77之间,均值为1.44;V系列中酸类单体与醛类单体的比值(Ad/Al)v在0.12~1.07之间,均值为0.49;S系列单体中酸类单体与醛类单体的比值(Ad/Al)s在0.15~1.26之间,均值为1.02。表明莱州湾表层沉积物中的木质素主要来源于被子植物草本组织,并且具有中等或偏高程度的降解,但仍有少量新鲜植物有机质。本研究也表明UHPLC-TOF/MS是测定海洋沉积物中木质素分解产物酚类化合物的高效方法,能对沉积物中木质素含量和有机质来源进行有效指示。
-
关键词:
- 电喷雾飞行时间质谱法 /
- 木质素 /
- 酚类化合物 /
- 有机碳 /
- 莱州湾
Abstract:BACKGROUNDLignin is an important component of marine organic carbon. It is also an important biomarker for extracting information on the evolution of the land and marine environment and tracking the source of organic marine matter. However, the existing analytical techniques are difficult to determine lignin directly. So, the content of phenolic compounds in the decomposition products of lignin in marine sediments were generally determined to indicate the content of lignin and the source of organic matter. The content of phenolic compounds in the decomposition products of lignin in marine sediments is often used to reflect the content of lignin. In addition, by calculating the diagnostic ratio of individual phenolic compounds, it also provides important information about the classification, source, and diagenesis of terrestrial organic matter in marine sediments. However, phenolic compounds in the decomposition products of lignin have the characteristics of strong polarity and low volatility, so they cannot be directly detected by gas chromatography and need to be derivatized first, which makes the sample processing complicated and often results in incomplete derivatization. Therefore, it is of great significance to develop a simple and reliable method for determination of phenolic compounds of the lignin decomposition products in marine sediments to explore the source of organic matter and understand the environmental evolution process.
OBJECTIVESTo establish a simple and reliable method for the determination of phenolic compounds of lignin decomposition products in marine sediments using solid phase extraction (SPE) combined with ultra-high performance liquid chromatography-high resolution mass spectrometry, and to trace the content level and source of lignin in the sediments of Laizhou Bay in China.
METHODSMarine sediment samples were first decomposed with oxidative-alkaline CuO and extracted by solid phase extraction. Briefly, the oxidation was carried out in a polytetrafluoroethylene digestion tank. 1.00g of sediment sample, 500mg of copper oxide, and 100mg of ammonium ferrous sulfate were accurately weighed and placed in the tank. The components were thoroughly mixed with the sample and then the digestion tank was transferred to a glove box filled with nitrogen. 8.0mL of aqueous sodium hydroxide solution with a concentration of 8.0% (bubbled with N2 to remove dissolved oxygen) was added to the tank. The digestion tank was covered tightly and transferred to an oven heating to 150℃ for reaction, which was terminated after 3h. After the digestion tank cooled to room temperature, it was carefully unscrewed, and an internal standard (ethyl vanillin) solution was added. Subsequently, the hydrolysate was transferred to a centrifuge tube, spun at 8000r/min for 10min, and the supernatant and reaction residue was separated. 2.0mL of 1.0% sodium hydroxide solution was added to rinse the residue, and centrifuged at 8000r/min for 10min. Combining the centrifuged supernatant obtained twice, the solution was acidified to pH=1 with hydrochloric acid. After the solution was left to stand for 30 minutes, solid phase extraction was performed. The SPE procedure was as follows: A hydrophilic-lipophilic balance (HLB) SPE cartridge (200mg, 6mL) was conditioned with 5mL of methanol and 5mL of ultrapure water. Sample solution was passed through the cartridge in a flow rate 1.0mL/min, and then the cartridges were rinsed with 10mL water, and dried under vacuum for about 3min. Phenolic compounds were eluted with 10mL ethyl acetate, and were evaporated by a rotary evaporator, reconstituted with sample solvent. Then, ultra-high performance liquid chromatography using ZORBAX Eclipse XDB-C18 column with packing particle size of 1.8μm was used to directly separate all target compounds at 28℃, with gradient elution. The mobile phase was composed of ultrapure water with 0.1% formic acid (V/V) and acetonitrile/methanol (9:1, V/V) , and the flow rate was set to 0.25mL/min. Electrospray ionization (in positive) time of flight mass spectrometry was applied to detect target compounds in full scan mode, and quantification was performed using an internal standard determination.
RESULTSFirstly, chromatographic conditions and solid phase extraction conditions were systematically optimized. Ultra-high performance liquid chromatography was used for the chromatographic separation of phenolic compounds from lignin decomposition products in marine sediments. The separation effects of three mobile phase systems, namely, water-acetonitrile, water- methanol, and water-methanol-acetonitrile, were compared. When using a water-methanol -acetonitrile ternary mobile phase system, the resolution of various phenolic compounds was superior to the commonly used water-acetonitrile or water-methanol binary mobile phase systems in the literature. In addition, the effects of mobile phase acidity (trifluoroacetic acid, formic acid, and acetic acid were added into the mobile phase) on the separation of various phenolic compounds were investigated. The results showed that adding a certain concentration of all three acids to the mobile phase provided better separation results. Considering the compatibility with mass spectrometry, it was finally determined that adding 0.1% formic acid into the mobile phase achieved good peak patterns and resolution. In order to determine the ionization mode suitable for the analysis of phenolic compounds from lignin decomposition products in marine sediment, electrospray ionization (ESI) mass spectrometry was performed on each target phenolic compound in ESI+ and ESI− mode, respectively. Under ESI+ mode, various target phenolic compounds were less affected by interfering substances in the sample matrix, and the MS response value for most of the phenolic compounds was higher than that found in ESI− mode. Hence, ESI-TOF/MS in positive mode was selected to determine phenolic compounds of lignin decomposition products in marine sediment. Subsequently, the fragmentation voltage was optimized to obtain the highest sensitivity for all target phenolic compounds, which was the main mass spectrometric condition that affected the quantification accuracy and sensitivity. The effect of fragmentation voltage on the MS response signal of each target phenolic compound was investigated in the range of 80V to 200V. Overall, considering the detection sensitivity of the [M+H]+ ion peak of each target compound, 130V was selected as the optimal fragmentation voltage to determine phenolic compounds of lignin decomposition products in marine sediment. The effect of pH (1.0-2.5) of the loading solution for solid phase extraction on the extraction efficiency of various target phenolic compounds was systematically investigated, to ensure that the phenolic compounds of lignin decomposition products in marine sediments have a good recovery rate during the SPE process. When the pH of the loading solution was 1.0 and 1.5, the recovery rate of various phenolic compounds by using HLB solid phase extraction column was significantly higher than that of the loading solution adjusted pH to 2.0 and 2.5. When the pH of the sample solution was 1.0 and 1.5, although the recoveries of syringaldehyde and acetovanillone were relatively similar, the recoveries of other phenolic compounds were the highest at a pH of 1.0. Considering the recovery rate of all the target phenolic compounds and applicability of the method, the pH of the sample solution was confirmed to adjust to 1.0. In this study, HLB SPE column with 200mg of packing material was used to enrich phenolic compounds in sample extraction solution. Generally, 5-10mL of eluting solvent can ensure the full elution of all target phenolic compounds adsorbed on the SPE column. Therefore, based on the results of literature research, ethyl acetate was finally selected as the eluting solvent, with a dosage of 10mL. Under the optimum experimental conditions, the 11 main decomposition phenol compounds of lignin in marine sediments were well separated within 20 minutes. The proposed method had good precision (RSD was less than 9.0%), the correlation coefficient (R2) was not less than 0.9989 in the linear range, and the recovery rate of all spiked phenol compounds in blank marine sediment was in the range of 86.8%-93.2%, thereby indicating that the developed method would be suitable to determine the target decomposition phenol compounds of lignin in marine sediment. Subsequently, the method was used to determine the phenolic compounds of lignin decomposition products in the surface sediments of Laizhou Bay. The detection rate of 11 target phenolic compounds in 12 surface sediment samples was 100%, and the concentration of Σ8 in 12 surface sediment samples ranged from 0.001mg/10gds to 0.019mg/10gds. The value of C/V was between 0.18 and 0.81, with an average of 0.38; the value of S/V was between 0.18 and 0.45, with an average of 0.26; PON/P value was between 0.01 and 0.07, with an average of 0.03; P/(V+S) value was between 0.55 and 3.77, with an average of 1.44; (Ad/Al)v value was between 0.12 and 1.07, with an average of 0.48; the value of (Ad/Al)s was between 0.15 and 1.26, with an average of 1.02.
CONCLUSIONSThe above diagnostic ratios indicate that the lignin in the surface sediments of Laizhou Bay originate mainly from the herbaceous tissue of angiosperms, while the proportion of organic matter in vascular plants is relatively low. The degradation degree of terrestrial organic matter in most sampling stations is medium or high, but there is still a small amount of fresh plant debris. The proposed method has the advantages of high efficiency, simple for sample pretreatment, and is a powerful technique for the determination of main decomposition product phenolic compounds of lignin in marine sediments.
-
银作为土壤背景值的一个重要指标,是土壤环境监测、矿产资源和地球化学调查的常规检测元素,准确测定银含量在环境保护、监测工作和矿产资源预测等方面具有很重要的现实意义。土壤和水系沉积物中银的丰度很低,一般在ng/g级别,主要测试方法有石墨炉原子吸收光谱法[1-2]、交流电弧-发射光谱法[3-5]、电感耦合等离子体质谱法(ICP-MS)[6-8]等。其中,石墨炉原子吸收光谱法每次只能测定单个元素,测量时间长,且存在基体效应,需要选择合适的基体改进剂,不适用于批量样品的测定;交流电弧-发射光谱法的检出限相对较高,测定范围较窄,只适用于银硼锡钼等少数几种元素的测定;ICP-MS具备多元素同时测定、干扰少、检出限低、线性范围宽的特点,是环境、地质、农业等部门检测银的一种重要手段。
ICP-MS法在测定银元素时,银的两个天然同位素107Ag和109Ag分别受到91Zr16O+、90Zr16O1H+、93Nb14N+和93Nb16O+、91Zr16OH2+、92Zr16OH+等多原子离子质谱干扰。土壤和水系沉积物样品中铌、锆的含量远高于银,这些干扰的存在使得ICP-MS法直接测定土壤和水系沉积物样品中的银还存在一定的问题[7]。单四极杆ICP-MS法主要采取两类方法消除这些质谱干扰:一是通过前处理过程分离基体或富集银元素,包括三种途径:①采用王水[9-10]、逆王水[11]不完全分解样品,减少铌、锆的溶出量,从而实现银与铌、锆分离,但因该方法不能破坏硅酸盐结构,故可能导致银元素无法完全溶出,使得这种方式在应用上有一定的局限性;②采用氨水[12]、磷酸[13-14]等沉淀剂处理消解液以分离银元素和干扰基体,有效地解决了铌、锆干扰的问题,但这类操作过程复杂,可能存在沉淀吸附现象,对沉淀剂的纯度有一定的要求以防引入污染;③采用泡塑[15]、P507树脂[16]选择性吸附富集消解液中银元素,实现银与干扰基体分离,但操作繁琐,流程较长,不利于大批量样品测试。二是在测试过程中采用干扰消除技术:①采用膜去溶技术[17]减少溶剂进入等离子体,有效地抑制氧化物或氢氧化物的产生,可将锆的氧化物和氢氧化物产率降低至0.0005%,并通过多种类型地质样品验证方法的可行性,但一般实验室不具备膜去溶设备,且该设备对样品基体的要求较高;②采用在线干扰方程进行校正[18-19]实现了土壤和水系沉积物中银的测定,但实际应用过程中干扰系数并不相同;③采用碰撞/反应技术[20-23]可降低质谱干扰对测定的影响,如王家恒等[20]采用单四极杆ICP-MS反应模式能将2mg/L的铌、锆混合溶液对银的干扰降低250多倍,但对干扰更严重的样品其消除干扰能力有限,碰撞模式会降低灵敏度且不适用于铌、锆干扰较强的样品,针对不同类型的样品可能需要选用不同的去除干扰方法。相比于单四极杆ICP-MS,电感耦合等离子体串联质谱仪(ICP-MS/MS)在碰撞反应池前增加了一组四极杆质量过滤器,能够利用第一组四极杆(Q1)进行质量筛选,有效地筛选目标离子进入碰撞/反应池(Q2),通过各种反应气体(氧气、氨气、甲烷等)与待测离子或干扰离子反应,再通过第二组四极杆质量过滤器(Q3)检测通过碰撞反应池产生的反应生成物,使得待测离子和干扰离子分离从而降低干扰[24-26]。
本文探讨了采用ICP-MS/MS碰撞/反应技术消除铌、锆氧化物和氢氧化物对银测定的质谱干扰,选用三种气体(氦气、氧气、氨气)作为碰撞/反应气体,根据铌、锆对银的干扰情况和土壤及水系沉积物中三种元素的丰度选择合适的分析同位素,通过不同气体模式下m/z=109处银与铌、锆的氧化物和氢氧化物质谱行为及信号强度变化,研究了相应的干扰消除原理及效果并选择了合适的测定模式,优化气体流速考察了四种测定模式(氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式)的干扰消除程度并通过测定不同浓度铌、锆溶液进一步验证了四种模式消除干扰的效果。优化仪器条件后,比较了四种测定模式的检出限、灵敏度,并用土壤和水系沉积物国家标准物质进行了精密度、准确度验证实验,建立了采用不同模式准确分析土壤和水系沉积物中银含量的方法。
1. 实验部分
1.1 仪器与设备
NexION 5000型电感耦合等离子体串联质谱仪(美国PerkinElmer公司),进样系统包括PC3雾室制冷器、micro-flow雾化器、石英旋流雾室等。
BSA-CW型万分之一分析天平(德国Sartorius公司);ST60型全自动石墨消解仪(中国普立泰科公司);Milli-Q型去离子水机(美国Millipore公司)等。
1.2 标准溶液和主要试剂
1000mg/L银(Ag)、铌(Nb)、锆(Zr)、铑(Rh)标准溶液(国家有色金属及电子材料分析测试中心)。
仪器调谐液:Be、Ce、Fe、In、Li、Mg、Pb、U的浓度均为200ng/L(美国PerkinElmer公司)。
硝酸、盐酸、氢氟酸和高氯酸均为电子级(天津市风船化学试剂科技有限公司);去离子水(电阻率18.2MΩ·cm)。
1.3 实验样品及制备方法
选取目标元素、干扰元素及干扰元素与目标元素比值均具有一定浓度梯度、样品性质有代表性的土壤标准物质GBW07403~GBW07405、GBW07407、GBW07451和水系沉积物标准物质GBW07302a、GBW07305a、GBW07309、GBW07311、GBW07375(中国地质科学院地球物理地球化学勘查研究所),其中银含量为0.040~4.4mg/kg,铌含量为6.2~64mg/kg,锆含量为87.6~500mg/kg;铌含量与银含量比值在8~1123倍之间,锆含量与银含量比值在48~7143倍之间。
样品制备方法如下:称取0.1000g样品于50mL聚四氟乙烯消解管中,用去离子水润湿样品,加入5mL盐酸、10mL硝酸、5mL氢氟酸、1mL高氯酸,将消解管置于石墨消解仪上,先升温至120℃加热60min,再升温至160℃加热60min,最后升温至180℃加热至冒白烟,并蒸至白烟几乎冒尽,内溶物呈不流动状,趁热加入2%的硝酸溶液温热溶解残渣,冷却至室温后,用2%的硝酸溶液定容至50mL。同时做空白实验。
1.4 质谱分析主要测量模式及工作条件
1.4.1 产物离子扫描模式
产物离子扫描模式是指第一组四极杆设置一个固定的质荷比(m/z),使特定质荷比的离子进入碰撞/反应池与不同的气体发生作用;第二组四极杆质量过滤器扫描的是整个(或部分)质量范围,该模式可以用于研究所选前体离子与不同的气体发生作用后得到的反应产物离子。本实验采用该模式主要用于研究m/z=109处各种离子(109Ag+、93Nb16O+、91Zr16OH2+、92Zr16OH+等)在不同气体条件(标准、氦气、氧气和氨气)下质谱行为及信号强度变化,从而确定选择合适的测量模式。
1.4.2 测量模式
ICP-MS/MS主要有两种测量模式:一种是原位质量模式(MS/MS),主要用于测量未与池气体反应的元素,检测具有初始质荷比的离子(Q1=Q3);另一种是质量转移模式(Mass-Shift),主要用于测量与池气体反应的元素,检测m/z值与其初始值不同的离子(Q1≠Q3),这两种模式均可搭配不同的碰撞/反应气体使用。本实验采用标准MS/MS模式、氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式和氨气Mass-Shift模式,比较不同测量模式下质谱干扰情况及消除效果,进行池气体流速优化和方法适用性研究。
1.4.3 工作条件
等离子体功率1600W;雾化气流速0.90L/min;雾室温度5.0℃;在线加入内标Rh,浓度为10μg/L;标准MS/MS模式、氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式和氨气Mass-Shift模式5种测量模式的参数见表 1,产物离子扫描模式除Q3设置为m/z =80~200外其他条件与上述测量模式相同。
表 1 ICP-MS/MS仪器工作参数Table 1. Working parameters of ICP-MS/MS instrument工作参数 标准MS/MS模式 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式 产物离子 109Ag+ 109Ag+ 109Ag+ 109Ag+ 109Ag17(NH3)2+ Q1→Q3(m/z) 109→109 109→109 109→109 109→109 109→143 质量切割参数(RPq) 0.25 0.25 0.45 0.45 0.45 池气体 - He O2 NH3 NH3 气体流速(mL/min) - 7.0 2.6 1.8 1.8 2. 结果与讨论
2.1 分析同位素的选择
银的两个天然同位素107Ag(51.8%)、109Ag(48.2%)其丰度相近、灵敏度相当且均受到不同程度的铌、锆氧化物或氢氧化物的质谱干扰。ICP-MS测试土壤和水系沉积物中银元素时,刘彤彤等[14]考虑到107Ag主要受到锆的干扰而109Ag同时受到铌、锆的干扰,选择107Ag作为分析同位素;而Guo等[21]考虑到锆的氧化物与氧气反应焓变大于0,氧气消除效果不佳,故选用109Ag作为分析同位素。为了考察铌、锆的氧化物或氢氧化物对不同银同位素测定的质谱干扰程度从而选择合适的分析同位素,ICP-MS/MS分析中在标准MS/MS模式下(Q1=Q3=107、109)分别引入1μg/L的银标准溶液、10mg/L的锆标准溶液和1mg/L的铌标准溶液,得到它们在m/z=107处的信号强度分别为146303cps、7215605cps和858cps,在m/z=109处的信号强度分别为131429cps、86679cps和1425361cps。由上述数据可推知,107Ag主要受到锆的氧化物和氢氧化物质谱干扰(91Zr16O+、90Zr16O1H+等)和少量铌的氮化物质谱干扰(93Nb14N+),10mg/L的锆和1mg/L的铌在m/z=107处产生的干扰相当于50μg/L和0.006μg/L的银;109Ag主要受到铌的氧化物质谱干扰(93Nb16O+)和少量锆的氢氧化物质谱干扰(92Zr16OH+、91Zr16OH2+等),1mg/L的铌和10mg/L的锆在m/z=109处产生的干扰相当于11μg/L和0.7μg/L的银,与徐进力等[23]报道的107Ag主要受到锆干扰而109Ag同时受到锆、铌干扰的结论相同。
在《中国土壤地球化学参数》专著中[27],锆、铌、银元素在中国土壤背景值分别为257μg/g、16μg/g、0.066μg/g;在《应用地球化学元素丰度数据手册》中[28],锆、铌、银在总陆壳的丰度分别为146μg/g、10μg/g、0.057μg/g。考虑到土壤和水系沉积物样品中锆的丰度一般大于铌,且氢氧化物干扰程度低于氧化物,107Ag较109Ag受到锆、铌的干扰更为严重,本文在后续的实验中选用109Ag来考察不同测试模式下的质谱行为、干扰的消除程度及方法适用性研究。
2.2 测量模式的选择
由2.1节可知,锆、铌的氧化物与氢氧化物对109Ag存在一定的干扰,土壤和水系沉积物中的铌、锆等含量远高于银的含量,这些多原子离子干扰导致ICP-MS无法准确测定样品中的银。王家恒等[20]、Guo等[21]采用单四极杆ICP-MS验证了氧气反应模式可有效地消除93Nb16O+、91Zr16OH2+、92Zr16OH+等对109Ag的质量重叠干扰,徐进力等[23]采用单四极杆ICP-MS验证了氦气(动能歧视作用)有效地抑制91Zr16O+、90Zr16O1H+等对107Ag的质谱干扰,本实验考虑采用ICP-MS/MS研究不同的碰撞/反应气体消除这些质谱干扰。
为了考察目标元素银及干扰元素铌、锆在不同气体条件下的信号强度及质谱行为,选择合适的测量模式来消除干扰,ICP-MS/MS采用产物离子扫描模式,在标准(无气体)、氦气、氧气、氨气条件下分别测定1μg/L的银标准溶液、10mg/L的锆标准溶液和1mg/L的铌标准溶液,设置Q1=109,使m/z=109的离子(109Ag+、93Nb16O+、91Zr16OH2+、92Zr16OH+等)通过Q1进入碰撞/反应池中,Q3扫描m/z在80~200之间的所有质荷比的信号强度,得到目标元素和干扰元素在不同模式下的质谱扫描信号,主要产物离子及信号强度见图 1。
2.2.1 氦气-产物离子扫描
碰撞/反应池中的离子可与氦气发生碰撞,通过动能歧视或诱导解离来消除质谱干扰。由图 1可知,碰撞/反应池通入氦气后,银和铌与其在标准条件下相比,除了m/z=109处外并无其他信号出现,但由于受到碰撞而造成能量损失,银在m/z=109处信号强度下降了18倍(从标准条件下41662cps降低到氦气条件下2360cps),铌在m/z=109处信号强度下降了161倍(从551475cps降低到3421cps);锆与其在标准条件下相比,m/z=108、109处均出现了信号,其中m/z=108处信号可能是92Zr16OH+、91Zr16OH2+等与氦气碰撞发生诱导解离产生92Zr16O+、91Zr16OH+和氢原子,锆在m/z=109处信号强度下降了166倍(从26531cps降低到160cps)。相比于93Nb16O+、91Zr16OH2+、92Zr16OH+等多原子离子,109Ag+在氦气条件信号强度下降要小很多,主要是因为多原子离子体积更大,与氦气发生碰撞的几率越大,能量损失更多。徐进力等[23]研究发现单极杆ICP-MS在动能歧视模式下能降低锆、铌氧化物的产率,基本上消除了锆、铌氧化物对痕量银的多原子离子干扰,与本实验的结论相符。综上说明在氦气条件下可通过MS/MS模式(Q1=Q3=109)在一定程度上消除锆、铌氧化物和氢氧化物对银的干扰。
2.2.2 氧气产物-离子扫描
氧气分子与碰撞/反应池中的分子离子团发生反应,使得Ag+与干扰离子团分离从而消除质量重叠干扰。由图 1可知,碰撞/反应池通入氧气后,银与其在标准条件下相比,除了m/z=109以外并无其他的信号出现,信号强度变化不大,说明Ag+不与氧气反应;铌在m/z=125、143、161处出现了信号,而m/z=109处信号消失,由化学键结合能数据[29]可知NbO和氧气的反应焓变小于0,可以自发地与氧结合:NbO++O2→NbO2++O (ΔHr=-0.63eV),结合图 1说明93Nb16O+可以与氧气反应,主要生成93Nb16O2+(m/z=125);锆在m/z=107、108、124、125、142、143、160、161处均出现了信号,且m/z=109处信号明显减小(387cps),推断91Zr16OH2+、92Zr16OH+与氧气发生了电荷转移、加氧去氢等反应,生成了91Zr16OmHn+、92Zr16OmHn+等分子离子团,与王家恒等[20]、Guo等[21]报道的单四极杆ICP-MS氧气反应模式反应机理相似。在氧气条件下,银在m/z=109处的信号强度变化不大,锆和铌在m/z=109处的信号强度明显减少甚至消失,说明氧气条件下可通过MS/MS模式(Q1=Q3=109)有效地消除锆、铌氧化物和氢氧化物对银的干扰。
2.2.3 氨气产物-离子扫描
氨气分子具有孤对电子,具有高反应活性,可以与大部分元素发生络合反应[30]。王振伟等[29]报道了ICP-MS/MS利用氨气在线消除90Zr16O1H+、91Zr16O+、93Nb16O+、92Zr16O1H+等多原子离子对银测定的干扰,1mg/L的锆、铌溶液在107Ag、109Ag处产生的干扰基本能完全消除,但对干扰消除机理缺乏进一步研究。本实验采用Q1过滤除m/z=109外的其他离子,通过生成产物离子推断可能的干扰消除反应。由图 1可知,在氨气条件下,与标准条件下相比,银在m/z=109、126、143、160处均出现信号,说明Ag+可以与氨分子发生络合反应,生成109Ag17(NH3)+、109Ag17(NH3)2+、109Ag17(NH3)3+等氨基团簇离子,其中109Ag17(NH3)2+(m/z=143)是主要产物离子,m/z=109处仍存在较强的信号强度;铌在质量轴上m/z=109、158、175处出现了信号,m/z=109处的信号明显减小(33cps),说明93Nb16O+可以与氨发生络合反应生成93Nb17NH316(NH2)3+、93Nb17(NH3)216(NH2)3+等氨基团簇离子,其中m/z=175的氨基团簇离子是主要产物离子;锆在m/z=109、143、160、175、176、177处均出现了信号,m/z=109处的信号强度明显减小(80cps),说明91Zr16OH2+、92Zr16OH+可以和氨发生络合反应生成91Zr14Nm1Hn+、92Zr14Nm1Hn+等氨基团簇离子。氨气条件下,银在m/z=109、143处存在较强的信号,锆和铌在m/z=109处信号强度明显减少,锆在m/z=143处虽有信号但信号强度较小(40cps),说明氨气条件下可通过MS/MS模式(Q1=Q3=109)或者Mass-Shift模式(Q1=109,Q3=143)消除锆、铌氧化物和氢氧化物对银的干扰,与Eduardo等[31]报道在氨气条件下,ICP-MS/MS测定107Ag可选用MS/MS模式(Q1=Q3=107)或者Mass-Shift模式(Q1=107,Q3=141)消除干扰的结论相符。
综上,氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式均能在一定程度上消除锆、铌氧化物和氢氧化物对银的干扰,可通过优化实验条件进一步研究不同模式具体的干扰消除效果。
2.3 不同测量模式下铌锆多原子离子对109Ag干扰消除程度
在ICP-MS/MS的碰撞/反应模式下,干扰消除程度主要与池气体流速有关,流速的改变既会影响干扰元素的反应进行程度,也会影响银元素的信号强度[26]。实验采用背景等效浓度(BEC)作为条件优化的评价标准,以1mg/L铌和10mg/L锆混合溶液作为基体空白溶液模拟土壤干扰基体,1μg/L银、1mg/L铌和10mg/L锆混合溶液作为基体加标溶液,在不同模式下,通过改变池气体流速,观察基体空白溶液、基体加标溶液信号强度和背景等效浓度的变化情况,以便确定最佳池气体流速,结果如图 2所示。
图 2 (a) 氦气MS/MS模式、(b)氧气MS/MS模式、(c)氨气MS/MS模式、(d)氨气Mass-Shift模式下池气体流速对基体空白溶液、基体加标溶液信号强度和背景等效浓度的影响Figure 2. Effects of cell gas flow rate on signal intensities of matrix blank solutions, matrix spiked solutions and BEC by (a) helium MS/MS mode, (b) oxygen MS/MS mode, (c) ammonia MS/MS mode, and (d) ammonia Mass-Shift mode2.3.1 氦气MS/MS模式
在氦气MS/MS模式下,氦气流速在0.5~7.0mL/min范围内,由于受到动能歧视的影响,随着氦气流速的增加,基体空白溶液和基体加标溶液中的各种离子与氦气碰撞加剧,能量损失加大而导致信号强度逐渐降低,背景等效浓度呈现先升高后降低的趋势,当氦气流速达到7.0mL/min时,BEC降低至0.431μg/L,相比于标准MS/MS模式干扰程度(11.7μg/L)下降了20倍以上。
2.3.2 氧气MS/MS模式
在氧气MS/MS模式下,氧气流速在0.5~3.0mL/min范围内,93Nb16O+、91Zr16OH2+、92Zr16OH+等干扰多原子离子与氧气发生反应,基体空白溶液和基体加标溶液的信号强度随着氧气流速的增加而逐渐降低,背景等效浓度呈下降趋势;当氧气流速大于1.5min/L后,背景等效浓度趋于稳定,在氧气流速达到2.6mL/min时,BEC降至最低(7.60ng/L),相比于标准MS/MS模式干扰程度下降了1500多倍。Zhang等[32-33]报道了单四极杆ICP-MS优化氧气流速为2.7mL/min时,BEC降到0.02~0.03μg/L,与单四极杆ICP-MS反应模式相比,ICP-MS/MS消除干扰能力更强。
2.3.3 氨气MS/MS模式
在氨气MS/MS模式下,氨气流速在0.3~2.0mL/min范围内,由于氨气分子与93Nb16O+、91Zr16OH2+、92Zr16OH+等干扰多原子离子反应速率大于与109Ag+的反应速率,基体空白溶液信号强度随着氨气流速的增加而迅速降低,基体加标溶液信号强度缓慢降低,背景等效浓度呈下降趋势;当氨气流速增加到1.1mL/min时,背景等效浓度下降速率变缓,当氨气流速增加到1.8mL/min时,BEC降到最低(7.39ng/L),相比于标准MS/MS模式干扰程度下降了1500多倍。与Naoki等[34]报道ICP-MS/MS采用氨气原位质量模式测定109Ag时,10mg/L的铌、锆混合溶液的BEC可降到0.006μg/L的结论相符。
2.3.4 氨气Mass-Shift模式
在氨气Mass-Shift模式下,氨气流速在0.3~2.0mL/min范围内,基体空白溶液信号强度随着氨气流速的增加而逐渐降低,基体加标溶液信号强度先降低后增加[氨气流速增加有利于109Ag17(NH3)2+的生成],背景等效浓度呈下降趋势;当氨气流速增加至1.0mL/min时,背景等效浓度趋于稳定,在氨气流速增至1.8mL/min时,BEC降至最低(5.78ng/L),相比于标准MS/MS模式干扰程度下降了2000多倍。
综上,氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式均能有效地降低干扰,其中氦气MS/MS模式降低干扰能力较弱,1mg/L铌和10mg/L锆混合溶液对银的干扰只能降低20多倍;氧气MS/MS模式和氨气MS/MS模式降低干扰能力较强,干扰可降低1500多倍;氨气Mass-Shift模式降低干扰能力最强,高达2000余倍。
2.4 四种测量模式下干扰消除效果
为了进一步验证四种测量模式消除干扰的效果,实验在氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式下分别引入不同浓度的锆溶液(10~1000mg/L)和铌溶液(1~1000mg/L)进行分析,分析结果见表 2。
表 2 不同浓度的锆、铌溶液在不同测量模式下对109Ag干扰情况Table 2. Interference effects of different concentrations of Zr and Nb solutions on 109Ag in different measurement modes溶液类型 锆或铌溶液浓度
(mg/L)109Ag测定值(μg/L) 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式 锆溶液 10.0 0.013 0.006 0.006 0.005 50.0 0.061 0.008 0.007 0.007 100 0.140 0.019 0.022 0.020 500 1.047 0.035 0.030 0.030 1000 2.432 0.050 0.047 0.046 铌溶液 1.00 0.441 0.000 0.000 0.000 5.00 2.630 0.005 0.007 0.003 10.0 4.960 0.009 0.011 0.005 50.0 26.542 0.036 0.037 0.013 100 43.441 0.077 0.074 0.026 500 411.726 0.472 0.356 0.128 1000 978.826 1.006 0.780 0.261 由表 2测定结果可知,随着两种溶液浓度分别增加,四种模式在109Ag处产生的干扰均存在增大的趋势,说明随着干扰物浓度的增加,干扰消除的效果存在一定程度地减弱,赵志飞等[26]在采用氧气反应模式-ICP-MS/MS法测定土壤中的镉时也发现随着锆、钼浓度的增加,由于反应不完全会造成干扰消除不完全。本实验表明,当锆溶液浓度大于100mg/L后,氦气MS/MS模式下在109Ag处产生的干扰大于0.140μg/L,这对于土壤和水系沉积物中痕量银测定的影响已经不可忽略;而当锆溶液浓度大于1000mg/L后,其他三种模式只从0.005μg/L增加到0.050μg/L,对银测定的影响尚可接受,进一步证明了氧气和氨气消除锆的干扰能力更强。1mg/L以上铌溶液在氦气MS/MS模式下于109Ag处产生的干扰已经大于0.441μg/L,干扰已不可忽略;当铌溶液浓度增加到500mg/L后,氧气MS/MS模式下干扰增加到0.472μg/L,氨气MS/MS模式下增加到0.356μg/L,氨气Mass-Shift模式下增加到0.128μg/L,此时三种模式下500mg/L铌溶液已明显影响银的定量,相比之下氨气Mass-Shift模式下干扰最小,说明其降低干扰能力最佳,和上文结论一致。
考虑到土壤和水系沉积物消解液中铌、锆浓度一般在几十个μg/L到几个mg/L范围内(按0.1g样品消解定容至50mL计算),在这个范围内四种模式均能一定程度地消除干扰,可用于方法适用性研究。
2.5 四种模式下分析方法质量参数
2.5.1 标准曲线和方法检出限
在实验条件优化下,ICP-MS/MS在不同的模式下直接测定银标准系列溶液,以银的质量浓度为横坐标,银元素与内标元素(Rh)的质谱强度比值为纵坐标进行线性回归,得到不同模式下的标准曲线方程;按样品分析步骤制备12份空白溶液,ICP-MS/MS分别在氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式和氨气Mass-Shift模式下进行测定,计算样品空白测定结果的标准偏差(SD),以3倍标准偏差计算得到不同模式下的方法检出限。实验结果表明,四种模式下的线性相关系数均大于0.999,线性关系良好,检出限分别为0.005mg/kg、0.002mg/kg、0.003mg/kg和0.003mg/kg,均低于石墨炉原子吸收光谱法[1-2]和地质行业标准《区域地球化学样品分析方法第11部分:银、硼和锡量测定交流电弧-发射光谱法》(DZ/T 0279.11—2016)的检出限,与单四极杆ICP-MS法[8-10]的检出限相当,测定下限以4倍检出限计,能够满足当前土壤和水系沉积物检测的需求。四种模式下灵敏度分别为7131cps·(μg/L)-1、74179cps·(μg/L)-1、6255cps·(μg/L)-1、13327cps·(μg/L)-1,均能满足测试需求。氦气碰撞造成Ag+动能损失,导致氦气MS/MS模式灵敏度较低;Ag+可与氨气发生络合反应而不与氧气反应,导致氨气MS/MS模式和氨气Mass-Shift下灵敏度不如氧气MS/MS模式。
2.5.2 方法准确度和精密度
选取具有一定浓度梯度、干扰元素、样品性质有代表性的土壤和水系沉积物有证标准物质共10个,按照制定的样品分析方法对每个标准物质分析6次,计算相对标准偏差(RSD)和相对误差。由表 3可知,氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式和氨气Mass-Shift模式下银元素的测定结果的RSD分别在1.5%~6.3%、1.4%~8.3%、1.4%~5.9%和0.7%~8.2%之间,精密度良好。氧气MS/MS模式、氨气MS/MS模式和氨气Mass-Shift模式下标准物质的测定值均在标准值的范围内,相对误差分别在-7.6%~7.2%、-15.0%~10.0%、-12.5%~8.6%之间,说明这些模式有良好的准确性,可用于土壤和水系沉积物中银的测定;氦气MS/MS模式下测定值的相对误差在-1.4%~84.3%之间,铌、锆干扰较严重的标准样品测试结果偏差较大(如GBW07304、GBW07307、GBW07302a),说明采用氦气模式消除铌、锆氧化物和氢氧化物的质谱干扰能力较弱,与图 2结论一致,氦气MS/MS模式仅适合测定铌、锆干扰较轻的土壤和水系沉积物样品。
表 3 不同测量模式下方法准确度和精密度Table 3. Accuracy and precision tests of the method by different measurement modes标准物质编号 银标准值
(mg/kg)Nb/Ag Zr/Ag 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式 银测定平均值
(mg/kg)RSD
(%)相对误差
(%)银测定平均值
(mg/kg)RSD
(%)相对误差
(%)银测定平均值
(mg/kg)RSD
(%)相对误差
(%)银测定平均值
(mg/kg)RSD
(%)相对误差
(%)GBW07403 0.091±0.007 102 2703 0.096 2.4 5.5 0.094 2.2 3.3 0.095 3.1 4.4 0.093 2.6 2.2 GBW07404 0.070±0.011 543 7143 0.115 3.0 64.3 0.075 4.0 7.2 0.077 3.8 10.0 0.076 4.6 8.6 GBW07405 4.4±0.4 5 62 4.42 1.5 0.5 4.41 1.4 0.3 4.31 2.8 -2.1 4.40 2.4 0 GBW07407 0.057±0.011 1123 5579 0.105 4.9 84.3 0.053 4.2 -7.1 0.051 5.1 -10.6 0.055 5.6 -3.6 GBW07451 0.074±0.006 208 3446 0.073 5.0 -1.4 0.074 2.7 0 0.072 4.2 -2.8 0.070 2.8 -5.5 GBW07302a 0.040±0.011 1000 3550 0.072 4.7 80.0 0.038 8.3 -5.0 0.034 5.9 -15.0 0.035 7.5 -12.5 GBW07305a 0.63±0.06 27 437 0.652 3.3 3.5 0.629 1.8 -0.2 0.626 1.4 -0.7 0.628 0.7 -0.4 GBW07309 0.089±0.010 202 4157 0.088 3.1 -1.2 0.086 1.8 -3.4 0.083 2.9 -6.8 0.087 3.6 -2.3 GBW07311 3.2±0.4 8 48 3.20 2.0 0 3.21 1.4 0.4 3.18 1.6 -0.7 3.28 2.2 2.5 GBW07375 0.040±0.004 155 2190 0.043 6.3 7.5 0.037 4.5 -7.6 0.038 5.6 -5.0 0.037 8.2 -7.5 注:Nb/Ag和Zr/Ag分别为标准样品中铌和锆的含量与银含量的比值。 3. 结论
本文采用氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式测定土壤和水系沉积物中的银,分别研究了银、铌、锆三种元素在不同模式下的质谱行为,探讨了不同碰撞/反应模式消除铌、锆的氧化物及氢氧化物对银元素测定的质谱干扰情况,在优化各模式下的气体流速后,其干扰分别降低了20、1500、1500、2000多倍。同时,对四种模式的方法适用性进行了研究,这四种模式的精密度和检出限均能满足测试需求。氦气MS/MS模式灵敏度和干扰消除能力均较弱,应用于实际样品测试时需谨慎,不适用于铌、锆含量高的样品。其他三种模式均可满足土壤和水系沉积物中银元素测定的需求:氨气MS/MS模式灵敏度较弱,干扰消除能力适中;氧气MS/MS模式灵敏度最佳,干扰消除能力适中;氨气Mass-Shift模式灵敏度适中,干扰消除能力最佳。本研究为土壤和水系沉积物中银元素测定提供了多种方便、准确的方法,无需复杂前处理过程,提高了分析效率并可实现多元素同时测定。
本研究在前人工作的基础上进一步探讨了不同碰撞/反应模式下铌、锆氧化物和氢氧化物的干扰消除机理和消除效果,实验中以1mg/L铌溶液、10mg/L锆溶液模拟土壤或水系沉积物中干扰基体,优化池气体流速,采用背景等效浓度评价干扰消除程度。同时也研究了四种模式对不同浓度铌、锆溶液的抗干扰能力,实验发现不同模式对极限浓度干扰物的消除能力并不相同。当实际样品消解液中铌、锆溶液浓度远大于本文实验条件时,可通过背景等效浓度重新评价各种模式的干扰消除程度,结合前处理富集分离和优化仪器参数进一步降低干扰,得到更准确的结果。
-
图 2 UHPLC-TOF/MS 全扫描分析提取离子色谱图
(A) 11种目标化合物和内标物的混合标准溶液; (B)海洋沉积物样品提取溶液。按照保留时间从前到后依次排序:对羟基苯甲酸、香草酸、对羟基苯甲醛、丁香酸、对羟基苯乙酮、香草醛、对羟基肉桂酸、丁香醛、香草乙酮、阿魏酸、乙酰丁香酮、乙基香兰素(内标)。
Figure 2. UHPLC-TOF/MS full-scan analysis extraction ion chromatogram (EIC).
(A) Mixed standard solution of 11 target compounds and internal standard; (B) Extraction solution of marine sediment sample. Sort by retention time from front to back: p-hydroxybenzoic acid, vanillic acid, p-hydroxybenzaldehyde, syringic acid, p-hydroxyacetophenone, vanillin, p-hydroxy-cinnamic acid, syringaldehyde, acetovanillone, ferulic acid, acetosyringone and ethyl vanillin (internal standard).
图 4 方法的专属性考察结果(沉积物加标样品UHPLC-TOF/MS分析EIC图)
1—对羟基苯甲酸;2—香草酸;3—对羟基苯甲醛;4—丁香酸;5—对羟基苯乙酮;6—香草醛;7—对羟基肉桂酸;8—丁香醛;9—香草乙酮;10—阿魏酸;11—乙酰丁香酮;12—乙基香兰素(内标)。
Figure 4. Results for the specificity validation of the method (UHPLC-TOF/MS EIC chromatogram of the spiked sediment sample).
1—p-hydroxybenzoic acid; 2—vanillic acid; 3—p-hydroxybenzaldehyde; 4—syringic acid; 5—p-hydroxyacetophenone; 6—vanillin; 7—p-hydroxy-cinnamic acid; 8—syringaldehyde; 9—acetovanillone; 10—ferulic acid; 11—acetylsyrinone; 12—ethyl vanillin (internal standard).
表 1 超高效液相色谱-飞行时间质谱分析木质素主要分解产物酚类化合物和内标物的分子式、保留时间及精确分子质量
Table 1 Molecular formulas, retention times and exact molecular mass of the main decomposition products of lignin (phenolic compounds) and the internal standard analyzed by ultra-high performance liquid chromatography-time-of-flight mass spectrometry (UHPLC-TOF/MS).
序号 酚类化合物 分子式 保留时间(min) 精确分子量[M+H]+ 精确分子量[M-H]- 1 对羟基苯甲酸 C7H6O3 5.14 139.0395 137.0244 2 香草酸 C8H8O4 7.37 169.0495 167.0272 3 对羟基苯甲醛 C7H6O2 8.08 123.0441 121.0295 4 丁香酸 C9H10O5 9.35 199.0601 197.0455 5 对羟基苯乙酮 C8H8O2 11.46 137.0597 135.0452 6 香草醛 C8H8O3 11.61 153.0546 151.0401 7 对羟基肉桂酸 C9H8O3 12.90 165.0546 163.0401 8 丁香醛 C9H10O4 13.91 183.0652 181.0506 9 香草乙酮 C9H10O4 14.65 167.0703 165.0557 10 阿魏酸 C10H10O4 15.89 195.0652 193.0506 11 乙酰丁香酮 C10H12O4 16.68 197.0808 195.0663 12 乙基香兰素 C9H10O3 19.08 167.0703 165.0557 表 2 最佳实验条件下 11种目标化合物的线性方程相关系数及方法的检出限和定量限
Table 2 Correlation coefficients for linear analysis, detection limits and quantification limits of the method for UHPLC-TOF/MS determination of 11 target compounds under the optimal experimental conditions.
序号 酚类化合物 R2 方法检出限
(ng/g)方法定量限
(ng/g)1 对羟基苯甲酸 0.9989 5.34 17.80 2 香草酸 0.9989 7.27 24.23 3 对羟基苯甲醛 0.9991 0.67 2.13 4 丁香酸 0.9996 1.79 5.98 5 对羟基苯乙酮 0.9991 0.38 1.25 6 香草醛 0.9997 0.49 1.64 7 对羟基肉桂酸 0.9989 4.16 13.95 8 丁香醛 0.9993 0.47 1.58 9 香草乙酮 0.9994 0.23 0.76 10 阿魏酸 0.9994 5.13 17.1 11 乙酰丁香酮 0.9997 0.13 0.42 表 3 三种不同添加浓度水平下11种目标化合物的回收率和回收率的RSD(n=6)
Table 3 The recovery rate and its RSD of 11 target compounds under three different spiked levels (50.0ng/g, 100.0ng/g, 400.0ng/g) in the spiked recovery experiment with blank marine sediment (n=6).
酚类化合物 不同加标浓度水平下目标化合物回收率(%)(n=6) 不同加标浓度水平下目标化合物回收率的RSD(%)(n=6) 加标50.0ng/g 加标100.0ng/g 加标400.0ng/g 加标50.0ng/g 加标100.0ng/g 加标400.0ng/g 对羟基苯甲酸 87.8 90.1 91.9 8.4 7.0 5.8 香草酸 89.3 87.7 87.4 6.4 6.0 6.1 对羟基苯甲醛 86.8 90.0 88.9 7.0 7.2 6.3 丁香酸 88.7 88.1 89.4 8.3 6.3 7.5 对羟基苯乙酮 89.5 91.1 92.3 7.3 6.5 5.5 香草醛 87.4 88.5 87.8 5.2 5.5 4.6 对羟基肉桂酸 88.9 89.3 89.6 6.2 6.5 4.6 丁香醛 89.1 90.7 91.5 8.2 8.5 6.5 香草乙酮 87.5 88.9 89.5 7.4 5.3 5.5 阿魏酸 86.9 89.9 91.0 6.1 8.1 6.2 乙酰丁香酮 90.8 91.2 93.2 8.8 6.2 4.1 表 4 莱州湾表层沉积物中11种木质素主要分解产物酚类化合物的含量
Table 4 Content of 11 main phenolic compounds from lignin decomposition products of the surface sediment samples collected from the Laizhou Bay, China.
站位 酚类化合物含量(ng/g)(ds) 对羟基苯甲酸 香草酸 对羟基苯甲醛 丁香酸 对羟基苯乙酮 香草醛 对羟基肉桂酸 丁香醛 香草乙酮 阿魏酸 乙酰丁香酮 L1 62.33 26.08 136.41 5.98 3.48 20.65 17.75 5.60 2.33 22.17 0.50 L2 324.43 100.31 425.50 108.50 53.58 671.40 243.67 265.19 110.36 113.53 25.96 L3 350.21 507.56 511.59 119.13 39.5 481.33 297.51 233.46 79.82 122.80 26.18 L4 101.58 204.40 254.26 7.73 16.47 195.19 86.06 64.19 31.78 20.14 7.76 L5 176.82 326.83 425.68 46.14 25.88 317.00 74.67 99.34 46.57 50.57 9.33 L6 223.73 408.17 381.33 86.76 39.31 393.35 249.20 176.55 77.37 112.05 29.02 L7 114.31 73.84 297.40 9.86 5.17 69.67 39.80 22.06 7.27 34.99 2.23 L8 214.02 414.12 419.47 62.57 22.06 303.95 135.91 127.37 48.75 34.99 11.52 L9 180.05 195.33 421.15 29.25 14.86 188.62 110.52 70.42 22.43 32.43 6.37 L10 193.59 255.99 401.93 26.20 15.22 256.06 79.62 67.27 37.39 32.44 5.40 L11 156.60 57.41 325.48 5.83 5.39 47.84 33.30 12.90 4.06 28.22 1.42 L12 147.93 101.40 317.60 13.95 5.56 96.48 26.98 25.10 9.89 31.64 2.66 表 5 莱州湾表层沉积物样品中11种木质素的分解产物酚类化合物的各项特征参数
Table 5 Characteristic parameters of 11 phenolic compounds from lignin decomposition products in surface sediment samples of the Laizhou Bay, China.
站位 木质素不同分解产物酚类化合物的各项特征参数 C(ng/g) S(ng/g) V(ng/g) P(ng/g) C/V S/V P/(V+S) PON/P (Ad/Al)v (Ad/Al)s Σ8(mg/10g ds) L1 39.92 12.08 49.06 202.23 0.81 0.25 3.31 0.02 1.07 1.26 0.0010 L2 357.19 399.65 882.06 803.50 0.40 0.45 0.63 0.07 0.41 0.15 0.016 L3 420.31 378.76 1068.71 901.30 0.39 0.35 0.62 0.04 0.51 1.05 0.019 L4 106.20 79.68 431.38 372.31 0.25 0.18 0.73 0.04 0.12 1.05 0.0062 L5 125.24 154.82 690.40 628.38 0.18 0.22 0.74 0.04 0.46 1.03 0.0097 L6 361.24 292.34 878.88 644.37 0.41 0.33 0.55 0.06 0.49 1.04 0.015 L7 74.79 34.14 150.78 416.88 0.50 0.23 2.25 0.01 0.45 1.06 0.0026 L8 170.90 201.47 766.82 655.54 0.22 0.26 0.68 0.03 0.49 1.36 0.011 L9 142.95 106.03 406.39 616.06 0.35 0.26 1.20 0.02 0.42 1.04 0.0066 L10 112.06 98.87 549.43 610.75 0.20 0.18 0.94 0.02 0.39 1.00 0.0076 L11 61.51 20.16 109.31 487.46 0.56 0.18 3.77 0.01 0.45 1.20 0.0019 L12 58.61 41.72 207.77 471.09 0.28 0.20 1.89 0.01 0.56 1.05 0.0031 平均值 169.24 151.64 515.92 567.49 0.38 0.26 1.44 0.03 0.49 1.02 0.0083 -
[1] Zhang T,Li X G,Sun S W,et al. Determination of lignin in marine sediment using alkaline cupric oxide oxidation-solid phase extraction-on-column derivatization-gas chromatography[J]. Journal of Ocean University of China, 2013, 12(1):63−69. doi: 10.1007/s11802-011-1936-z
[2] Jex C N,Pate G H,Blyth A J,et al. Lignin biogeochemistry:From modern processes to Quaternary archives[J]. Quaternary Science Reviews, 2014, 87:46−59. doi: 10.1016/j.quascirev.2013.12.028
[3] Sun S,Schefuß E,Mulitza S,et al. Origin and processing of terrestrial organic carbon in the Amazon system:Lignin phenols in river,shelf,and fan sediments[J]. Biogeosciences, 2017, 14:2495−2512. doi: 10.5194/bg-14-2495-2017
[4] 王映辉,许云平. 黄河下游—河口—邻近海域表层沉积物中木质素的特征及其示踪意义[J]. 海洋科学,2016,40(2):55−64. Wang Y H,Xu Y P. Characteristics and environmental implications of lignin in surface sediments from the lower Yellow River—estuary—adjacent sea[J]. Marine Sciences, 2016, 40(2):55−64.
[5] 巩菲,刘月,张大海,等. 黄河济南段柱状沉积物中木质素的分布特征[J]. 海洋湖沼通报,2017,156(3):53−59. Gong F,Liu Y,Zhang D H,et al. Distribution characteristics of lignin from the core in Jinan section of the Yellow River[J]. Transactions of Oceanology and Limnology, 2017, 156(3):53−59.
[6] Yang B,Ljung K,Nielsen A B,et al. Impacts of long-term land use on terrestrial organic matter input to lakes based on lignin phenols in sediment records from a Swedish forest lake[J]. Science of the Total Environment, 2021, 774:145517. doi: 10.1016/j.scitotenv.2021.145517
[7] Gordon E G,Goni M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2003, 67(13):2359−2375. doi: 10.1016/S0016-7037(02)01412-6
[8] 王心怡,李中乔,金海燕,等. 应用木质素示踪楚科奇海表层沉积物中有机碳的来源和降解程度[J]. 海洋学报,2017,39(10):19−31. Wang X Y,Li Z Q,Jin H Y,et al. Sources and degradation of orgnic carbon in the surface sediments across the Chukchi Sea,insighes from lignin phenols[J]. Haiyang Xuebao, 2017, 39(10):19−31.
[9] Tolu J,Gerber L,Boily J F,et al. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multivariate curve resolution:A promising analytical tool in (paleo) limnology[J]. Analytica Chimica Acta, 2015, 880:93−102. doi: 10.1016/j.aca.2015.03.043
[10] 刘月,王敏,张婷,等. 杭州湾外泥质区柱状沉积物中木质素的分布特征及其环境指示意义[J]. 海洋环境科学,2017,36(1):8−14. Liu Y,Wang M,Zhang T,et al. Distribution characteristics of lignin in sediment cores from the mud area off Hangzhou Bay and the implication for regional sedimentary environment[J]. Chinese Journal of Marine Environmental Science, 2017, 36(1):8−14.
[11] 凌媛,王永,王淑贤,等. 生物标志物在海洋和湖泊古生态系统和生产力重建中的应用[J]. 地学前缘,2022,29(2):327−342. Ling Y,Wang Y,Wang S X,et al. Application of biomarkers in reconstructing marine and lacustrine paleoecosystems and paleoproductivity:A review[J]. Earth Science Frontiers, 2022, 29(2):327−342.
[12] Hedges J I,Ertel J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemistry, 1982, 54(2):174−178. doi: 10.1021/ac00239a007
[13] 叶君,胡利民,石学法,等. 基于木质素示踪北极东西伯利亚陆架沉积有机碳的来源、输运与埋藏[J]. 第四纪研究,2021,41(3):752−765. Ye J,Hu L M,Shi X F,et al. Sources,transport and burial of terrestrial organic carbon in the surface sediments across the East Siberian Arctic Shelf,insights from lignin[J]. Quaternary Sciences, 2021, 41(3):752−765.
[14] 江智婧,朱均均,李鑫,等. 反相高效液相色谱法定量分析木质素的主要降解产物[J]. 色谱,2011,29(1):59−62. doi: 10.3724/SP.J.1123.2011.00059 Jiang Z J,Zhu J J,Li X,et al. Determination of main degradation products of lignin using reversed phase high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2011, 29(1):59−62. doi: 10.3724/SP.J.1123.2011.00059
[15] Sun L,Spencer R G M,Hernes P J,et al. A comparison of a simplified cupric oxide oxidation HPLC method with the traditional GC-MS method for characterization of lignin phenolics in environmental samples[J]. Limnology and Oceanography:Methods, 2015, 13:1−8.
[16] Owen B C,Haupert L,Jarrell T M,et al. High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products[J]. Analytical Chemistry, 2012, 84:6000−6007. doi: 10.1021/ac300762y
[17] 欧阳新平,陈子龙,邱学青. 超高效液相色谱/高分辨质谱法测定木质素氧化降解产物中单酚类化合物[J]. 分析化学,2014,42(5):723−728. Ouyang X P,Chen Z L,Qiu X Q. Determination of monophenolic compounds from lignin oxidative degradation using ultra performance liquid chromatography/high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(5):723−728.
[18] 营娇龙,秦晓鹏,郎杭,等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试,2022,41(3):394−403. Ying J L,Qin X P,Lang H,et al. Determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3):394−403.
[19] 莫力佳,石勇,高建华,等. 辽东半岛东岸泥区有机碳来源及其对流域和海岸环境变化的响应[J]. 地球化学,2021,50(2):199−210. Mo L J,Shi Y,Gao J H,et al. Source and distribution of lignin in mud deposits along the southeastern coast of Liaodong Peninsula and its response to environmental changes of the catchment[J]. Geochimica, 2021, 50(2):199−210.
[20] 朱帅,沈亚婷,贾静,等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试,2018,37(5):586−606. Zhu S,Shen Y T,Jia J,et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5):586−606.
[21] Heidke I,Scholz D,Hoffmann T. Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water[J]. Biogeosciences, 2018, 15:5831−5845. doi: 10.5194/bg-15-5831-2018
[22] 王全成,胡丹阳,杨柳明,等. 固相萃取-高效液相色谱法测定森林土壤中木质素[J]. 实验室科学,2021,24(5):40−44. doi: 10.3969/j.issn.1672-4305.2021.05.010 Wang Q C,Hu D Y,Yang L M,et al. Determination of lignin in forest soil by solid phase extraction/high performance liquid chromatography[J]. Laboratory Science, 2021, 24(5):40−44. doi: 10.3969/j.issn.1672-4305.2021.05.010
[23] 于雅晨,李坤兰,马英冲,等. 反气相色谱法测定有机溶剂型木质素的溶解度参数[J]. 色谱,2013,31(2):143−146. Yu Y C,Li K L,Ma Y C,et al. Determination of the solubility parameter of organosolv lignin by inverse gas chromatography[J]. Chinese Journal of Chromatography, 2013, 31(2):143−146.
[24] 李鹏辉,蒋政伟,李家全,等. 木质素降解产物酚羟基测定方法研究进展[J]. 光谱学与光谱分析,2022,42(9):2666−2671. Li P H,Jiang Z W,Li J Q,et al. Research progress in quantitative determination of phenolic hydroxyl groups in lignin[J]. Spectroscopy and Spectral Analysis, 2022, 42(9):2666−2671.
[25] Heinonen J,Tamper J,Laatikainen M,et al. Chromatographic recovery of monosaccharides and lignin from lignocellulosic hydrolysates[J]. Chemical Engineering & Technology, 2018, 41(12):2402−2410.
[26] Wang Y L,Chen J H,Gao L Y,et al. Determination of eight typical lipophilic algae toxins in particles suspended in seawater by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(3):335−341. doi: 10.1016/S1872-2040(16)60911-8
[27] Tsutsuki K,Esaki I,Kuwatsuka S. CuO-oxidation products of peat as a key to the analysis of the paleo-environmental changes in a wetland[J]. Soil Science and Plant Nutrition, 1994, 40(1):107−116. doi: 10.1080/00380768.1994.10414283
[28] 戴群英,邹立,彭燕. 黄河口潮间带沉积物中木质素的分布以及降解特征[J]. 海洋环境科学,2017,36(2):210−215. Dai Q Y,Zou L,Peng Y. Distribution and degradation of lignin in the sediment of intertidal mudflat of Yellow River Estuary[J]. Marine Environmental Science, 2017, 36(2):210−215.
[29] 冯朝军,潘建明,王红群,等. 微波消解-气相色谱法测定沉积物中的木质素[J]. 岩矿测试,2011,30(1):23−26. Feng C J,Pan J M,Wang H Q,et al. Gas chromatographic determination of lignin in sediment samples assisted with microwave digestion[J]. Rock and Mineral Analysis, 2011, 30(1):23−26.
[30] Kaiser K,Benner R. Characterization of lignin by gas chromatography and mass spectrometry a simplified CuO oxidation method[J]. Analytical Chemistry, 2011, 84:459−464.
[31] Yan G,Kaiser K. A rapid and sensitive method for the analysis of lignin phenols in environmental samples using ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry with multiple reaction monitoring[J]. Analytica Chimica Acta, 2018, 1023:74−80. doi: 10.1016/j.aca.2018.03.054
[32] 谢秀风,郗敏,孔范龙,等. 木质素作为湿地陆源性溶解性有机质(DOM)示踪剂的研究进展[J]. 海洋湖沼通报,2015, 37(3):125−129. Xie X F,Xi M,Kong F L,et al. Proceedings in the application of wetland lignin to tracing terrestrial organic mattes[J]. Transactions of Oceanology and Limnology, 2015, 37(3):125−129.
[33] 李先国,杜培瑞,孙书文,等. 山东半岛东北岸近海表层沉积物中木质素的分布特征及有机物来源[J]. 海洋湖沼通报,2013(2):81−88. Li X G,Du P R,Sun S W,et al. Distribution characteristics of lignin and sources of organic matter in surface sediments offshore of north eastern Shandong Peninsula[J]. Transactions of Oceanology and Limnology, 2013(2):81−88.
[34] 黄佳埼,林昕,汪福顺,等. 乌江流域下游梯级水库沉积物中木质素的特征及有机碳来源辨析[J]. 上海大学学报(自然科学版),2021,27(2):271−279. Huang J Q,Lin X,Wang F S,et al. Characteristics of lignin in sediment cores from cascade reservoirs downstream of the Wujiang River and source analysis of organic carbon[J]. Journal of Shanghai University (Natural Science), 2021, 27(2):271−279.
[35] 李先国,王敏,孙书文,等. 渤海表层沉积物中木质素的分布特征及其对陆源有机物来源的示踪意义[J]. 海洋环境科学,2013,32(3):327−332. Li X G,Wang M,Sun S W,et al. Distribution of lignin in the surface sediments of Bohai Sea and its implication for tracing terrigenous organic matter[J]. Marine Environmental Science, 2013, 32(3):327−332.
[36] 尚文郁, 孙青, 谢曼曼, 等. 中国东北干旱-半干旱地区湖泊沉积物木质素酚类化合物特征及其气候指示意义[J]. 岩矿测试, 2023,42(2): 346-360. Shang W Y, Sun Q, Xie M M, et al. Characteristics and climatic implications of lignin-derived phenolic compounds in Arid Lake, northeastern China[J]. Rock and Mineral Analysis, 2023,42(2): 346-360.
-
期刊类型引用(0)
其他类型引用(1)