• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

敞开酸溶-电感耦合等离子体发射光谱法测定石煤钒矿中钒铁铝磷

窦向丽, 张旺强, 黑文龙, 殷陶刚

窦向丽, 张旺强, 黑文龙, 殷陶刚. 敞开酸溶-电感耦合等离子体发射光谱法测定石煤钒矿中钒铁铝磷[J]. 岩矿测试, 2022, 41(4): 673-679. DOI: 10.15898/j.cnki.11-2131/td.202002200020
引用本文: 窦向丽, 张旺强, 黑文龙, 殷陶刚. 敞开酸溶-电感耦合等离子体发射光谱法测定石煤钒矿中钒铁铝磷[J]. 岩矿测试, 2022, 41(4): 673-679. DOI: 10.15898/j.cnki.11-2131/td.202002200020
DOU Xiangli, ZHANG Wangqiang, HEI Wenlong, YIN Taogang. Determination of Vanadium, Iron, Aluminum and Phosphorus in Stone Coal Vanadium Ore by ICP-OES with Open Acid Dissolution[J]. Rock and Mineral Analysis, 2022, 41(4): 673-679. DOI: 10.15898/j.cnki.11-2131/td.202002200020
Citation: DOU Xiangli, ZHANG Wangqiang, HEI Wenlong, YIN Taogang. Determination of Vanadium, Iron, Aluminum and Phosphorus in Stone Coal Vanadium Ore by ICP-OES with Open Acid Dissolution[J]. Rock and Mineral Analysis, 2022, 41(4): 673-679. DOI: 10.15898/j.cnki.11-2131/td.202002200020

敞开酸溶-电感耦合等离子体发射光谱法测定石煤钒矿中钒铁铝磷

基金项目: 

甘肃矿产资源勘查与综合利用工程技术研究项目 1306FTGA011

详细信息
    作者简介:

    窦向丽,工程师,主要从事矿石及土壤样品的分析测试工作。E-mail: 476300312@qq.com

  • 中图分类号: O657.31

Determination of Vanadium, Iron, Aluminum and Phosphorus in Stone Coal Vanadium Ore by ICP-OES with Open Acid Dissolution

  • 摘要:

    石煤钒矿资源的勘探、研究和利用均需对其成分进行准确的分析测试,其中钒、铁、铝、磷等主要成分的测定尚未建立标准方法,当前所用的分析测试方法各有不足。采用碱熔电感耦合等离子体发射光谱法(ICP-OES)测定石煤钒矿样品时,高浓度的可溶性盐会导致高背景,干扰测定。酸溶法可避免上述问题,但由于常规的氢氟酸-盐酸-硝酸-高氯酸四酸体系不能消除碳和有机质对样品的吸附和包裹,待测成分无法完全释放,需先将样品高温灼烧除碳,过程繁琐。本文采用少量硫酸加四酸的五酸体系处理样品,电热板加热,盐酸浸提,利用硫酸的强氧化性将样品中大量的碳氧化成二氧化碳,免却了灼烧除碳流程,消除了含碳物质对样品的吸附和包裹,显著增强了消解效果。由此建立了ICP-OES测定石煤钒中钒、铁、铝、磷的分析方法,在称样量为0.1g、浓硫酸加入量为0.30mL时,样品消解率达到99%以上。方法检出限为17~51mg/kg,相对标准偏差(RSD, n=11)在1.7%~5.1%之间;相对误差为-4.6%~2.7%。该方法背景低、测定结果准确,可满足石煤钒矿石样品的检测要求。

    要点

    (1) 提供了一种无需高温灼烧,五酸体系消解样品,电感耦合等离子体发射光谱法测定石煤钒矿石中主要成分的方法。

    (2) 利用硫酸的强氧化性将样品中大量的碳氧化成二氧化碳,消除了碳和有机质对样品的吸附和包裹,样品消解效果显著提高。

    (3) 本文方法与光度法、滴定法等传统方法的测定结果基本一致,灵敏度和精密度更高。

    HIGHLIGHTS

    (1) A method for the determination of main components in stone coal vanadium ore by inductively coupled plasma atomic emission spectrometry was provided without burning carbon and dissolving samples in five acid mixed systems.

    (2) When the sample weight was 0.1g and the amount of concentrated sulfuric acid was 0.30mL, the digestion rate of the sample was more than 99%.

    (3) The results of this method are basically consistent with those of traditional methods such as spectrophotometry and titration, with higher sensitivity and precision.

  • 表  1   标准溶液系列中钒、铁、铝、磷的质量浓度

    Table  1   Mass concentrations of vanadium, iron, aluminum and phosphorus for standard solution series

    分析元素 空白(μg/mL) 标准1 (μg/mL) 标准2 (μg/mL) 标准3 (μg/mL) 标准4 (μg/mL) 标准5 (μg/mL)
    V 0 0.50 1.00 2.00 5.00 10.00
    Fe 0 2.50 5.00 10.00 25.00 50.00
    Al 0 2.50 5.00 10.00 25.00 50.00
    P 0 0.50 1.00 2.00 5.00 10.00
    下载: 导出CSV

    表  2   硫酸加入量对测定结果的影响

    Table  2   Effect of sulfuric acid addition on measurement results

    硫酸加入量(mL) 分析项目测定值(%)
    V2O5 (标准值0.62%) Fe2O3 (标准值1.31%) Al2O3 (标准值7.00%) P2O5 (标准值0.153%)
    0 0.25 0.97 5.01 0.096
    0.10 0.46 1.18 6.19 0.135
    0.20 0.55 1.25 6.74 0.139
    0.30 0.62 1.32 6.96 0.155
    0.40 0.61 1.31 6.94 0.152
    0.50 0.62 1.30 7.06 0.151
    下载: 导出CSV

    表  3   工作曲线及方法检出限

    Table  3   Working curves and detection limits of the method

    分析元素 线性范围(μg/mL) 线性方程 相关系数 方法检出限(mg/kg)
    V 0.5~10 y=5109.178x-0.879 0.9999 17
    Fe 2.5~50 y=875.967x+50.641 0.9999 35
    Al 2.5~50 y=136.287x+2.706 0.9999 51
    P 0.5~10 y=143.706x+0.978 0.9999 44
    下载: 导出CSV

    表  4   方法准确度和精密度

    Table  4   Accuracy and precision tests of the method

    GBW07875分析项目 标准值(%) 测定平均值(%) 相对偏差(%) RSD (%)
    V2O5 0.62±0.03 0.60 -3.2 2.0
    Fe2O3 1.31±0.07 1.30 -0.8 1.9
    Al2O3 7.00±0.16 7.19 2.7 5.1
    P2O5 0.153±0.005 0.146 -4.6 1.7
    下载: 导出CSV

    表  5   分析方法对比

    Table  5   Comparison of analytical methods

    样品编号 V2O5测定值(%) Fe2O3测定值(%) Al2O3测定值(%) P2O5测定值(%)
    本文方法 磷钨钒酸光度法 本文方法 重铬酸钾滴定法 本文方法 铬天青S光度法 本文方法 磷钼蓝光度法
    1 0.332 0.327 7.12 7.17 8.57 8.72 1.39 1.43
    2 0.686 0.689 13.2 13.1 3.51 3.39 0.606 0.604
    3 0.274 0.279 8.73 8.84 13.0 12.8 1.51 1.46
    4 1.36 1.35 6.49 6.40 6.31 6.34 0.763 0.767
    5 1.59 1.60 7.19 7.28 5.46 5.60 0.782 0.782
    6 0.623 0.628 5.45 5.54 9.19 9.06 0.419 0.415
    7 0.450 0.454 8.25 8.32 7.78 7.91 0.290 0.295
    8 0.853 0.839 9.64 9.55 8.60 8.83 0.353 0.350
    9 0.721 0.728 5.79 5.71 10.9 10.7 0.878 0.882
    10 0.875 0.866 7.96 7.94 8.61 8.50 0.546 0.551
    下载: 导出CSV
  • [1] 付雪瑞, 徐林刚, 丁建华, 等. 中国沉积型钒矿成矿规律与找矿方向[J]. 矿床地质, 2021, 40(6): 1160-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202106002.htm

    Fu X R, Xu L G, Ding J H, et al. Metallogenic regularity and prospecting area selection of sedimentary vanadium deposit in China[J]. Mineral Deposits, 2021, 40(6): 1160-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202106002.htm

    [2]

    Wang X, Lin H, Dong Y B, et al. Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(3): 253-261. doi: 10.1007/s12613-018-1568-9

    [3] 舒多友, 吴自成, 张命桥, 等. 黔东北地区钒矿石与围岩稀土元素地球化学特征及其意义[J]. 地质与勘探, 2012, 32(6): 1118-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201206009.htm

    Shu D Y, Wu Z C, Zhang M Q, et al. REE geochemistry of vanadium ores and wall rocks in northeastern Guizhou and their geological significance[J]. Geology and Exploration, 2012, 32(6): 1118-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201206009.htm

    [4] 游先军, 戴塔根, 息朝庄, 等. 湘西北下寒武统黑色岩系地球化学特征[J]. 大地构造与成矿学, 2009, 33(2): 304-312. doi: 10.3969/j.issn.1001-1552.2009.02.015

    You X J, Dai T G, Xi C Z, et al. Geochemical characteristics of lower Cambrian black rock series in northwestern Hunan, China[J]. Geotectonica et Metallogenia, 2009, 33(2): 304-312. doi: 10.3969/j.issn.1001-1552.2009.02.015

    [5] 陈明辉, 胡详昭, 孙际茂, 等. 湖南省寒武系黑色岩系页岩型钒矿概论[J]. 地质找矿论丛, 2012, 27(4): 410-420. doi: 10.6053/j.issn.1001-1412.2012.04.004

    Chen M H, Hu X Z, Sun J M, et al. Overview on the Cambrian black shale-hosted vanadium deposit in Hunan[J]. Contributions to Geology and Mineral Resources Research, 2012, 27(4): 410-420. doi: 10.6053/j.issn.1001-1412.2012.04.004

    [6] 徐林刚, 付雪瑞, 叶会寿, 等. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 2022, 29(1): 160-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202201013.htm

    Xu L G, Fu X R, Ye H S, et al. Geochemical composition and Paleoceanic environment of the lower Cambrian black shale-hosted Qianjiaping vanadium deposit in the southern Qinling Region[J]. Earth Science Frontiers, 2022, 29(1): 160-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202201013.htm

    [7] 张愿宁, 张艳, 赵志成, 等. 甘肃敦煌五一山钒矿地质特征及成因[J]. 矿产勘查, 2020, 11(3): 496-502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202003012.htm

    Zhang Y N, Zhang Y, Zhao Z C, et al. Geological characteristics and genesis of the Wuyishan vanadium deposit in Dunhuang, Gansu Province[J]. Mineral Exploration, 2020, 11(3): 496-502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202003012.htm

    [8]

    Liu C, Zhang Y M, Bao S X. Vanadium recovery from stone coal through roasting and flotation[J]. Transactions of Nonferrous Metals Society of China, 2017(1): 197-203.

    [9] 叶国华, 朱思琴, 陈子杨, 等. 石煤钒矿的选矿预富集研究评述[J]. 稀有金属, 2022, 46(1): 120-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202201013.htm

    Ye G H, Zhu S Q, Chen Z Y, et al. A research review on beneficiation pre-concentration of vanadium-bearing stone coal[J]. Chinese Journal of Rare Metals, 2022, 46(1): 120-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202201013.htm

    [10] 田宗平, 易晓明, 曹健, 等. 黑色岩系(石煤)钒矿矿物特征研究与应用[J]. 中国冶金, 2016, 26(2): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYE201602004.htm

    Tian Z P, Yi X M, Cao J, et al. Black rock series (stone coal) vanadium ore mineral characteristics research and application[J]. China Metallurgy, 2016, 26(2): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYE201602004.htm

    [11] 王彩虹, 杨云虎. 采用浮选工艺降低某石煤钒矿中碳含量的试验研究[J]. 矿冶工程, 2018, 38(1): 64-70. doi: 10.3969/j.issn.0253-6099.2018.01.014

    Wang C H, Yang Y H. Flotation technology for reducing carbon content in vanadium-bearing stone coal[J]. Mining and Metallurgical Engineering, 2018, 38(1): 64-70. doi: 10.3969/j.issn.0253-6099.2018.01.014

    [12] 胡洋, 何东升, 谢志豪, 等. 石煤型钒矿预富集技术研究现状[J]. 金属矿山, 2018(12): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201812014.htm

    Hu Y, He D S, Xie Z H, et al. Research status of pre-concentration technology of stone coal type vanadium ore[J]. Metal Mine, 2018(12): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201812014.htm

    [13] 李红湘, 颜文斌, 蔡俊. 助浸剂亚硝酸钠对石煤中钒浸出率的影响[J]. 稀有金属与硬质合金, 2019, 47(4): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201904003.htm

    Li H X, Yan W B, Cai J. Effect of sodium nitrite as leaching aid on vanadium leaching rate in stone coal[J]. Rare Metals and Cemented Carbides, 2019, 47(4): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201904003.htm

    [14] 曾少乾, 陈昊, 秦毅, 等. 湖南省某黑色页岩钒矿选冶试验研究[J]. 矿业研究与开发, 2020, 40(1): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202001021.htm

    Zeng S Q, Chen H, Qin Y, et al. Experimental study on beneficiation and metallurgy of a black shale vanadium ore in Hunan Province[J]. Mining Research and Development, 2020, 40(1): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202001021.htm

    [15] 吴峥, 张飞鸽, 张艳. 电感耦合等离子体发射光谱法测定石煤中的13种元素[J]. 岩矿测试, 2013, 32(6): 978-981. doi: 10.3969/j.issn.0254-5357.2013.06.021

    Wu Z, Zhang F G, Zhang Y. Determination of 13 elements in stone-like coal by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 978-981. doi: 10.3969/j.issn.0254-5357.2013.06.021

    [16] 刘立平, 赵锦华, 张佑云, 等. 石煤钒矿中五氧化二钒测定方法的确认与应用[J]. 湿法冶金, 2018, 37(5): 425-430. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201805018.htm

    Liu L P, Zhao J H, Zhang Y Y, et al. Confirmation and application of determination of method of vanadium pentoxide in stone coal vanadium mine[J]. Hydrometallurgy of China, 2018, 37(5): 425-430. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201805018.htm

    [17] 罗琦, 曾少乾, 田宗平. 石煤钒矿中五氧化二钒容量法测定及量值溯源研究[J]. 中国锰业, 2017, 35(4): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201704031.htm

    Luo Q, Zeng S Q, Tian Z P. Tracing research of capacity method determination and its volume value in vanadium pentoxide of stone coal vanadium mine[J]. China's Manganese Industry, 2017, 35(4): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201704031.htm

    [18] 《岩石矿物分析》编委会. 岩石矿物分析(第四版第三分册)[M]. 北京: 地质出版社, 2011.

    The editorial committee of 《Rock and Mineral Analysis》. Rock and mineral analysis (The fourth edition: Vol. Ⅲ)[M]. Beijing: Geological Publishing House, 2011.

    [19] 隆英兰, 王景凤, 韩俊丽, 等. 硫酸亚铁铵滴定法测定低品位石煤钒矿中的五氧化二钒[J]. 化学分析计量, 2019, 28(5): 41-44. doi: 10.3969/j.issn.1008-6145.2019.05.010

    Long Y N, Wang J F, Han J L, et al. Determination of vanadium pentoxide in low content stone coal vanadium ore by ammonium ferrous sulfate titration[J]. Chemical Analysis and Meterage, 2019, 28(5): 41-44. doi: 10.3969/j.issn.1008-6145.2019.05.010

    [20] 吴少尉, 葛文, 金萍, 等. 富氧空气-乙炔火焰原子吸收光谱法测定地质样品中的钒[J]. 岩矿测试, 2003, 22(4): 300-302. doi: 10.3969/j.issn.0254-5357.2003.04.012

    Wu S W, Ge W, Jin P, et al. Determination of vanadium in geological samples by air mixed oxygen-acetylene flame atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2003, 22(4): 300-302. doi: 10.3969/j.issn.0254-5357.2003.04.012

    [21] 阳亚玲, 颜文斌, 蔡俊, 等. 溶液制样-偏振能量色散X射线荧光光谱法分析石煤钒矿中五氧化二钒[J]. 冶金分析, 2014, 34(12): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201412003.htm

    Yang Y L, Yan W B, Cai J, et al. Determination of vanadium pentoxide in stone coal vanadium ore by polarized energy dispersive X-ray fluorescence spectrometry with sample solution preparation[J]. Metallurgical Analysis, 2014, 34(12): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201412003.htm

    [22] 王干珍, 汤行, 叶明, 等. 电感耦合等离子体原子发射光谱法测定含碳质钒矿石中硅铝铁钒磷[J]. 冶金分析, 2016, 36(5): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201605006.htm

    Wang G Z, Tang X, Ye M, et al. Determination of silicon, aluminum, iron, vanadium and phosphorus in carbon-bearing vanadium ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(5): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201605006.htm

    [23] 田宗平, 彭君, 王干珍, 等. 石煤钒矿成分分析标准物质的研制[J]. 岩矿测试, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008

    Tian Z P, Peng J, Wang G Z, et al. Preparation of standard materials for composition analysis of stone coal vanadium ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008

    [24] 牟英华, 张鲁宁, 胡维铸. 碱熔-电感耦合等离子体原子发射光谱法测定钒钛磁铁矿中钒和钛[J]. 冶金分析, 2021, 41(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202105012.htm

    Mu Y H, Zhang L N, Hu W Z. Determination of vanadium and titanium in vanadium-titanium magnetite by alkali fusion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202105012.htm

    [25] 孙孟华, 李晓敬, 王文娟, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定地质样品中锆铌铪钽锂铍钒磷铀锰[J]. 冶金分析, 2022, 42(1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202201012.htm

    Sun M H, Li X J, Wang W J, et al. Determination of zirconium, niobium, hafmium, tantalum, lithium, beryllium, vanadium, phosphorus, uranium and manganese in geological samples by inductively coupled plasma mass spectrometry with sodium peroxide alkali fusion[J]. Metallurgical Analysis, 2022, 42(1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202201012.htm

    [26] 朱霞萍, 尹继先, 陈卫东, 等. 微波消解ICP-OES快速测定难溶钒钛磁铁矿中铁、钛、钒[J]. 光谱学与光谱分析, 2010, 30(8): 2277-2280. doi: 10.3964/j.issn.1000-0593(2010)08-2277-04

    Zhu X P, Yin J X, Chen W D, et al. Determination of Fe, Ti and V in vanadium and titanium magnetite by ICP-OES and microwave-assisted digestion[J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2277-2280. doi: 10.3964/j.issn.1000-0593(2010)08-2277-04

    [27] 成勇, 袁金红, 彭慧仙. 电感耦合等离子体原子发射光谱法(ICP-OES)测定含钒尾渣中钒的含量[J]. 中国无机分析化学, 2013, 3(4): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201304016.htm

    Cheng Y, Yuan J H, Peng H X. Determination of vanadium context in vanadium containing tailing slags by ICP-OES[J]. Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(4): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201304016.htm

    [28] 褚晓君, 姜炳南, 宮嘉辰. ICP测定钒钛磁铁矿中的钒[J]. 有色矿冶, 2016, 32(3): 52-54. doi: 10.3969/j.issn.1007-967X.2016.03.016

    Chu X J, Jiang B N, Gong J C. Study on the simultaneous determination of vanadium in vanadium-titanium magnetite by ICP-AES[J]. Non-Ferrous Mining and Metallurgy, 2016, 32(3): 52-54. doi: 10.3969/j.issn.1007-967X.2016.03.016

    [29] 贺攀红, 杨珍, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒[J]. 岩矿测试, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048

    He P H, Yang Z, Gong Z X. Simultaneous determination of trace arsenic, copper, lead, zinc, nickel and vanadium in soils by hydride generation-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048

    [30] 黄超冠, 蒙义舒, 郭焕花, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J]. 岩矿测试, 2018, 37(1): 30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065

    Huang C G, Meng Y S, Guo H H, et al. Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065

    [31] 田宗平, 邓圣为, 曹健, 等. 石煤钒矿直接硫酸浸出试验的研究[J]. 湖南有色金属, 2012, 28(3): 17-19, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201203007.htm

    Tian Z P, Deng S W, Cao J, et al. Study on direct sulfuric acid leaching test of stone coal vanadium mine[J]. Hunan Nonferrous Metals, 2012, 28(3): 17-19, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201203007.htm

  • 期刊类型引用(31)

    1. 谢心怡,罗玉霞,邱慧,王健行,赵学付,王春英. 离子型稀土矿中残留氨氮的淋洗去除及动力学研究. 有色金属科学与工程. 2025(01): 143-151 . 百度学术
    2. 轩诗垚,王占刚. 结合风场的土壤重金属污染扩散过程模拟. 计算机应用与软件. 2024(02): 68-72+151 . 百度学术
    3. 韦春妙,章艳红,唐玉红,刘斌. 江西某退役焦化厂土壤重金属赋存形态分析及生物有效性评价. 土壤通报. 2024(03): 810-818 . 百度学术
    4. 张振国,王月,陈军典,高倩,邢杰,骆念岗,田释梦,代佳浩. 冀东代表性铁尾矿库表层重金属含量特征及生态风险评价. 金属矿山. 2024(07): 231-240 . 百度学术
    5. 张永康,曹耀华,冯乃琦,刘岩,张耀,王庆,刘佳. 某废弃煤矿区土壤重金属污染风险评价. 煤炭学报. 2024(07): 3188-3198 . 百度学术
    6. 迟崇哲,刘影,王超,张大勇,王春慧. 有色金属矿山尾矿土壤化生态修复技术研究进展. 黄金. 2024(12): 8-12+138 . 百度学术
    7. 汪媛媛,廖启林,李文博,徐宏婷,崔晓丹,刘玮晶,李文婷,周强. 江苏典型农田土壤重金属形态分布初步研究. 土壤. 2024(06): 1326-1338 . 百度学术
    8. 魏光普,于晓燕,康瑜,宋宇辰. 稀土矿山“菌根-油松-耐性蚯蚓”修复土壤效应评价. 稀土. 2023(02): 120-129 . 百度学术
    9. 吴灿萍,周罕,陈安,徐继刘,付俊. 某铜选冶场地土壤重金属污染特征及风险评价. 西南农业学报. 2023(02): 402-408 . 百度学术
    10. 魏洪斌,罗明,向垒,查理思,杨慧丽. 矿业废弃地重金属形态分布特征与迁移转化影响机制分析. 环境科学. 2023(06): 3573-3584 . 百度学术
    11. 杨洋,高慧敏,陶红,张秋灯. 重金属复合污染河道底泥淋洗动力学特征. 净水技术. 2023(06): 152-160+175 . 百度学术
    12. 张永康,冯乃琦,刘岩,徐志强,张耀,王庆. 江西某铅锌矿区土壤重金属形态分析及风险评价. 矿产综合利用. 2023(03): 199-204+210 . 百度学术
    13. 陈丹利,刘冠男,行正松,刘伟,潘飞飞,徐建军,赵元艺. 河南栾川钼铅锌多金属矿集区土壤重金属累积及源解析. 岩矿测试. 2023(04): 839-851 . 本站查看
    14. 黄方昱,明光艳,谢玮琛,吴道铭,陈燕明. 稀土矿迹地周边农田土壤重金属生态风险评价. 世界有色金属. 2023(14): 178-181 . 百度学术
    15. 林小淳,刘晓瑜,袁欣,张隆隆,刘斯文,冯亚鑫,赵晓倩,黄园英. 碱改性沸石吸附铅和氨氮性能及对稀土矿山土壤的修复作用. 岩矿测试. 2023(06): 1177-1188 . 本站查看
    16. 杨士,刘祖文,龙焙,毕永顺,林苑,左华伟. 生物炭负载氧化石墨烯对离子型稀土矿区土壤中重金属的阻控效应. 环境科学. 2022(03): 1567-1576 . 百度学术
    17. 陈陵康,陈海霞,金雄伟,张恋,刘金辉,柳传毅,徐狮,吴开兴,何书,孙涛,刘卫明. 离子型稀土矿粒度、粘土矿物、盐基离子迁移及重金属释放研究及展望. 中国稀土学报. 2022(02): 194-215 . 百度学术
    18. 刘斯文,黄园英,赵文博,魏吉鑫,徐春丽,马嘉宝,刘久臣,黄采文. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价. 岩矿测试. 2022(03): 488-498 . 本站查看
    19. 范晨子,袁继海,刘成海,郭威,孙冬阳,刘崴,赵九江,胡俊栋,赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价. 物探与化探. 2022(03): 761-771 . 百度学术
    20. 彭红丽,谭海霞,王颖,魏建梅,冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价. 生态环境学报. 2022(06): 1235-1243 . 百度学术
    21. 鲍丽萍,陈芸,杨海博,董学林,孙勇,周佳,周新. 鄂西北稀土矿区粮食与蔬菜中重金属污染风险评价. 食品安全质量检测学报. 2022(15): 5062-5069 . 百度学术
    22. 白宇明,李永利,周文辉,胡浩远,卢震,边鹏. 典型工业城市土壤重金属元素形态特征及生态风险评估. 岩矿测试. 2022(04): 632-641 . 本站查看
    23. 张笑辰,刘煜,张兴绘,孙小艳. 江西省主要城市土壤重金属污染及风险评价. 环境科学与技术. 2022(08): 206-217 . 百度学术
    24. 杨贤房,郑林,万智巍,王远东,孟丽红,俞大杰. 酸性矿山5种植被恢复措施下土壤碱性磷酸酶基因细菌群落特征及其与重金属关系. 环境科学学报. 2022(12): 251-261 . 百度学术
    25. 范晨子,郭威,袁继海,郝乃轩,赵九江,刘成海. 西南地区典型工矿业城市土壤—作物系统中重金属和硒元素特征及评价. 西南农业学报. 2022(08): 1909-1919 . 百度学术
    26. 王毛兰,何昶,赵茜宇. 江西某养殖场废水灌溉土壤重金属污染特征及健康风险评价. 岩矿测试. 2022(06): 1072-1081 . 本站查看
    27. 谭启海,赵永红,黄璐,万臣,杨智,周丹. 硫酸铵对离子型稀土矿区土壤重金属的释放和形态转化影响. 有色金属科学与工程. 2022(06): 134-144 . 百度学术
    28. 陈月茹,曾敏静,程媛媛,龙焙,张斌超,曾玉,林树涛,易名儒,黄思浓. 温度对好氧颗粒污泥硝化-反硝化耦合脱氮性能影响. 环境科技. 2021(03): 7-12 . 百度学术
    29. 范晨子,刘永兵,赵文博,刘成海,袁继海,郭威,郝乃轩. 云南安宁水系沉积污染物分布特征与风险评价. 岩矿测试. 2021(04): 570-582 . 本站查看
    30. 徐春丽,刘斯文,魏吉鑫,黄园英,马嘉宝,曾普胜,李旭光. 离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征. 矿产保护与利用. 2021(04): 1-11 . 百度学术
    31. 高娟琴,于扬,李以科,李瑞萍,柯昌辉,王登红,于沨,张塞,王雪磊. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征. 岩矿测试. 2021(06): 871-882 . 本站查看

    其他类型引用(19)

表(5)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  24
  • PDF下载量:  26
  • 被引次数: 50
出版历程
  • 收稿日期:  2020-02-19
  • 修回日期:  2022-04-19
  • 录用日期:  2022-04-29
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2022-07-27

目录

    /

    返回文章
    返回