• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价

张塞, 于扬, 王登红, 王伟, 张洪果, 岑况

张塞, 于扬, 王登红, 王伟, 张洪果, 岑况. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5): 726-738. DOI: 10.15898/j.cnki.11-2131/td.201911050152
引用本文: 张塞, 于扬, 王登红, 王伟, 张洪果, 岑况. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5): 726-738. DOI: 10.15898/j.cnki.11-2131/td.201911050152
ZHANG Sai, YU Yang, WANG Deng-hong, WANG Wei, ZHANG Hong-guo, CEN Kuang. Forms Distribution of Heavy Metals and Their Ecological Risk Evaluation in Soils of Ion Adsorption Type in the Rare Earth Mining Area of Southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5): 726-738. DOI: 10.15898/j.cnki.11-2131/td.201911050152
Citation: ZHANG Sai, YU Yang, WANG Deng-hong, WANG Wei, ZHANG Hong-guo, CEN Kuang. Forms Distribution of Heavy Metals and Their Ecological Risk Evaluation in Soils of Ion Adsorption Type in the Rare Earth Mining Area of Southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5): 726-738. DOI: 10.15898/j.cnki.11-2131/td.201911050152

赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价

基金项目: 

国家自然科学基金青年基金资助项目(41202254);中央级公益性科研院所基本科研业务费专项资金资助项目(K1209);中国地质调查局地质调查项目(DD20160056,DD20160055,DD20190173)

详细信息
    作者简介:

    张塞,硕士研究生,地球化学专业。E-mail:zhangsai1017@foxmail.com。

  • 中图分类号: S151.93;P618.7;O657.63

Forms Distribution of Heavy Metals and Their Ecological Risk Evaluation in Soils of Ion Adsorption Type in the Rare Earth Mining Area of Southern Jiangxi, China

  • 摘要: 稀土矿的露天开采易造成土壤重金属污染等环境问题。已有研究表明赣南离子吸附型稀土矿区土壤存在以Cd、Pb为主的轻、中度重金属污染。常见环境质量评价以主要污染因子(如重金属总量)作为衡量污染程度的指标,仅能反映重金属的富集程度。为查明赣南稀土矿区土壤重金属的赋存状态、迁移能力以及生物有效性,本文在利用电感耦合等离子体质谱法(ICP-MS)测定土壤重金属各形态含量的基础上,采用地累积指数法、潜在生态危害指数法及RAC风险评价法对赣南稀土矿区土壤重金属的生态风险进行评价。结果表明:①研究区土壤重金属主要以残渣态存在,占总量的65.5%。②土壤样品中Cd、Pb含量平均值分别是江西省土壤背景值的1.72倍和2.14倍;流域内位于矿山下游河流沿岸农田土壤Cd的平均值、尾矿库附近农田Pb的平均值分别是土壤背景值的2.33倍和3.06倍,22.7%样品的Cd或Pb含量超过风险筛选值,其中可交换态所占比例仅次于残渣态,分别占总量的47.1%和13.5%。③地累积指数与潜在生态风险评价结果表明Cd、Pb累积程度及生态风险水平较高,Co、Ni、Cu、Zn较低;RAC风险评价结果显示Cd生态风险较高,Co、Zn、Pb生态风险中等,Cu、Ni生态风险低。④针对矿区农田土壤的三种评价方法各有侧重,其评价结果异中有同,均表明研究区土壤Cd具有较高的污染程度和迁移活性,生态风险较高。本研究结果将为识别稀土矿周边农田土壤的潜在环境风险,提出有效的防范、应急与减缓措施提供科学依据。
  • 重晶石是重要的含钡矿物,主要用于油气钻井中泥浆的加重剂,也是制备含钡化工产品的重要矿物原料[1]。硫酸钡是评价重晶石质量的主要指标,含量范围在46%~96%之间。重晶石常与石英、方解石、白云石、菱铁矿、菱锰矿、天青石、萤石、硫化矿物(黄铁矿、方铅矿、闪锌矿、黄铜矿)及其氧化物伴生,一般含二氧化硅、钙、锶、铅等。目前重晶石中硫酸钡的主要测定方法有:硫酸钡重量法、铬酸钡容量法。硫酸钡重量法以称重反应生成的硫酸钡的方式测定硫酸钡量;铬酸钡容量法通过滴定铬酸根离子间接测定硫酸钡量;两种方法检测流程均繁琐、复杂,且容量法分析条件不易控制,铅、锶在两种方法中都会与钡共沉淀,导致硫酸钡的测定结果偏高,样品中含锶时需要用其他方法测定锶进行差减校正。应用电感耦合等离子体发射光谱法(ICP-OES)测定硫酸钡含量的方法已有报道[2],分析流程需要两次高温熔样,两次过滤,流程仍较复杂。采用熔融制样X射线荧光光谱法(XRF)测定地质样品中的组分较为快速、简便[3-9],该法用于测定钡含量已有文献报道[10-13],例如仵利萍等[10]和曾小平等[11]以熔融制样XRF法测定重晶石中的主次量元素,可以快速测定总钡量,样品中碳酸钡的钡量会计入硫酸钡量,测定方法中未除去碳酸钡,不能准确测定其中的硫酸钡量。因此,采用XRF法测定重晶石中的硫酸钡时,样品需要进行酸处理以除去碳酸钡、铅等干扰,但样品经酸处理后不同样品的剩余量不同,造成熔剂与样品的比例不确定,仍然不能准确测定硫酸钡的含量。

    本文优化了样品前处理条件、XRF分析中熔片条件和仪器工作条件等因素,取一定量样品以10%的盐酸和10%的硝酸溶解过滤除去碳酸钡、硫酸钙及铜、铅、锌等有色金属元素,未溶解的样品在700℃下灼烧,灼烧后将样品量以氧化铝补充到初始取样量,以重晶石国家标准物质、岩石国家标准物质、高纯硫酸钡及人工混合的校准样品制作标准曲线,实现了XRF熔片法准确测定重晶石中的硫酸钡,对需要样品前处理XRF测定组分的分析方法提供了解决方案。

    Axios顺序扫描式波长色散X射线荧光光谱仪(荷兰PANalytical公司),陶瓷薄铍端窗(75 μm)超尖锐铑钯X射线管,SuperQ 4.0定量分析软件。

    已有文献对XRF法测定钡的分析参数作了系统的研究[10-13],本实验根据钡元素的性质,选择低电压,高电流;粗准直器;无滤光片;背景点选择在长波侧。重晶石中钡及主要元素的测量条件见表 1

    表  1  XRF仪器测量条件
    Table  1.  Measurement parameters of XRF instrument
    元素谱线晶体准直器
    (μm)
    探测器滤光片管电压
    (kV)
    管电流
    (mA)
    2θ(°)脉冲高度分析器测量时间(s)
    峰值背景LLPL峰值背景
    RhKα-CLiF 200150Scint.Al(200 μm)606018.4386-26782010
    SrLiF 200300Scint.Al(200 μm)606025.11900.660222782010
    BaLiF 200300FlowNone409087.17081.307033662010
    SGe 111300FlowNone30120110.69601.663235652010
    CaLiF 200300FlowNone30120113.1450-1.062632732010
    FeLiF 20015FlowNone606057.5264-0.971615682010
    TiLiF 200300FlowNone40908601904-1.191228712010
    下载: 导出CSV 
    | 显示表格

    SQP电子分析天平(赛多利斯科学仪器有限公司,北京)。

    HMS-Ⅱ-MXZ型高频熔样机(成都多林电器有限公司),可同时熔融2个样品,铂黄合金坩埚。

    盐酸、硝酸、氯化铵、三氧化二铁、氧化镁、氧化铝、硝酸铵、溴化锂、碘化铵(分析纯)。

    四硼酸锂+偏硼酸锂混合熔剂(分析纯,质量比67:33),600℃灼烧2 h,冷却后置于干燥器中备用。

    准确称取在105℃干燥2 h的样品0.2000 g,置于50 mL烧杯中,加10 mL 10%的盐酸、4 mL 10%的硝酸,盖上表面皿,于低温电热板上加热微沸30 min(随时加水控制体积10 mL),取下,用水吹洗表面皿及杯壁,冷却至室温,用慢速滤纸定量过滤,将全部未溶解的样品移至定量中速滤纸上,水洗至无氯离子,将沉淀连同滤纸一起置于50 mL瓷坩埚中,置于高温炉中低温烘干后升温灰化,于700℃灼烧30 min,取出,冷却至室温,转移到称量皿称量灼烧物质量,以氧化铝补加到0.2000 g,置于原坩埚中,称取6.0000 g四硼酸锂+偏硼酸锂混合熔剂(质量比67:33) 和0.5 g硝酸铵于坩埚中,搅匀,转移到铂黄合金坩埚中,加饱和溴化锂溶液0.4 mL,于高频熔样机上650℃预氧化3 min,1075℃熔融2 min,加碘化铵20 mg,摇动熔融4.5 min,再加碘化铵20 mg,摇动熔融1.5 min后倒入已预热的铂金合金模具中,冷却后倒出,1 h后置于XRF仪器进样交换器中测定。

    以7个重晶石国家标准物质GBW07811~GBW07817、2个岩石国家标准物质GBW07111和GBW07132、高纯硫酸钡以及人工配制的校准样品做标准系列,所选的标准物质不经酸处理,全样熔片,以标准物质中的全钡量换算为全硫酸钡量。

    重晶石矿石中除含有硫酸钡外,伴生矿物可能含有碳酸钡、硫酸钙、铅、锌等成分,影响硫酸钡的测定结果,毛香菊等[2]以10%的盐酸溶解样品、过滤除去干扰组分,ICP-OES法测定重晶石选矿样品中的硫酸钡,其结果与重量法一致。对于XRF法测定重晶石中的硫酸钡,应除去样品中的碳酸钡以及铜、铅、锌等对铂黄合金坩埚造成腐蚀的组分,熔融过程中预氧化难以消除其影响,样品前处理应考虑将这些组分尽量除去,以满足对样品熔融的要求。

    硫酸钡不溶于酸,选择盐酸、盐酸+氯化铵、盐酸+硝酸体系处理样品,以硫化物型重晶石标准物质GBW07816和多金属矿标准物质GSO-2考察样品的处理效果,以选定的处理方法溶解样品,过滤后的滤液定容、摇匀后以火焰原子吸收光谱法测定滤液中的铜、铅、锌,计算方法的溶出率,结果见表 2表 2结果表明:单独使用盐酸或盐酸+氯化铵、盐酸+硝酸均可以较好地溶解铅;盐酸、盐酸+氯化铵体系对铜、锌的溶解效果不佳,盐酸+硝酸体系对铜、铅、锌的溶出效果均较好。本法选择以10%盐酸10 mL+10%硝酸4 mL体系前处理样品。

    表  2  样品前处理方法及铜铅锌的溶出率
    Table  2.  Sample pretreatment methods and dissolution rate of Cu, Pb, Zn
    样品编号前处理方法溶出率(%)
    PbCuZn
    GBW0781610%盐酸10 mL97.56-40.96
    GSO-210%盐酸10 mL99.0840.9541.78
    GBW0781610%盐酸10 mL+0.5 g氯化铵99.76-67.82
    GSO-210%盐酸10 mL+0.5 g氯化铵100.041.940.14
    GBW0781610%盐酸10 mL+1 g氯化铵99.76-86.17
    GSO-210%盐酸10 mL+1 g氯化铵99.9629.5246.01
    GBW0781610%盐酸10 mL+10%硝酸2 mL99.94-96.01
    GSO-210%盐酸10 mL+10%硝酸2 mL100.089.5295.31
    GBW0781610%盐酸10 mL+10%硝酸4 mL99.92-99.73
    GSO-210%盐酸10 mL+10%硝酸4 mL100.091.4398.84
    注:“-”表示标准物质无标准值,未计算溶出率。
    下载: 导出CSV 
    | 显示表格

    样品的熔融程度是影响方法准确度的重要因素[14-15],样品充分熔融,方法的精密度、准确度高。仵利萍等[10]以样品与熔剂1:30的稀释比制作熔片测定重晶石中的总钡量,熔片效果较好。本文以样品与熔剂的稀释比为1:10、1:15、1:20、1:30、1:40,各稀释比制作6个玻璃样片进行实验,上机测定钡的谱线强度,计算标准偏差,结合熔片质量情况确定最佳稀释比。结果表明:样品与熔剂稀释比为1:30时样片清亮,熔融物流动性好,6个样片的钡强度标准偏差小,因此本实验选择样品与熔剂稀释比为1:30。

    样品经稀酸处理后,碳酸盐、硫化物等易溶于酸的物质被溶解分离除去,样品量减少,不同样品剩余量不同。剩余样品按原样品量与熔剂1:30的比例熔融后测定,标准物质硫酸钡的测定值偏高;剩余样品以熔剂补加到原取样量再按样品量与熔剂1:30的比例熔融测定,标准物质测定结果偏低。证明样品经酸处理后,不能直接加熔剂熔融后XRF法测定其中的组分,其原因为样品经处理后样品量减少,熔剂与样品比例不确定,导致分析结果出现较大偏差。

    研究以化学性质稳定的氧化物将剩余样品补充到样品的初始取样量。选取的氧化物在样品熔融过程中应无挥发,对钡的基体效应小,贮存过程中不发生吸水潮解、反应等现象。氧化铝、三氧化二铁、氧化镁是可选择的补加剂,过高的铁组分会增加熔融体的黏度,不宜单独使用,选择以三氧化二铁+氧化镁(质量比70:30) 混合物、氧化铝为补加剂,熔融制片测定,标准物质测定值见表 3。结果表明:将灼烧物量补加到初始取样量后,样品与熔剂比例一致,标准物质的检测结果基本满足规范要求。三氧化二铁是钡元素的基体校正组分,三氧化二铁+氧化镁(70:30) 混合物补加到不同样品中的量不同,硫酸钡测定结果的准确度较氧化铝为补加成分的结果略差,因此选择以氧化铝为补加成分。

    表  3  不同补加成分的标准物质中硫酸钡的测定值
    Table  3.  Analytical results of BaSO4 in standards materials adding different ingredients
    标准物质
    编号
    补加剂BaSO4含量
    标准值
    (%)
    测量值
    (%)
    相对误差
    (%)
    允许相对误差
    (%)
    GBW07811三氧化二铁+
    氧化镁(70:30)
    42.3242.23-0.211.37
    GBW07815三氧化二铁+
    氧化镁(70:30)
    67.0466.83-0.310.84
    GBW07816三氧化二铁+
    氧化镁(70:30)
    18.8718.66-1.112.39
    GBW07811氧化铝42.3242.410.211.37
    GBW07815氧化铝67.0466.91-0.190.84
    GBW07816氧化铝18.8719.020.792.39
    下载: 导出CSV 
    | 显示表格

    仵利萍等[10]于1050~1150℃、曾小平等[11]于1050℃熔融重晶石样品,熔片效果较好。熔片温度过低,熔融物流动性差,样片效果差,所制样片中有微小不熔颗粒,分析结果精密度差;熔片温度过高,熔融物挥发严重,黏度增大而粘连坩埚,造成不易脱埚。实验证明当温度为1075℃时,钡的谱线强度值相对稳定,测量值的标准偏差和相对标准偏差小且趋于稳定;当高于此温度,熔融物挥发量大,熔融物黏度高,不易脱埚。因此,本实验选择熔片温度为1075℃。

    样品中含有还原性物质会对坩埚造成腐蚀,加入氧化剂可以防止还原性物质对坩埚的损坏,由于取样量小,样品经过了稀酸处理、高温灼烧,样品中的还原性物质较少,氧化剂的加入量不必太多。以硝酸铵作氧化剂,过多的硝酸铵会增大熔融物的黏度,需提高碘化铵的加入量以利于脱模。实验选择加入0.25、0.50、0.75、1.0 g硝酸铵,根据熔片情况确定硝酸铵最佳加入量。实验结果表明:硝酸铵加入量小于0.50 g时熔融物的流动性较好;但加入量为0.25 g时熔好的样片脆性较大,冷却过程中部分样片会出现爆裂现象;加入量大于0.75 g时高温熔融物流动性差、黏度大、脱模剂需要量大,熔片效果变差。因此,本实验选择硝酸铵选择加入量为0.50 g。

    基体效应[16]是试样中元素间吸收、增强效应和物理化学效应对待测元素特征X射线强度的影响。经验系数法是目前XRF分析中准确定量分析的重要基体校正方法,本方法选择经验系数法进行校正。以Fe2O3、SiO2、CaO含量对钡含量进行校正后,硫酸钡的曲线离散度等参数明显改善,GBW07811的硫酸钡的测量误差<0.24%,故选择参与基体校正。

    根据XRF法检出限计算公式: $\frac{{3\sqrt 2 }}{m}\sqrt {\frac{{{I_{\rm{b}}}}}{{{t_{\rm{b}}}}}} $ (式中:m为单位含量的计数率,94.3642;Ib为背景计数率,1.5345;tb为峰值和背景总计数时间,60 s),计算得到硫酸钡检出限为72 μg/g,满足对重晶石中硫酸钡的检测要求。本法检出限略高于ICP-OES法,但远低于重晶石10%的边界品位,完全可以满足重晶石中硫酸钡的测定要求。

    按实验方法对标准物质GBW07815重复制备12个样片,按确定的测量方法测定硫酸钡,计算平均值为66.94%,相对标准偏差(RSD)为0.36%,与仵利萍等[10]采用熔融制样XRF法报道的氧化钡的精密度(RSD为0.36%)相近,优于毛香菊等[2]采用ICP-OES法的精密度(RSD为0.39%~4.1%)。这些对比表明本方法重现性较好,满足DZ/T 0130—2006《地质矿产实验室质量管理规范》的要求。

    选取不同硫酸钡含量的重晶石样品10件,以本法及硫酸钡重量法(由国土资源部保定矿产资源监督检测中心检测)测定,进行方法比对。测定结果(表 4)表明:本法与硫酸钡重量法结果相符,表明适用于重晶石中硫酸钡的测定。

    表  4  本方法与经典化学分析方法比较
    Table  4.  A comparison of analytical results by this method and traditional chemical methods
    样品
    编号
    重量法测定值
    (%)
    本法测定值
    (%)
    平均值
    (%)
    相对偏差
    (%)
    允许相对偏差
    (%)
    111.4011.2111.310.844.38
    259.1258.9759.050.131.39
    334.5835.6435.11-1.512.26
    467.4468.7068.07-0.931.16
    571.1671.5271.34-0.251.09
    651.8052.8452.32-0.991.59
    75.525.695.61-1.525.85
    844.2944.2844.290.011.87
    961.0260.7360.880.241.34
    1087.4987.3287.410.100.77
    下载: 导出CSV 
    | 显示表格

    采用XRF法分析重晶石中的硫酸钡时,样品需要前处理导致样品量减少,无法准确测定其中的待测组分。本研究提出了以对钡基体效应小的氧化铝补充到初始取样量的方法,较好地解决了问题,在样品处理过程中,以稀酸溶解过滤除去重晶石中的干扰组分,消除了锶、铅等元素的干扰,提高了XRF法的准确度。

    本方法在样品灰化后直接熔片即可进行XRF测定,而ICP-OES法在样品灰化后需要碱熔、过滤、酸溶解钡、上机测定,分析周期较长。总体上,较容量法、重量法、ICP-OES法的干扰少、分析流程短,提高了分析测试效率。

  • 邓家姝,邓家恂.坚持科学发展观实现我国稀土产业可持续发展[J].世界有色金属,2005,14(2):10-13.

    Deng J S,Deng J X.Adhering to the scientific development concept and realizing the sustainable development of China's rare earth industry[J].World Nonferrous Metals,2005,14(2):10-13.

    高志强,周启星.稀土矿露天开采过程的污染及对资源和生态环境的影响[J].生态学杂志,2011,30(12):2915-2922.

    Gao Z Q,Zhou Q X.Contamination from rare earth or estrip mining and its impacts on resources and eco-environment[J].Chinese Journal of Ecology,2011,30(12):2915-2922.

    王友生,侯晓龙,吴鹏飞,等.长汀稀土矿废弃地土壤重金属污染特征及其评价[J].安全与环境学报,2014,14(4):259-262.

    Wang Y S,Hou X L,Wu P F,et al.Analysis of the characteristics and the evaluation of heavy metal pollutions in the deserted land-area left-over by the rare earth mining in Changting,Fujian[J].Journal of Safety and Environment,2014,14(4):259-262.

    余爱华,卢秀琳,周舒宇,等.城市不同功能区土壤重金属特性分析——以南京市玄武区为例[J].森林工程,2014,30(6):33-38.

    Yu A H,Lu X L,Zhou S Y,et al.Characteristics of heavy metals in soil of different urban areas-A case study of Xuanwu District in Nanjing[J].Forest Engineering,2014,30(6):33-38.

    唐翔宇,朱永官.土壤中重金属对人体生物有效性的体外试验评估[J].环境与健康杂志,2004,21(3):183-185.

    Tang X Y,Zhu Y G.Advance in vitro tests in evaluating of bioavailability of heavy metals in contaminated soil via oral intake[J].Journal of Environment and Health,2004,21(3):183-185.

    Humsa T Z,Srivastava R K.Impact of rare earth mining and processing on soil and water environment at Chavara,Kollam,Kerala:A case study[J].Procedia Earth & Planetary Science,2015,11(15):566-581.

    Ali S H.Social and environmental impact of the rare earth industries[J].Resources,2014,3(1):123-134.

    张军,胡方洁,卢陈彬,等.稀土矿区土壤重金属污染控制研究的几点建议[J].应用化工,2018,47(6):1254-1257.

    Zhang J,Hu F J,Lu C B,et al.Some suggestions on controlling heavy metal pollution in soil of rare earth mining area[J].Applied Chemical Industry,2018,47(6):1254-1257.

    刘丹,赵永红,周丹,等.赣南某钨矿区土壤重金属污染生态风险评价[J].环境化学,2017,36(7):1556-1567.

    Liu D,Zhao Y H,Zhou D,et al.Ecological risk assessment of heavy metals pollution in a tungsten mine soil in south of Jiangxi Province[J].Environmental Chemistry,2017,36(7):1556-1567.

    范拴喜.土壤重金属污染评价方法进展[J].中国农学通报,2010,26(17):310-315.

    Fan S X.Progress of assessment methods of heavy metal pollution in soil[J].Chinese Agricultural Science Bulletin,2010,26(17):310-315.

    Baran A,Wieczorek J,Mazurek R,et al.Potential ecolo-gical risk assessment and predicting zinc accumulation in soils[J].Environmental Geochemistry & Health,2018,40(1):435-450.

    Adlane B,Xu Z,Xu X,et al.Evaluation of the potential risks of heavy metal contamination in rice paddy soils around an abandoned Hg mine area in southwest China[J].Acta Geochimica,2020,39(1):85-95.

    Zawadzki J,Fabijanczyk P.Geostatistical evaluation of lead and zinc concentration in soils of an old mining area with complex land management[J].International Journal of Environmental Science & Technology,2012,10(4):729-742.

    Kusin F M,Awang N H C,Hasan S N M S,et al.Geo-ecological evaluation of mineral,major and trace elemental composition in waste rocks,soils and sediments of a gold mining area and potential associated risks[J].CATENA,2019,183(10):1-13.

    蔺亚青,胡方洁,张军,等.赣南离子型稀土矿区土壤吸附铜的特征研究[J].应用化工,2018,47(3):434-437.

    Tong Y Q,Hu F J,Zhang J,et al.Adsorption features of copper in Gannan ion-type rare earth mining soil[J].Journal of Applied Chemical Industry,2018,47(3):434-437.

    龚胜芳.原子光谱技术在果园土壤重金属监测中的应用研究[D].赣州:赣南师范学院,2012. Gong S F.Application of atomic spectroscopy in orchard soil heavy metal monitoring[D].Ganzhou:Gannan Normal University,2012.
    陈优良,史琳,王兆茹.基于模糊数学的矿区土壤重金属污染评价——以信丰稀土矿区为例[J].有色金属科学与工程,2016,7(4):127-133.

    Chen Y L,Shi L,Wang Z R.Assessment of heavy metal pollution in mining area based on fuzzy mathematics-A case study of Xinfeng rare earth mining area[J].Nonferrous Metal Science and Engineering,2016,7(4):127-133.

    苏文湫,祝怡斌.赣州稀土矿山废弃地土壤重金属污染现状评价[J].有色金属(矿山部分),2016,68(4):81-85. Su W Z,Zhu Y B.Evaluation of the soil heavy metal pollution in Ganzhou rare earth mine wasteland[J].Non-Ferrous Metals (Mining Section), 2016,68(4):81-85.
    贺灵,曾道明,魏华玲,等.赣南脐橙种植区典型果园土壤重金属元素评价[J].湖北农业科学,2014,53(2):292-297.

    He L,Zeng D M,Wei H L,et al.Evaluating heavy metals of navel orange orchard soil in Gannan area[J].Hubei Agricultural Sciences,2014,53(2):292-297.

    Alonso E,Santos A,Callejon M,et al.Speciation as a screening tool for the determination of heavy metal surface water pollution in the Guadiamar river basin[J].Chemosphere,2004,56(6):561-570.

    Pagnanelli F,Moscardini E,Giuliano V,et al.Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area:Pollution detection and affinity series[J].Environmental Pollution,2004,132(2):189-201.

    Jain C K.Metal fractionation study on bed sediments of River Yamuna,India[J].Water Research,2004,38(3):569-578.

    Singh K P,Mohan D,Singh V K,et al.Studies on distribution and fractionation of heavy metals in Gomti River sediments-A tributary of the Ganges,India[J].Journal of Hydrology,2005,312(1):14-27.

    于扬,李德先,王登红,等.溶解态稀土元素在离子吸附型稀土矿区周边地表水中的分布特征及影响因素[J].地学前缘,2017,24(5):172-181.

    Yu Y,Li D X,Wang D H,et al.Distribution and impact factor of dissolved rare earth elements in surface waters in the suburb of typica ion-adsorption rare earth orefield[J].Earth Science Frontiers,2017,24(5):172-181.

    Tessier A,Campbell P G C,Bisson M.Sequential extra-ction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851.

    马强,冯志刚,孙静,等.新疆某地浸砂岩型铀矿中铀赋存形态的研究[J].岩矿测试,2012,31(3):501-506.

    Ma Q,Feng Z G,Sun J,et al.Sturdy on chemical speciation of uranium in samples from in-situ leaching sandstone-type uranium deposit in Xinjiang[J].Rock and Mineral Analysis,2012,31(3):501-506.

    李晓阁,潘静,奚旦立,等.印染污泥中重金属形态分析及生物有效性[J].岩矿测试,2009,28(1):10-14.

    Li X G,Pan J,Xi D L,et al.Bioavailability and speciation analysis of heavy metals in textile dyeing sludge[J].Rock and Mineral Analysis,2009,28(1):10-14.

    王志罡,谢宏,杨旭,等.贵州铜仁坝黄磷矿中铀赋存状态的逐级化学提取研究[J].岩矿测试,2018,37(3):256-265.

    Wang Z G,Xie H,Yang X,et al.Stepwise extraction study on the occurrence of uranium in Tongrgen Bahuang phosphorite,Guizhou[J].Rock and Mineral Analysis,2018,37(3):256-265.

    孙彬彬,曾道明,刘占元,等.风成砂覆盖区地电化学提取前后土壤中元素赋存状态变化研究[J].物探与化探,2018,42(3):93-102.

    Sun B B,Zeng D M,Liu Z Y,et al.Variation of modes of occurrence of elements in soil before and after the geo-electrochemical extraction in eolian sand covered area[J].Geophysical and Geochemical Exploration,2018,42(3):93-102.

    孙凯,孙彬彬,周国华,等.福建龙海土壤重金属含量特征及影响因素研究[J].现代地质,2018,32(6):197-205.

    Sun K,Sun B B,Zhou G H,et al.Study on concentration characteristics and influencing factors of heavy metals in soils in Longhai,Fujian Province[J].Modern Geology,2018,32(6):197-205.

    Müller G.Index of geoaccumulation in sediments of the Rhine River[J].Geojournal,1969,2(3):108-118.

    Alhaidarey M J S,Hassan F M,Alkubaisey A R A,et al.The geoaccumulation index of some heavy metals in Al-Hawizeh Marsh,Iraq[J].Journal of Chemistry,2015,7(S1):S157-S162.

    Hakanson L.An ecological risk index for aquatic pollution control:A sedimentological approach[J].Water Research,1980,14(8):975-1001.

    Guo W,Liu X,Liu Z,et al.Pollution and potential ecolo-gical risk evaluation of heavy metals in the sediments around Dongjiang Harbor,Tianjin[J].Procedia Environmental Sciences,2010,2(1):729-736.

    Singovszka E,Balintova M,Holub M.Assesment of heavy metals concentration in sediments by potential ecological risk index[J].Inzynieria Mineralna,2014,15(2):137-140.

    徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.

    Xu Z Q,Ni S J,Tou X G,et al.Calculation of heavy metals' power toxicity coefficients in the evaluation of potential ecological risk index[J].Environmental Science and Technology,2008,31(2):112-115.

    Guillén M T,Delgado J,Albanese S,et al.Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula)[J].Journal of Geochemical Exploration,2012,119-120(6):32-43.

    中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990. China National Environmental Monitoring Centre.Background value of soil elements in China[M].Beijing:China Environmental Science Press,1990.

    Gupta S K,Chabukdhara M,Kumar P,et al.Evaluation of ecological risk of metal contamination in river Gomti,India:A biomonitoring approach[J].Ecotoxicology & Environmental Safety,2014,110:49-55.

    Mireles A,Solí S C,Andrade E,et al.Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico City[J].Nuclear Instruments & Methods in Physics Research,2004,219(1):187-190.

    陈岩,季宏兵,朱先芳,等.北京市得田沟金矿和崎峰茶金矿周边土壤重金属形态分析和潜在风险评价[J].农业环境科学学报,2012,31(11):2142-2151.

    Chen Y,Ji H B,Zhu X F,et al.Fraction distribution and risk assessment of heavy metals in soils around the gold mine of Detiangou-Qifengcha,Beijing City,China[J].Journal of Agro-Environment Science,2012,31(11):2142-2151.

    陆泗进,王业耀,何立环.风险评价代码法对农田土壤重金属生态风险的评价[J].环境化学,2014,33(11):1857-1863.

    Lu S J,Wang Y Y,He L H.Ecological risk of heavy metals in agricultural soils assessed by risk assessment code[J].Environmental Chemistry,2014,33(11):1857-1863.

    许柏宁,王鹏,王建壹,等.北京某环路两侧土壤重金属污染风险评价[J].环境化学,2014,33(12):2152-2161.

    Xu B N,Wang P,Wang J Y,et al.Evaluation of heavy metal pollution in the soil sampled from a ring road in Beijing[J].Environmental Chemistry,2014,33(12):2152-2161.

    Quevauviller P,Rauret G,Griepink B.Single and sequen-tial extraction in sediments and soils[J].International Journal of Environmental Analytical Chemistry,1993,51(1-4):231-235.

    王亚平,黄毅,王苏明,等.土壤和沉积物中元素的化学形态及其顺序提取法[J].地质通报,2005,24(8):728-734.

    Wang Y P,Huang Y,Wang S M,et al.Chemical speciation of elements in sediments and soils and their sequential extraction process[J].Chinese Journal of Geology,2005,24(8):728-734.

    孙瑞瑞,陈华清,李杜康.基于土壤中铅化学形态的生态风险评价方法比较[J].安全与环境工程,2015,22(5):47-51.

    Sun R R,Chen H Q,Li D K.Comparison of ecological risk assessment methods based on the chemical forms of lead in soil[J].Safety and Environmental Engineering,2015,22(5):47-51.

    冯艳红,郑丽萍,应蓉蓉,等.黔西北炼锌矿区土壤重金属形态分析及风险评价[J].生态与农村环境学报,2017,33(2):142-149.

    Feng Y H,Zheng L P,Ying R R,et al.Forms of heavy metals in soils of zinc mining area in northwestern Guizhou Province and their environmental risks[J].Journal of Ecology and Rural Environment,2017,33(2):142-149.

    王鹏.北京某公路两侧土壤重金属污染现状及风险评价研究[D].北京:北京建筑大学,2014. Wang P.Study on the status and risk assessment of heavy metal pollution in soil on both sides of a highway in Beijing[D].Beijing:Beijing University of Civil Engineering and Architecture,2014.
  • 期刊类型引用(5)

    1. 符招弟,张晓娟,杨林. 伟晶岩型锂矿石中锂的化学物相分析方法研究. 岩矿测试. 2024(03): 432-439 . 本站查看
    2. 彭晶晶,林锴. 锂矿成矿规律研究的知识图谱分析. 中国矿业. 2024(09): 228-235 . 百度学术
    3. 王成辉,王登红,刘善宝,张永生,王春连,王九一,周雄,代鸿章,于扬,孙艳,邢恩袁. 战略新兴矿产调查工程进展与主要成果. 中国地质调查. 2022(05): 1-14 . 百度学术
    4. 郭晓剑,胡欢,刘亦晴,梁雁茹. 基于CiteSpace的我国绿色矿山研究可视化分析. 黄金科学技术. 2020(02): 203-212 . 百度学术
    5. 叶亚康,周家云,周雄. 川西塔公松林口岩体LA-ICP-MS锆石U -Pb年龄与地球化学特征. 岩矿测试. 2020(06): 921-933 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  3125
  • HTML全文浏览量:  1069
  • PDF下载量:  90
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-11-04
  • 修回日期:  2020-02-27

目录

/

返回文章
返回