Forms Distribution of Heavy Metals and Their Ecological Risk Evaluation in Soils of Ion Adsorption Type in the Rare Earth Mining Area of Southern Jiangxi, China
-
摘要: 稀土矿的露天开采易造成土壤重金属污染等环境问题。已有研究表明赣南离子吸附型稀土矿区土壤存在以Cd、Pb为主的轻、中度重金属污染。常见环境质量评价以主要污染因子(如重金属总量)作为衡量污染程度的指标,仅能反映重金属的富集程度。为查明赣南稀土矿区土壤重金属的赋存状态、迁移能力以及生物有效性,本文在利用电感耦合等离子体质谱法(ICP-MS)测定土壤重金属各形态含量的基础上,采用地累积指数法、潜在生态危害指数法及RAC风险评价法对赣南稀土矿区土壤重金属的生态风险进行评价。结果表明:①研究区土壤重金属主要以残渣态存在,占总量的65.5%。②土壤样品中Cd、Pb含量平均值分别是江西省土壤背景值的1.72倍和2.14倍;流域内位于矿山下游河流沿岸农田土壤Cd的平均值、尾矿库附近农田Pb的平均值分别是土壤背景值的2.33倍和3.06倍,22.7%样品的Cd或Pb含量超过风险筛选值,其中可交换态所占比例仅次于残渣态,分别占总量的47.1%和13.5%。③地累积指数与潜在生态风险评价结果表明Cd、Pb累积程度及生态风险水平较高,Co、Ni、Cu、Zn较低;RAC风险评价结果显示Cd生态风险较高,Co、Zn、Pb生态风险中等,Cu、Ni生态风险低。④针对矿区农田土壤的三种评价方法各有侧重,其评价结果异中有同,均表明研究区土壤Cd具有较高的污染程度和迁移活性,生态风险较高。本研究结果将为识别稀土矿周边农田土壤的潜在环境风险,提出有效的防范、应急与减缓措施提供科学依据。Abstract: BACKGROUND: The open-pit mining of rare earth mines easily causes heavy metal pollution problems. Studies have shown that the soil of the rare earth mining area in southern Jiangxi has been polluted by heavy metals of Cd and Pb in low and moderate degrees. Environmental quality assessment usually uses pollution factors (total heavy metal content) as indicators of the degree of pollution, which can only reflect the degree of enrichment of heavy metals.
OBJECTIVES: To investigate the forms of heavy metals in the soil of the rare earth mining area in southern Jiangxi Province, migration ability and bioavailability.
METHODS: Based on the forms analysis of soil heavy metals measured by inductively coupled plasma-mass spectrometry (ICP-MS), the ecological risk of soil heavy metals in the rare earth mining area was evaluated using the geoaccumulation index method, potential ecological hazard index method and RAC risk assessment.
RESULTS: The heavy metals in the soil in the study area mainly existed in the residual form, accounting for 65.5% of the total. The average content of Cd and Pb in the soil samples was 1.72 times and 2.14 times the soil background value of Jiangxi Province, respectively. The average value of Cd in the soil in the farmland along the river downstream of the mine and the average value of Pb in the farmland near the tailing pond were 2.33 times and 3.06 times background value, respectively. The Cd or Pb content of the 22.7% samples exceeded the risk screening value. Among them, the exchangeable form of Cd and Pb accounted for 47.1% and 13.5% of the total amount, respectively, secondary to the residual form. Geoaccumulation index and potential ecological risk assessment results show that the accumulation degree and ecological risk level of Cd and Pb were higher, and Co, Ni, Cu, and Zn were lower. RAC risk assessment results show that Cd ecological risk was higher, whereas Co, Zn, and Pb was medium and Cu and Ni was low. Although the focal point and some results of the three evaluation methods were also different, the comprehensive conclusion showed that the soil Cd pollution and migration activities in the mining area were high, and the ecological risk was high.
CONCLUSIONS: The research results provide scientific basis for identifying the potential environmental risks of farmland soil in rare earth mining areas and propose effective prevention, emergency response and mitigation procedures. -
铼属稀有分散元素,由于具有难熔难蚀及良好的塑性等物化特性,在国防、航空航天和石油化工等领域都均有不可替代的作用[1]。作为重要的战略资源,铼在地壳中含量低且分布不均匀,资源集中分布于智利、美国和俄罗斯等国[2]。工业上铼产品源主要取自矿产资源中的含铼矿物,少部分由废旧高温合金、废催化剂和冶炼废液等二次资源中回收。自然界中铼资源主要以伴生状态产于有色及贵金属矿床中,目前已查明铼富集与Cu、Mo关系密切,伴生铼的铜(钼)矿床冶炼时产生的副产品、废液中是铼产品主要来源[3-4]。
自然界中铼的独立矿物很少,主要为硫铜矿、铜铼矿和锇铜铼矿[5]。但含铼矿物种类繁多,包括辉钼矿、黄铜矿、辉铜矿、斑铜矿、白钨矿、铌铁矿、黄铁矿、赤铁矿、镜铁矿、铂和铀的矿物、硅铍乙矿等,部分地区在煤层中也见铼富集[6-9]。由矿石中提取铼的方法主要包括溶剂萃取法、离子交换法、沉淀法、氧化还原法、碱浸置换法、电渗析法等,不同赋存矿物及赋存状态所采用的回收方法不同[9-10];因此,在对矿石中铼进行综合回收之前,必须先查明铼在矿石矿物中的赋存状态。
江西德兴铜矿中的铼资源保有总量为1000余吨,占我国的80%[11-12]。富家坞矿床为江西德兴铜矿的三大主矿床之一,已查明其回收目标元素为Cu、Mo,铼是具工业价值的伴生元素之一。辉钼矿是德兴铜矿中铼回收的目标矿物[13],而富家坞矿床是德兴矿田中辉钼矿平均含量及含铼质量分数最高的矿床[14]。但前人对德兴铜矿铼赋存状态进行研究时,主要是针对铜厂矿区,而直接对富家坞矿床中铼赋存状态的研究资料相对较少。据此,本文从工艺矿物学角度,通过化学分析、岩矿鉴定、电子探针分析、筛析试验和平衡配分计算等方法和手段,对富家坞矿床铜钼矿石中铼的赋存状态进行了系统研究,查明了富家坞矿床铜钼矿石中铼元素的赋存状态以及不同粒级中铼与钼的变化趋势,为其综合回收利用提供了可靠的依据。
1. 实验部分
1.1 样品采集
矿石按蚀变花岗闪长斑岩型铜钼矿石和千枚岩型铜钼矿石两类进行采样,元素含量指标为Cu≥0.25%、Mo≥0.03%;采集范围为矿权范围内的矿山露天采场8~17号勘探线间,台阶标高+380~+200 m,采集蚀变花岗闪长斑岩型铜钼矿石和千枚岩型铜钼矿石两类矿石分析样各1件,两类矿石共采集岩矿样236件。其中,矿石分析样用于化学成分、筛析试验等研究,岩矿样主要用于电子探针分析、光学显微鉴定研究。
1.2 样品测试方法
化学分析由有色金属桂林矿产地质测试中心完成,主量、微量元素根据含量,分别采用化学滴定法、重量法、原子吸收分光光度计(Z-2010)、紫外可见分光光度计(EV300)等方法、仪器进行测试。筛析试验、岩矿光学显微鉴定在中国有色桂林矿产地质研究院有限公司资源综合利用研究所完成。筛析试验分200目(过筛粒度为-0.074 mm)、400目(过筛粒度为-0.038 mm)、600目(过筛粒度为-0.023 mm)等三级网筛进行试验;岩矿光学显微鉴定使用莱兹偏光显微镜(ORTHOLLX-Ⅱ POL BK),光片利用反射光进行观察,薄片利用透射光进行观察;照相及图像处理系统为ArtCam Measure2.0,矿物粒度测试利用上述设备和图像处理系统完成,采取单颗粒最大截距作为参数。电子探针分析在桂林理工大学电子探针实验室完成,使用仪器为JXA8230(日本电子、牛津仪器),测量元素范围为5B~92U,加速电压0.2~30 kV,束流电流范围10-12~10-5 A,图像理想分辨率:二次电子像为6 nm,背散射电子像≤20 nm(15 keV),放大倍率:40×~300000×。
2. 结果与讨论
2.1 原矿性质
2.1.1 原矿化学组成
原矿化学分析结果(表 1)表明,富家坞铜钼矿石中主要元素为Cu,蚀变花岗闪长斑岩型、千枚岩型铜钼矿石中Cu对应含量分别为0.5%、0.53%,达到硫化铜矿石最低工业指标(DZ/T 0214—2002);伴生组分S、Mo、Ag、Se、Te、Re含量均达到铜矿床综合评价指标,Au仅在蚀变花岗闪长斑岩型铜钼矿石中达到回收指标(GBT 25283—2010)。其中,Re含量高于铜伴生组分指标300余倍,是本文讨论的主要伴生组分。脉石矿物主要化学成分为SiO2,其次为Al2O3,两者合计在各类矿石中占比均>75%,成分较为简单,有利于分选作业。矿石中Pb、Zn、Cr、As含量低于土壤无机污染物的环境质量第二级标准值中居住及工业用地指标(GB 15618—2008)。
表 1 矿石的化学全分析结果Table 1. Total chemical analysis of ores样品名称 SiO2 Al2O3 Fe2O3 FeO TiO2 CaO MgO K2O Na2O MnO P2O5 H2O+ S Cu Mo Pb Zn W Cr Au Ag Se Te Re As 斑岩型铜钼矿石 68.47 13.1 2.25 2.08 0.4 0.74 1.39 1.27 0.45 0.09 0.18 1.3 2.08 0.5 0.069 73 140 0.99 44 0.1 2.55 1.78 0.31 0.36 4.21 千枚岩型铜钼矿石 62.16 14.65 3.92 1.44 0.72 1.8 2.18 4.63 0.17 0.052 0.18 1.75 3 0.53 0.045 26 30 11 130 0.052 1.5 2.14 0.24 0.32 14.22 注:SiO2~Mo等15项分析结果的计量单位为10-2;Pb~As等10项分析结果的计量单位为10-6。 2.1.2 矿石矿物组成及结构构造特征
矿石类型按围岩组成可分为蚀变花岗闪长斑岩型和千枚岩型矿石。结合岩矿鉴定结果和矿石化学全分析结果,根据矿石矿物化学分子式计算出矿石中主要矿物含量(表 2)。其中,蚀变花岗闪长斑岩主要由石英、钾长石、斜长石组成,少量黑云母;蚀变矿物包括绢云母、绿泥石、绿帘石、碳酸盐矿物等。千枚岩可细分为绢云千枚岩、石英-绢云千枚岩和绿泥石-绢云千枚岩,局部见沉凝灰质千枚岩,主要组成矿物为石英、绢云母、绿泥石、绿帘石,少量碳酸盐矿物。两类矿石矿物组成差异大,在采选冶过程中宜按矿石类型分别处理。
表 2 铜钼矿石的矿物相对含量Table 2. Relative content of copper molybdenum ore蚀变花岗闪长斑岩型铜钼矿石 千枚岩型铜钼矿石 矿物名称 含量(%) 矿物名称 含量(%) 石英 40.71 石英 44.02 钾长石 13.28 绢云母 26.94 斜长石 8.03 绿泥石 10.61 黑云母 3.05 绿帘石 6.56 绢云母 14.49 碳酸盐矿物 3.52 绿泥石 5.65 黄铁矿 3.64 绿帘石 4.33 黄铜矿 1.48 碳酸盐矿物 3.05 赤铁矿 1.54 黄铁矿 2.53 辉钼矿 0.07 黄铜矿 1.43 其他矿物 1.62 赤(镜)铁矿 1.04 - - 辉钼矿 0.12 - - 其他矿物 2.29 - - 矿石自然类型为原生硫化物型铜钼矿石。金属矿物以黄铜矿、黄铁矿、赤(镜)铁矿为主,少量辉钼矿、钛铁矿、锐钛矿,微量黝铜矿、斑铜矿、闪锌矿、方铅矿,局部见磁铁矿、钼钙矿。
两种类型的矿石中有价元素Cu、Mo回收的目标矿物相同,嵌布特征一致。Cu回收的目标矿物为黄铜矿,嵌布粒度为0.05~2.5 mm,以0.05~0.15 mm为主;Mo回收的目标矿物为辉钼矿,嵌布粒度为0.01~0.5 mm,以0.02~0.1 mm为主;伴生有用组分Re、Au、Ag、Se、Te等未见独立矿物。
金属矿物以自形、半自形结晶结构为主;集合体具不规则粒状、束状、放射状、等轴粒状、揉皱状等形态;矿物之间接触关系以交代结构为主,还见连生结构、固溶分离结构、填隙结构等。矿石构造以浸染状、脉状、网脉状为主,局部富集呈块状、团斑状构造。
2.2 铼在矿石中的赋存状态
本研究在矿相鉴定中未见铼独立矿物,故进一步对矿石中不同矿物进行了铼含量的X射线能谱面扫描分析、电子探针分析。面扫描结果(图 1)显示,在黄铜矿、辉钼矿、锆石、黄铁矿、方铅矿中均有铼分布,钼钙矿、石英、云母、斜长石、绿泥石、绿帘石、锐钛矿等矿物中均未见铼。矿物电子探针分析结果(表 3)显示,辉钼矿、黄铜矿、方铅矿、黄铁矿、闪锌矿等金属硫化物中均有铼,其分布状态不均匀,含量范围为0.001%~0.267%。辉钼矿是铼检测率和含量最高的矿物。
表 3 矿石的金属硫化物中铼含量电子探针分析结果Table 3. Analytical results of Re content in metal sulfide ores by electron probe序号 辉钼矿(10-2) 黄铜矿(10-2) 方铅矿(10-2) 黄铁矿(10-2) 闪锌矿(10-2) 斑岩型
矿石千枚岩型
矿石斑岩型
矿石千枚岩型
矿石斑岩型
矿石千枚岩型
矿石斑岩型
矿石千枚岩型
矿石斑岩型
矿石千枚岩型
矿石1 0.011 - 0.026 0.045 0.005 0.017 - - 0.074 - 2 0.014 0.011 0.078 0.033 0.08 - 0.021 - - 0.025 3 0.018 - - - - 0.024 - 0.056 - - 4 0.061 0.05 0.011 - - 0.003 - - - - 5 0.039 0.074 0.052 0.045 - - - - - 0.008 6 0.054 0.068 0.026 0.001 - - - - - 0.105 7 0.018 0.025 0.004 0.083 - - - - - - 8 0.018 - 0.041 0.091 - 0.062 - - - - 9 0.082 0.029 - - 0.045 - - - - - 10 0.011 - 0.001 - 0.036 0.013 - - - - 11 - - 0.083 0.047 0.0166 0.012 - - - - 12 0.14 - 0.091 0.046 - - - - - - 13 - - - 0.074 - - - - - - 14 - - - - - - - - - - 15 0.061 - 0.03 0.07 - - - - - - 16 0.061 - - 0.128 - - - - - - 17 0.267 - - - - - - - - - 18 0.014 - - 0.056 - - - - - - 19 0.025 - - 0.084 - - - - - - 20 - - - 0.042 - - - - - - 检测率 80.0% 66.7% 73.3% 70.0% 45.5% 54.5% 50.0% 33.3% 33.3% 42.9% 注:“-”表明该点中铼含量低于电子探针检出下限或不含铼。 2.2.1 铼在矿石中的平衡配分
研究矿石平衡配分信息,能够查明目标元素在矿石的各类矿物中的含量及其对应矿物在总量中对该元素的占有率,进而确定目标元素回收的目标矿物。故此,本次研究对矿石中Cu、Mo、Re进行了平衡配分计算。计算结果(表 4)显示,矿石中的Cu主要以黄铜矿形式存在,Mo主要以辉钼矿形式存在;蚀变花岗闪长斑岩型、千枚岩型铜钼矿石中,黄铜矿对Cu的占有率分别为98.02%、97.66%,辉钼矿对Mo的占有率分别为96.82%、87.93%,主要金属矿物黄铁矿及脉石矿物对Cu、Mo的占有率均低于5%。
表 4 不同矿石类型中铼的平衡配分Table 4. Results of equilibrium partition anlysis of Re in different ore types矿石类型 矿物名称 A.矿物相对
含量(10-2)B.元素含量 C.配分量 P.相对占有率 Cu
(10-2)Mo
(10-2)Re
(10-6)Cu
(10-2)Mo
(10-2)Re
(10-6)Cu
(%)Mo
(%)Re
(%)蚀变花岗
闪长斑岩
型铜钼
矿石辉钼矿 0.12 0.0081 55.84 684 0.00097 0.067 0.8208 0 96.82 95.54 黄铜矿 1.43 31.46 0.0051 0.17 0.4499 0.0001 0.0024 98.02 0.11 0.28 黄铁矿 2.53 0.34 0.05 0.32 0.0086 0.0013 0.0081 1.87 1.83 0.94 综合脉石 95.92 0.0005 0.0009 0.029 0.0005 0.0009 0.0278 0.1 1.25 3.24 合计 100 0.459 0.0692 0.8591 100 100 100 千枚岩型
铜钼矿石辉钼矿 0.07 0.0081 58 684 0.0006 0.0406 0.4788 0 87.93 92.82 黄铜矿 1.48 33.42 0.024 0.076 0.4946 0.0004 0.0011 97.66 0.77 0.22 黄铁矿 3.64 0.3 0.047 0.31 0.0109 0.0017 0.0113 2.16 3.71 2.19 综合脉石 94.81 0.001 0.0037 0.026 0.0009 0.0035 0.0247 0.19 7.6 4.78 合计 100 0.5065 0.0462 0.5159 100 100 100 注:计算方法为C=A×B,P=C/∑C。 与此同时,蚀变花岗闪长斑岩型、千枚岩型铜钼矿石中辉钼矿对铼占有率分别为95.54%、92.82%,故辉钼矿是铼的主要载体矿物和富集矿物,亦为铼回收的目标矿物。需要注意的是,两种铜钼矿石的综合脉石中铼占有率均高于黄铜矿、黄铁矿之和,这可能与综合脉石中的闪锌矿、方铅矿、锆石等矿物含铼有关。
2.2.2 原矿不同粒级中铼含量及其变化
当-0.074 mm占有率为70%±~80%±时,对矿石进行了+0.074 mm、-0.074~+0.038 mm、-0.038~+0.023 mm、-0.023 mm四个粒段的筛析试验。试验结果(表 5)表明:在-0.074~+0.023 mm粒段中,蚀变花岗闪长斑岩型铜钼矿石Cu、Mo、Re对应的分配率分别为67.22%、75.06%、72.56%;千枚岩型铜钼矿石Cu、Mo、Re对应的分配率分别为73.34%、78.23%、75.43%。上述两类矿石中Cu、Mo、Re在-0.074~+0.023 mm粒段富集明显,因此,磨矿细度控制在-0.074 mm占有率为70%±~80%±时,有益于选矿回收作业。
表 5 铼在不同粒级中的分布特征Table 5. Distribution characteristics of Re in different particle sizes矿石类型 粒级范围
(mm)产率
(%)含量测定结果 分配率(%) Cu(10-2) Mo(10-2) Re(10-6) Cu Mo Re 蚀变花岗闪长斑岩型
铜钼矿石+0.074 31.9 0.26 0.045 0.23 17.22 17.54 20.8 -0.074~+0.038 29.35 0.44 0.098 0.41 26.94 35.37 34.64 -0.038~+0.023 28.64 0.67 0.11 0.46 40.28 39.69 37.92 -0.023 10.11 0.73 0.059 0.23 15.56 7.4 6.65 合计 100 100 100 100 千枚岩型
铜钼矿石+0.074 20.29 0.26 0.03 0.13 11.02 13.02 17.85 -0.074~+0.038 31.24 0.45 0.052 0.18 29.12 34.08 38.65 -0.038~+0.023 34.09 0.63 0.061 0.16 44.22 44.15 36.78 -0.023 14.37 0.53 0.029 0.068 15.64 8.75 6.72 合计 100 100 100 100 在不同粒级中,铼分布与Mo具有相同的变化趋势,表明铼主要赋存于辉钼矿之中,受辉钼矿的分布控制,与电子探针分析结果一致,可进一步确定铼回收目标矿物为辉钼矿,应在回收Mo同时注意对铼的回收。
2.3 影响铼回收的工艺矿物学因素浅析
(1) 矿石中未发现铼的独立矿物,岩矿鉴定、电子探针分析和筛析试验等多种试验研究结果表明,辉钼矿是铼的主寄存矿物,铼主要以Mo类质同象形式存在于辉钼矿之中,且不同粒级中铼分布与Mo具相同的变化趋势,铼分布受辉钼矿的分布控制,难以单独分离回收,需在钼精矿回收过程中回收铼。
(2) 两类铜钼矿石的辉钼矿嵌布粒度接近,均以0.02~0.1 mm为主,但蚀变花岗闪长斑岩型和千枚岩型铜钼矿石中辉钼矿含量和脉石矿物成分相差明显,且辉钼矿对Mo的占有率差异较大,故而在对Mo、Re进行综合回收利用时,需将两类矿石进行分类处理。
(3) 辉钼矿在矿石中主要呈网脉状、浸染状构造产出,且常穿插交代黄铁矿、黄铜矿,需破碎、细磨,才能将完全解离。但是由于辉钼矿解理发育、性脆,在磨矿过程中易破碎进入微粒级。筛析试验结果显示,当-0.074 mm占有率为70%±~80%±时,在-0.023 mm粒度段,Mo、Re的品位仍高于铜矿伴生元素综合回收指标。因此,需选择合适的磨矿工艺,以控制矿石的过粉碎,降低-0.023 mm的产率,进而提高Mo(Re)的综合回收率。
3. 结论
富家坞矿床的蚀变花岗闪长斑岩型、千枚岩型铜钼矿石中具工业价值主要元素为Cu,同时伴生S、Mo、Ag、Se、Te、Re等有价元素。本文研究表明以上两类矿石中均未见铼独立矿物的铼矿物,但发现了多种含铼矿物,包括含铼的辉钼矿、黄铜矿、黄铁矿、闪锌矿、方铅矿和锆石等;铼在上述矿物中主要以分散状态形式存在,主要表现为铼不均匀分布于不同载体矿物或同种载体矿物的不同形态中。
平衡配分结果表明,辉钼矿是铜钼矿石中含铼最高的矿物,其含铼量高达684×10-6,接近铜厂晚期2H1+3R型辉钼矿中铼含量(859×10-6)[14],蚀变花岗闪长斑岩型、千枚岩型铜钼矿石中辉钼矿对铼占有率分别为95.54%、92.82%。由此可知,辉钼矿是富家坞矿床两类铜钼矿石中铼的主寄存矿物和工业回收铼的目标矿物。结合前人研究可知,铼主要以Mo类质同象形式存在于辉钼矿之中,其回收利用需在钼精矿的工业利用中进行。富家坞两类铜钼矿石的辉钼矿对Mo的占有率及脉石矿物成分差异较大,故而对Mo、Re进行综合回收利用时,需将两类矿石进行分类处理。此外,由于辉钼矿性脆且解理发育,在磨矿过程中易破碎进入微粒级,因此,需选择合适的磨矿工艺,防止矿石的过粉碎,以提高Mo(Re)的综合回收率。
-
邓家姝,邓家恂.坚持科学发展观实现我国稀土产业可持续发展[J].世界有色金属,2005,14(2):10-13. Deng J S,Deng J X.Adhering to the scientific development concept and realizing the sustainable development of China's rare earth industry[J].World Nonferrous Metals,2005,14(2):10-13.
高志强,周启星.稀土矿露天开采过程的污染及对资源和生态环境的影响[J].生态学杂志,2011,30(12):2915-2922. Gao Z Q,Zhou Q X.Contamination from rare earth or estrip mining and its impacts on resources and eco-environment[J].Chinese Journal of Ecology,2011,30(12):2915-2922.
王友生,侯晓龙,吴鹏飞,等.长汀稀土矿废弃地土壤重金属污染特征及其评价[J].安全与环境学报,2014,14(4):259-262. Wang Y S,Hou X L,Wu P F,et al.Analysis of the characteristics and the evaluation of heavy metal pollutions in the deserted land-area left-over by the rare earth mining in Changting,Fujian[J].Journal of Safety and Environment,2014,14(4):259-262.
余爱华,卢秀琳,周舒宇,等.城市不同功能区土壤重金属特性分析——以南京市玄武区为例[J].森林工程,2014,30(6):33-38. Yu A H,Lu X L,Zhou S Y,et al.Characteristics of heavy metals in soil of different urban areas-A case study of Xuanwu District in Nanjing[J].Forest Engineering,2014,30(6):33-38.
唐翔宇,朱永官.土壤中重金属对人体生物有效性的体外试验评估[J].环境与健康杂志,2004,21(3):183-185. Tang X Y,Zhu Y G.Advance in vitro tests in evaluating of bioavailability of heavy metals in contaminated soil via oral intake[J].Journal of Environment and Health,2004,21(3):183-185.
Humsa T Z,Srivastava R K.Impact of rare earth mining and processing on soil and water environment at Chavara,Kollam,Kerala:A case study[J].Procedia Earth & Planetary Science,2015,11(15):566-581.
Ali S H.Social and environmental impact of the rare earth industries[J].Resources,2014,3(1):123-134.
张军,胡方洁,卢陈彬,等.稀土矿区土壤重金属污染控制研究的几点建议[J].应用化工,2018,47(6):1254-1257. Zhang J,Hu F J,Lu C B,et al.Some suggestions on controlling heavy metal pollution in soil of rare earth mining area[J].Applied Chemical Industry,2018,47(6):1254-1257.
刘丹,赵永红,周丹,等.赣南某钨矿区土壤重金属污染生态风险评价[J].环境化学,2017,36(7):1556-1567. Liu D,Zhao Y H,Zhou D,et al.Ecological risk assessment of heavy metals pollution in a tungsten mine soil in south of Jiangxi Province[J].Environmental Chemistry,2017,36(7):1556-1567.
范拴喜.土壤重金属污染评价方法进展[J].中国农学通报,2010,26(17):310-315. Fan S X.Progress of assessment methods of heavy metal pollution in soil[J].Chinese Agricultural Science Bulletin,2010,26(17):310-315.
Baran A,Wieczorek J,Mazurek R,et al.Potential ecolo-gical risk assessment and predicting zinc accumulation in soils[J].Environmental Geochemistry & Health,2018,40(1):435-450.
Adlane B,Xu Z,Xu X,et al.Evaluation of the potential risks of heavy metal contamination in rice paddy soils around an abandoned Hg mine area in southwest China[J].Acta Geochimica,2020,39(1):85-95.
Zawadzki J,Fabijanczyk P.Geostatistical evaluation of lead and zinc concentration in soils of an old mining area with complex land management[J].International Journal of Environmental Science & Technology,2012,10(4):729-742.
Kusin F M,Awang N H C,Hasan S N M S,et al.Geo-ecological evaluation of mineral,major and trace elemental composition in waste rocks,soils and sediments of a gold mining area and potential associated risks[J].CATENA,2019,183(10):1-13.
蔺亚青,胡方洁,张军,等.赣南离子型稀土矿区土壤吸附铜的特征研究[J].应用化工,2018,47(3):434-437. Tong Y Q,Hu F J,Zhang J,et al.Adsorption features of copper in Gannan ion-type rare earth mining soil[J].Journal of Applied Chemical Industry,2018,47(3):434-437.
龚胜芳.原子光谱技术在果园土壤重金属监测中的应用研究[D].赣州:赣南师范学院,2012. Gong S F.Application of atomic spectroscopy in orchard soil heavy metal monitoring[D].Ganzhou:Gannan Normal University,2012. 陈优良,史琳,王兆茹.基于模糊数学的矿区土壤重金属污染评价——以信丰稀土矿区为例[J].有色金属科学与工程,2016,7(4):127-133. Chen Y L,Shi L,Wang Z R.Assessment of heavy metal pollution in mining area based on fuzzy mathematics-A case study of Xinfeng rare earth mining area[J].Nonferrous Metal Science and Engineering,2016,7(4):127-133.
苏文湫,祝怡斌.赣州稀土矿山废弃地土壤重金属污染现状评价[J].有色金属(矿山部分),2016,68(4):81-85. Su W Z,Zhu Y B.Evaluation of the soil heavy metal pollution in Ganzhou rare earth mine wasteland[J].Non-Ferrous Metals (Mining Section), 2016,68(4):81-85. 贺灵,曾道明,魏华玲,等.赣南脐橙种植区典型果园土壤重金属元素评价[J].湖北农业科学,2014,53(2):292-297. He L,Zeng D M,Wei H L,et al.Evaluating heavy metals of navel orange orchard soil in Gannan area[J].Hubei Agricultural Sciences,2014,53(2):292-297.
Alonso E,Santos A,Callejon M,et al.Speciation as a screening tool for the determination of heavy metal surface water pollution in the Guadiamar river basin[J].Chemosphere,2004,56(6):561-570.
Pagnanelli F,Moscardini E,Giuliano V,et al.Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area:Pollution detection and affinity series[J].Environmental Pollution,2004,132(2):189-201.
Jain C K.Metal fractionation study on bed sediments of River Yamuna,India[J].Water Research,2004,38(3):569-578.
Singh K P,Mohan D,Singh V K,et al.Studies on distribution and fractionation of heavy metals in Gomti River sediments-A tributary of the Ganges,India[J].Journal of Hydrology,2005,312(1):14-27.
于扬,李德先,王登红,等.溶解态稀土元素在离子吸附型稀土矿区周边地表水中的分布特征及影响因素[J].地学前缘,2017,24(5):172-181. Yu Y,Li D X,Wang D H,et al.Distribution and impact factor of dissolved rare earth elements in surface waters in the suburb of typica ion-adsorption rare earth orefield[J].Earth Science Frontiers,2017,24(5):172-181.
Tessier A,Campbell P G C,Bisson M.Sequential extra-ction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851.
马强,冯志刚,孙静,等.新疆某地浸砂岩型铀矿中铀赋存形态的研究[J].岩矿测试,2012,31(3):501-506. Ma Q,Feng Z G,Sun J,et al.Sturdy on chemical speciation of uranium in samples from in-situ leaching sandstone-type uranium deposit in Xinjiang[J].Rock and Mineral Analysis,2012,31(3):501-506.
李晓阁,潘静,奚旦立,等.印染污泥中重金属形态分析及生物有效性[J].岩矿测试,2009,28(1):10-14. Li X G,Pan J,Xi D L,et al.Bioavailability and speciation analysis of heavy metals in textile dyeing sludge[J].Rock and Mineral Analysis,2009,28(1):10-14.
王志罡,谢宏,杨旭,等.贵州铜仁坝黄磷矿中铀赋存状态的逐级化学提取研究[J].岩矿测试,2018,37(3):256-265. Wang Z G,Xie H,Yang X,et al.Stepwise extraction study on the occurrence of uranium in Tongrgen Bahuang phosphorite,Guizhou[J].Rock and Mineral Analysis,2018,37(3):256-265.
孙彬彬,曾道明,刘占元,等.风成砂覆盖区地电化学提取前后土壤中元素赋存状态变化研究[J].物探与化探,2018,42(3):93-102. Sun B B,Zeng D M,Liu Z Y,et al.Variation of modes of occurrence of elements in soil before and after the geo-electrochemical extraction in eolian sand covered area[J].Geophysical and Geochemical Exploration,2018,42(3):93-102.
孙凯,孙彬彬,周国华,等.福建龙海土壤重金属含量特征及影响因素研究[J].现代地质,2018,32(6):197-205. Sun K,Sun B B,Zhou G H,et al.Study on concentration characteristics and influencing factors of heavy metals in soils in Longhai,Fujian Province[J].Modern Geology,2018,32(6):197-205.
Müller G.Index of geoaccumulation in sediments of the Rhine River[J].Geojournal,1969,2(3):108-118.
Alhaidarey M J S,Hassan F M,Alkubaisey A R A,et al.The geoaccumulation index of some heavy metals in Al-Hawizeh Marsh,Iraq[J].Journal of Chemistry,2015,7(S1):S157-S162.
Hakanson L.An ecological risk index for aquatic pollution control:A sedimentological approach[J].Water Research,1980,14(8):975-1001.
Guo W,Liu X,Liu Z,et al.Pollution and potential ecolo-gical risk evaluation of heavy metals in the sediments around Dongjiang Harbor,Tianjin[J].Procedia Environmental Sciences,2010,2(1):729-736.
Singovszka E,Balintova M,Holub M.Assesment of heavy metals concentration in sediments by potential ecological risk index[J].Inzynieria Mineralna,2014,15(2):137-140.
徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115. Xu Z Q,Ni S J,Tou X G,et al.Calculation of heavy metals' power toxicity coefficients in the evaluation of potential ecological risk index[J].Environmental Science and Technology,2008,31(2):112-115.
Guillén M T,Delgado J,Albanese S,et al.Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula)[J].Journal of Geochemical Exploration,2012,119-120(6):32-43.
中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990. China National Environmental Monitoring Centre.Background value of soil elements in China[M].Beijing:China Environmental Science Press,1990. Gupta S K,Chabukdhara M,Kumar P,et al.Evaluation of ecological risk of metal contamination in river Gomti,India:A biomonitoring approach[J].Ecotoxicology & Environmental Safety,2014,110:49-55.
Mireles A,Solí S C,Andrade E,et al.Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico City[J].Nuclear Instruments & Methods in Physics Research,2004,219(1):187-190.
陈岩,季宏兵,朱先芳,等.北京市得田沟金矿和崎峰茶金矿周边土壤重金属形态分析和潜在风险评价[J].农业环境科学学报,2012,31(11):2142-2151. Chen Y,Ji H B,Zhu X F,et al.Fraction distribution and risk assessment of heavy metals in soils around the gold mine of Detiangou-Qifengcha,Beijing City,China[J].Journal of Agro-Environment Science,2012,31(11):2142-2151.
陆泗进,王业耀,何立环.风险评价代码法对农田土壤重金属生态风险的评价[J].环境化学,2014,33(11):1857-1863. Lu S J,Wang Y Y,He L H.Ecological risk of heavy metals in agricultural soils assessed by risk assessment code[J].Environmental Chemistry,2014,33(11):1857-1863.
许柏宁,王鹏,王建壹,等.北京某环路两侧土壤重金属污染风险评价[J].环境化学,2014,33(12):2152-2161. Xu B N,Wang P,Wang J Y,et al.Evaluation of heavy metal pollution in the soil sampled from a ring road in Beijing[J].Environmental Chemistry,2014,33(12):2152-2161.
Quevauviller P,Rauret G,Griepink B.Single and sequen-tial extraction in sediments and soils[J].International Journal of Environmental Analytical Chemistry,1993,51(1-4):231-235.
王亚平,黄毅,王苏明,等.土壤和沉积物中元素的化学形态及其顺序提取法[J].地质通报,2005,24(8):728-734. Wang Y P,Huang Y,Wang S M,et al.Chemical speciation of elements in sediments and soils and their sequential extraction process[J].Chinese Journal of Geology,2005,24(8):728-734.
孙瑞瑞,陈华清,李杜康.基于土壤中铅化学形态的生态风险评价方法比较[J].安全与环境工程,2015,22(5):47-51. Sun R R,Chen H Q,Li D K.Comparison of ecological risk assessment methods based on the chemical forms of lead in soil[J].Safety and Environmental Engineering,2015,22(5):47-51.
冯艳红,郑丽萍,应蓉蓉,等.黔西北炼锌矿区土壤重金属形态分析及风险评价[J].生态与农村环境学报,2017,33(2):142-149. Feng Y H,Zheng L P,Ying R R,et al.Forms of heavy metals in soils of zinc mining area in northwestern Guizhou Province and their environmental risks[J].Journal of Ecology and Rural Environment,2017,33(2):142-149.
王鹏.北京某公路两侧土壤重金属污染现状及风险评价研究[D].北京:北京建筑大学,2014. Wang P.Study on the status and risk assessment of heavy metal pollution in soil on both sides of a highway in Beijing[D].Beijing:Beijing University of Civil Engineering and Architecture,2014. -
期刊类型引用(3)
1. 陈涛亮,任志,冷成彪,王安东. 江西德兴铜矿田成矿热液演化过程及其对铼差异性富集的制约. 地质学报. 2023(06): 1900-1916 . 百度学术
2. 段威,唐文春,熊观,黄健,惠博,王焕国,杨贵兵. 川北硅质岩型铼多金属矿铼的赋存状态. 矿物学报. 2021(03): 271-276 . 百度学术
3. 廖仁强,刘鹤,李聪颖,孙卫东. 从铼的地球化学性质看我国铼找矿前景. 岩石学报. 2020(01): 55-67 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 3125
- HTML全文浏览量: 1069
- PDF下载量: 90
- 被引次数: 5