• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

金活动态提取剂提取-电感耦合等离子体质谱法测定深穿透地球化学样品中的金

王冀艳, 胡家祯, 丁汉铎, 曹立峰, 张明炜, 张帆, 黄杰, 姚文生

王冀艳, 胡家祯, 丁汉铎, 曹立峰, 张明炜, 张帆, 黄杰, 姚文生. 金活动态提取剂提取-电感耦合等离子体质谱法测定深穿透地球化学样品中的金[J]. 岩矿测试, 2020, 39(4): 525-534. DOI: 10.15898/j.cnki.11-2131/td.201909300142
引用本文: 王冀艳, 胡家祯, 丁汉铎, 曹立峰, 张明炜, 张帆, 黄杰, 姚文生. 金活动态提取剂提取-电感耦合等离子体质谱法测定深穿透地球化学样品中的金[J]. 岩矿测试, 2020, 39(4): 525-534. DOI: 10.15898/j.cnki.11-2131/td.201909300142
WANG Ji-yan, HU Jia-zhen, DING Han-duo, CAO Li-feng, ZHANG Ming-wei, ZHANG Fan, HUANG Jie, YAO Wen-sheng. Determination of Gold Mobile Fraction in Deep-penetrating Geochemical Samples by ICP-MS with Pre-extraction[J]. Rock and Mineral Analysis, 2020, 39(4): 525-534. DOI: 10.15898/j.cnki.11-2131/td.201909300142
Citation: WANG Ji-yan, HU Jia-zhen, DING Han-duo, CAO Li-feng, ZHANG Ming-wei, ZHANG Fan, HUANG Jie, YAO Wen-sheng. Determination of Gold Mobile Fraction in Deep-penetrating Geochemical Samples by ICP-MS with Pre-extraction[J]. Rock and Mineral Analysis, 2020, 39(4): 525-534. DOI: 10.15898/j.cnki.11-2131/td.201909300142

金活动态提取剂提取-电感耦合等离子体质谱法测定深穿透地球化学样品中的金

基金项目: 

国家重点研发计划项目 2016YFC0600603

国家重点研发计划项目(2016YFC0600603)

详细信息
    作者简介:

    王冀艳, 硕士, 高级工程师, 主要从事无机元素分析研究。E-mail:94396436@qq.com

    通讯作者:

    姚文生, 博士, 教授级高级工程师, 主要从事深穿透地球化学方法技术研究及地球化学填图工作。E-mail:yaowensheng@igge.cn

  • 中图分类号: P578.11;O657.63

Determination of Gold Mobile Fraction in Deep-penetrating Geochemical Samples by ICP-MS with Pre-extraction

  • 摘要: 金的地球化学勘查基于金的准确测定,地球化学样品中金含量通常处于ng/g水平,需先进行分离富集,再采用电感耦合等离子体质谱法(ICP-MS)或石墨炉原子吸收光谱法(GFAAS)进行测定。当前,隐伏矿床勘查是地球化学探测技术的发展前沿,金活动态提取技术是寻找隐伏金矿的有效手段之一。相比于全量分析,金的活动态含量更低,需要解决选择性提取、高效预富集与准确测定等一系列难题。本文采用柠檬酸铵与土壤中黏土矿物及次生矿物作用促使吸附和可交换组分的金进入提取液,以硫脲和硫代硫酸钠络合金使活动态金向提取液中扩散,达到选择性提取的目的,建立了提取液中金的预富集及ICP-MS测定方法。实验确定的分析条件为:采用5g/L柠檬酸铵-2g/L硫脲-5g/L硫代硫酸钠为提取剂,提取时间24h,在酸性硫脲介质下用活性炭富集金,金吸附率可达89.6%~109.2%,灰化解吸温度为650~700℃。本方法检出限为0.05ng/g,相对标准偏差(RSD)为9.4%~10.2%,加标回收率为91.2%~93.4%。与已报道的硫酸铁-硫脲-硫代硫酸钠溶液提取再GFAAS测定的方法相比,本方法具有检出限低、测试线性范围宽、测试速度快的优势;应用于森林覆盖区黑龙江东安金矿区地球化学探测试验,金活动态异常与隐伏金矿位置一致。
    要点

    (1)采用柠檬酸铵-硫脲-硫代硫酸钠专用提取剂提取土壤活动态金。

    (2)发展了金活动态提取液硫脲介质下活性炭富集方法。

    (3)金活动态提取、测定技术成功应用于森林沼泽景观区隐伏金矿探测试验。

    Highlights

    (1) The extraction of gold mobile fraction in soil with a special extractant of ammonium citrate-thiourea-sodium thiosulfate.

    (2) The method using an active carbon preconcentration of gold mobile fraction in a thiourea medium was developed.

    (3) The extraction and determination technology for gold mobile fraction was successfully applied to the detection test of hidden gold deposits in a forest swamp landscape area.

  • 重晶石是重要的含钡矿物,主要用于油气钻井中泥浆的加重剂,也是制备含钡化工产品的重要矿物原料[1]。硫酸钡是评价重晶石质量的主要指标,含量范围在46%~96%之间。重晶石常与石英、方解石、白云石、菱铁矿、菱锰矿、天青石、萤石、硫化矿物(黄铁矿、方铅矿、闪锌矿、黄铜矿)及其氧化物伴生,一般含二氧化硅、钙、锶、铅等。目前重晶石中硫酸钡的主要测定方法有:硫酸钡重量法、铬酸钡容量法。硫酸钡重量法以称重反应生成的硫酸钡的方式测定硫酸钡量;铬酸钡容量法通过滴定铬酸根离子间接测定硫酸钡量;两种方法检测流程均繁琐、复杂,且容量法分析条件不易控制,铅、锶在两种方法中都会与钡共沉淀,导致硫酸钡的测定结果偏高,样品中含锶时需要用其他方法测定锶进行差减校正。应用电感耦合等离子体发射光谱法(ICP-OES)测定硫酸钡含量的方法已有报道[2],分析流程需要两次高温熔样,两次过滤,流程仍较复杂。采用熔融制样X射线荧光光谱法(XRF)测定地质样品中的组分较为快速、简便[3-9],该法用于测定钡含量已有文献报道[10-13],例如仵利萍等[10]和曾小平等[11]以熔融制样XRF法测定重晶石中的主次量元素,可以快速测定总钡量,样品中碳酸钡的钡量会计入硫酸钡量,测定方法中未除去碳酸钡,不能准确测定其中的硫酸钡量。因此,采用XRF法测定重晶石中的硫酸钡时,样品需要进行酸处理以除去碳酸钡、铅等干扰,但样品经酸处理后不同样品的剩余量不同,造成熔剂与样品的比例不确定,仍然不能准确测定硫酸钡的含量。

    本文优化了样品前处理条件、XRF分析中熔片条件和仪器工作条件等因素,取一定量样品以10%的盐酸和10%的硝酸溶解过滤除去碳酸钡、硫酸钙及铜、铅、锌等有色金属元素,未溶解的样品在700℃下灼烧,灼烧后将样品量以氧化铝补充到初始取样量,以重晶石国家标准物质、岩石国家标准物质、高纯硫酸钡及人工混合的校准样品制作标准曲线,实现了XRF熔片法准确测定重晶石中的硫酸钡,对需要样品前处理XRF测定组分的分析方法提供了解决方案。

    Axios顺序扫描式波长色散X射线荧光光谱仪(荷兰PANalytical公司),陶瓷薄铍端窗(75 μm)超尖锐铑钯X射线管,SuperQ 4.0定量分析软件。

    已有文献对XRF法测定钡的分析参数作了系统的研究[10-13],本实验根据钡元素的性质,选择低电压,高电流;粗准直器;无滤光片;背景点选择在长波侧。重晶石中钡及主要元素的测量条件见表 1

    表  1  XRF仪器测量条件
    Table  1.  Measurement parameters of XRF instrument
    元素谱线晶体准直器
    (μm)
    探测器滤光片管电压
    (kV)
    管电流
    (mA)
    2θ(°)脉冲高度分析器测量时间(s)
    峰值背景LLPL峰值背景
    RhKα-CLiF 200150Scint.Al(200 μm)606018.4386-26782010
    SrLiF 200300Scint.Al(200 μm)606025.11900.660222782010
    BaLiF 200300FlowNone409087.17081.307033662010
    SGe 111300FlowNone30120110.69601.663235652010
    CaLiF 200300FlowNone30120113.1450-1.062632732010
    FeLiF 20015FlowNone606057.5264-0.971615682010
    TiLiF 200300FlowNone40908601904-1.191228712010
    下载: 导出CSV 
    | 显示表格

    SQP电子分析天平(赛多利斯科学仪器有限公司,北京)。

    HMS-Ⅱ-MXZ型高频熔样机(成都多林电器有限公司),可同时熔融2个样品,铂黄合金坩埚。

    盐酸、硝酸、氯化铵、三氧化二铁、氧化镁、氧化铝、硝酸铵、溴化锂、碘化铵(分析纯)。

    四硼酸锂+偏硼酸锂混合熔剂(分析纯,质量比67:33),600℃灼烧2 h,冷却后置于干燥器中备用。

    准确称取在105℃干燥2 h的样品0.2000 g,置于50 mL烧杯中,加10 mL 10%的盐酸、4 mL 10%的硝酸,盖上表面皿,于低温电热板上加热微沸30 min(随时加水控制体积10 mL),取下,用水吹洗表面皿及杯壁,冷却至室温,用慢速滤纸定量过滤,将全部未溶解的样品移至定量中速滤纸上,水洗至无氯离子,将沉淀连同滤纸一起置于50 mL瓷坩埚中,置于高温炉中低温烘干后升温灰化,于700℃灼烧30 min,取出,冷却至室温,转移到称量皿称量灼烧物质量,以氧化铝补加到0.2000 g,置于原坩埚中,称取6.0000 g四硼酸锂+偏硼酸锂混合熔剂(质量比67:33) 和0.5 g硝酸铵于坩埚中,搅匀,转移到铂黄合金坩埚中,加饱和溴化锂溶液0.4 mL,于高频熔样机上650℃预氧化3 min,1075℃熔融2 min,加碘化铵20 mg,摇动熔融4.5 min,再加碘化铵20 mg,摇动熔融1.5 min后倒入已预热的铂金合金模具中,冷却后倒出,1 h后置于XRF仪器进样交换器中测定。

    以7个重晶石国家标准物质GBW07811~GBW07817、2个岩石国家标准物质GBW07111和GBW07132、高纯硫酸钡以及人工配制的校准样品做标准系列,所选的标准物质不经酸处理,全样熔片,以标准物质中的全钡量换算为全硫酸钡量。

    重晶石矿石中除含有硫酸钡外,伴生矿物可能含有碳酸钡、硫酸钙、铅、锌等成分,影响硫酸钡的测定结果,毛香菊等[2]以10%的盐酸溶解样品、过滤除去干扰组分,ICP-OES法测定重晶石选矿样品中的硫酸钡,其结果与重量法一致。对于XRF法测定重晶石中的硫酸钡,应除去样品中的碳酸钡以及铜、铅、锌等对铂黄合金坩埚造成腐蚀的组分,熔融过程中预氧化难以消除其影响,样品前处理应考虑将这些组分尽量除去,以满足对样品熔融的要求。

    硫酸钡不溶于酸,选择盐酸、盐酸+氯化铵、盐酸+硝酸体系处理样品,以硫化物型重晶石标准物质GBW07816和多金属矿标准物质GSO-2考察样品的处理效果,以选定的处理方法溶解样品,过滤后的滤液定容、摇匀后以火焰原子吸收光谱法测定滤液中的铜、铅、锌,计算方法的溶出率,结果见表 2表 2结果表明:单独使用盐酸或盐酸+氯化铵、盐酸+硝酸均可以较好地溶解铅;盐酸、盐酸+氯化铵体系对铜、锌的溶解效果不佳,盐酸+硝酸体系对铜、铅、锌的溶出效果均较好。本法选择以10%盐酸10 mL+10%硝酸4 mL体系前处理样品。

    表  2  样品前处理方法及铜铅锌的溶出率
    Table  2.  Sample pretreatment methods and dissolution rate of Cu, Pb, Zn
    样品编号前处理方法溶出率(%)
    PbCuZn
    GBW0781610%盐酸10 mL97.56-40.96
    GSO-210%盐酸10 mL99.0840.9541.78
    GBW0781610%盐酸10 mL+0.5 g氯化铵99.76-67.82
    GSO-210%盐酸10 mL+0.5 g氯化铵100.041.940.14
    GBW0781610%盐酸10 mL+1 g氯化铵99.76-86.17
    GSO-210%盐酸10 mL+1 g氯化铵99.9629.5246.01
    GBW0781610%盐酸10 mL+10%硝酸2 mL99.94-96.01
    GSO-210%盐酸10 mL+10%硝酸2 mL100.089.5295.31
    GBW0781610%盐酸10 mL+10%硝酸4 mL99.92-99.73
    GSO-210%盐酸10 mL+10%硝酸4 mL100.091.4398.84
    注:“-”表示标准物质无标准值,未计算溶出率。
    下载: 导出CSV 
    | 显示表格

    样品的熔融程度是影响方法准确度的重要因素[14-15],样品充分熔融,方法的精密度、准确度高。仵利萍等[10]以样品与熔剂1:30的稀释比制作熔片测定重晶石中的总钡量,熔片效果较好。本文以样品与熔剂的稀释比为1:10、1:15、1:20、1:30、1:40,各稀释比制作6个玻璃样片进行实验,上机测定钡的谱线强度,计算标准偏差,结合熔片质量情况确定最佳稀释比。结果表明:样品与熔剂稀释比为1:30时样片清亮,熔融物流动性好,6个样片的钡强度标准偏差小,因此本实验选择样品与熔剂稀释比为1:30。

    样品经稀酸处理后,碳酸盐、硫化物等易溶于酸的物质被溶解分离除去,样品量减少,不同样品剩余量不同。剩余样品按原样品量与熔剂1:30的比例熔融后测定,标准物质硫酸钡的测定值偏高;剩余样品以熔剂补加到原取样量再按样品量与熔剂1:30的比例熔融测定,标准物质测定结果偏低。证明样品经酸处理后,不能直接加熔剂熔融后XRF法测定其中的组分,其原因为样品经处理后样品量减少,熔剂与样品比例不确定,导致分析结果出现较大偏差。

    研究以化学性质稳定的氧化物将剩余样品补充到样品的初始取样量。选取的氧化物在样品熔融过程中应无挥发,对钡的基体效应小,贮存过程中不发生吸水潮解、反应等现象。氧化铝、三氧化二铁、氧化镁是可选择的补加剂,过高的铁组分会增加熔融体的黏度,不宜单独使用,选择以三氧化二铁+氧化镁(质量比70:30) 混合物、氧化铝为补加剂,熔融制片测定,标准物质测定值见表 3。结果表明:将灼烧物量补加到初始取样量后,样品与熔剂比例一致,标准物质的检测结果基本满足规范要求。三氧化二铁是钡元素的基体校正组分,三氧化二铁+氧化镁(70:30) 混合物补加到不同样品中的量不同,硫酸钡测定结果的准确度较氧化铝为补加成分的结果略差,因此选择以氧化铝为补加成分。

    表  3  不同补加成分的标准物质中硫酸钡的测定值
    Table  3.  Analytical results of BaSO4 in standards materials adding different ingredients
    标准物质
    编号
    补加剂BaSO4含量
    标准值
    (%)
    测量值
    (%)
    相对误差
    (%)
    允许相对误差
    (%)
    GBW07811三氧化二铁+
    氧化镁(70:30)
    42.3242.23-0.211.37
    GBW07815三氧化二铁+
    氧化镁(70:30)
    67.0466.83-0.310.84
    GBW07816三氧化二铁+
    氧化镁(70:30)
    18.8718.66-1.112.39
    GBW07811氧化铝42.3242.410.211.37
    GBW07815氧化铝67.0466.91-0.190.84
    GBW07816氧化铝18.8719.020.792.39
    下载: 导出CSV 
    | 显示表格

    仵利萍等[10]于1050~1150℃、曾小平等[11]于1050℃熔融重晶石样品,熔片效果较好。熔片温度过低,熔融物流动性差,样片效果差,所制样片中有微小不熔颗粒,分析结果精密度差;熔片温度过高,熔融物挥发严重,黏度增大而粘连坩埚,造成不易脱埚。实验证明当温度为1075℃时,钡的谱线强度值相对稳定,测量值的标准偏差和相对标准偏差小且趋于稳定;当高于此温度,熔融物挥发量大,熔融物黏度高,不易脱埚。因此,本实验选择熔片温度为1075℃。

    样品中含有还原性物质会对坩埚造成腐蚀,加入氧化剂可以防止还原性物质对坩埚的损坏,由于取样量小,样品经过了稀酸处理、高温灼烧,样品中的还原性物质较少,氧化剂的加入量不必太多。以硝酸铵作氧化剂,过多的硝酸铵会增大熔融物的黏度,需提高碘化铵的加入量以利于脱模。实验选择加入0.25、0.50、0.75、1.0 g硝酸铵,根据熔片情况确定硝酸铵最佳加入量。实验结果表明:硝酸铵加入量小于0.50 g时熔融物的流动性较好;但加入量为0.25 g时熔好的样片脆性较大,冷却过程中部分样片会出现爆裂现象;加入量大于0.75 g时高温熔融物流动性差、黏度大、脱模剂需要量大,熔片效果变差。因此,本实验选择硝酸铵选择加入量为0.50 g。

    基体效应[16]是试样中元素间吸收、增强效应和物理化学效应对待测元素特征X射线强度的影响。经验系数法是目前XRF分析中准确定量分析的重要基体校正方法,本方法选择经验系数法进行校正。以Fe2O3、SiO2、CaO含量对钡含量进行校正后,硫酸钡的曲线离散度等参数明显改善,GBW07811的硫酸钡的测量误差<0.24%,故选择参与基体校正。

    根据XRF法检出限计算公式: $\frac{{3\sqrt 2 }}{m}\sqrt {\frac{{{I_{\rm{b}}}}}{{{t_{\rm{b}}}}}} $ (式中:m为单位含量的计数率,94.3642;Ib为背景计数率,1.5345;tb为峰值和背景总计数时间,60 s),计算得到硫酸钡检出限为72 μg/g,满足对重晶石中硫酸钡的检测要求。本法检出限略高于ICP-OES法,但远低于重晶石10%的边界品位,完全可以满足重晶石中硫酸钡的测定要求。

    按实验方法对标准物质GBW07815重复制备12个样片,按确定的测量方法测定硫酸钡,计算平均值为66.94%,相对标准偏差(RSD)为0.36%,与仵利萍等[10]采用熔融制样XRF法报道的氧化钡的精密度(RSD为0.36%)相近,优于毛香菊等[2]采用ICP-OES法的精密度(RSD为0.39%~4.1%)。这些对比表明本方法重现性较好,满足DZ/T 0130—2006《地质矿产实验室质量管理规范》的要求。

    选取不同硫酸钡含量的重晶石样品10件,以本法及硫酸钡重量法(由国土资源部保定矿产资源监督检测中心检测)测定,进行方法比对。测定结果(表 4)表明:本法与硫酸钡重量法结果相符,表明适用于重晶石中硫酸钡的测定。

    表  4  本方法与经典化学分析方法比较
    Table  4.  A comparison of analytical results by this method and traditional chemical methods
    样品
    编号
    重量法测定值
    (%)
    本法测定值
    (%)
    平均值
    (%)
    相对偏差
    (%)
    允许相对偏差
    (%)
    111.4011.2111.310.844.38
    259.1258.9759.050.131.39
    334.5835.6435.11-1.512.26
    467.4468.7068.07-0.931.16
    571.1671.5271.34-0.251.09
    651.8052.8452.32-0.991.59
    75.525.695.61-1.525.85
    844.2944.2844.290.011.87
    961.0260.7360.880.241.34
    1087.4987.3287.410.100.77
    下载: 导出CSV 
    | 显示表格

    采用XRF法分析重晶石中的硫酸钡时,样品需要前处理导致样品量减少,无法准确测定其中的待测组分。本研究提出了以对钡基体效应小的氧化铝补充到初始取样量的方法,较好地解决了问题,在样品处理过程中,以稀酸溶解过滤除去重晶石中的干扰组分,消除了锶、铅等元素的干扰,提高了XRF法的准确度。

    本方法在样品灰化后直接熔片即可进行XRF测定,而ICP-OES法在样品灰化后需要碱熔、过滤、酸溶解钡、上机测定,分析周期较长。总体上,较容量法、重量法、ICP-OES法的干扰少、分析流程短,提高了分析测试效率。

  • 图  1   土壤金活动态地球化学图

    Figure  1.   Geochemical map of gold mobile fraction in soil

    图  2   土壤金全量地球化学图

    Figure  2.   Geochemical map of total gold in soil

    表  1   不同提取剂提取金测定结果的对比

    Table  1   Comparison of analytical results of gold by using different leaching methods

    活动态提取剂 GBW07806(n=3) GBW07246(n=3) GBW07247(n=3)
    金测定平均值
    (ng/g)
    RSD
    (%)
    金测定平均值
    (ng/g)
    RSD
    (%)
    金测定平均值
    (ng/g)
    RSD
    (%)
    提取剂1(5g/L柠檬酸铵) 2.17 21.0 3.36 20.5 2.34 25.9
    提取剂2(2g/L硫脲) 1.43 4.3 5.78 14.1 2.40 13.6
    提取剂3(5g/L硫代硫酸钠) 0.23 19.0 3.43 18.1 1.96 12.9
    提取剂4(2g/L硫脲-5g/L硫代硫酸钠) 1.31 23.3 5.09 13.2 2.64 23.5
    提取剂5(5g/L柠檬酸铵-2g/L硫脲-5g/L硫代硫酸钠) 1.70 7.7 7.33 6.8 1.87 9.9
    下载: 导出CSV

    表  2   提取时间变化对金活动态提取量的影响

    Table  2   Effect of extraction time on the mobile fraction of gold

    提取时间
    (h)
    活动态金提取量(ng/g)
    GBW07246 GBW07247 GBW07248
    0.5 2.26 1.42 8.16
    1 3.25 1.87 10.2
    3 4.63 1.70 14.2
    5 5.42 1.81 15.6
    24 7.26 1.77 30.4
    36 7.00 1.83 32.0
    48 7.12 1.58 37.4
    下载: 导出CSV

    表  3   提取液酸介质及酸度对金回收率的影响

    Table  3   Effect of acid medium and acidity of extraction solution on adsorption recovery of gold

    提取液介质 金回收率
    (%)
    提取液介质 金回收率
    (%)
    2g/L硫脲 94.2 2g/L硫脲-2%盐酸 92.7
    2g/L硫脲-1%硝酸 98.3 2g/L硫脲-5%盐酸 97.9
    2g/L硫脲-5%硝酸 100.6 2g/L硫脲-2%王水 87.2
    2g/L硫脲-5%王水 88.4
    下载: 导出CSV

    表  4   方法精密度

    Table  4   Precision tests of the method

    标准物质
    编号
    金全量
    认定值
    (ng/g)
    柠檬酸铵-2g/L硫脲-5g/L硫代
    硫酸钠提取法(本文方法)
    硫酸铁-硫脲
    -硫代硫酸钠
    提取法
    金活动态含量测定
    平均值(ng/g)
    相对标准偏差
    RSD(%)
    金活动态含量
    测定平均值
    (ng/g)
    GBW07246 20.8 7.56 9.4 6.92
    GBW07248 100 30.6 10.2 26.5
    下载: 导出CSV
  • 郭林中, 韦瑞杰, 王海潮, 等.改性活性炭的制备及其对金吸附性能的研究[J].岩矿测试, 2014, 33(4):528-534. http://www.ykcs.ac.cn/article/id/0bed3eab-5b90-4316-8649-0b0c947c3cfc

    Guo L Z, Wei R J, Wang H C, et al.Study on preparation and Au(Ⅲ) adsorption ability of nitric acid modified activated carbon[J].Rock and Mineral Analysis, 2014, 33(4):528-534. http://www.ykcs.ac.cn/article/id/0bed3eab-5b90-4316-8649-0b0c947c3cfc

    马怡飞, 汪广恒, 张尼, 等.乙醇介质制备载炭泡塑及其在地质样品金测定中的应用[J].岩矿测试, 2018, 37(5):533-540. doi: 10.15898/j.cnki.11-2131/td.201801150005

    Ma Y F, Wang G H, Zhang N, et al.Application of carbon-loaded polyurethane foam produced by ethanol media in determination of gold in geological samples[J].Rock and Mineral Analysis, 2018, 37(5):533-540. doi: 10.15898/j.cnki.11-2131/td.201801150005

    张洁, 阳国运.电感耦合等离子体质谱法测定金矿石中金[J].冶金分析, 2018, 38(11):18-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201811004

    Zhang J, Yang G Y.Determination of gold in gold ore by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2018, 38(11):18-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201811004

    邢夏, 徐进力, 陈海杰, 等.抗坏血酸为基体改进剂石墨炉原子吸收光谱法测定金矿区植物样品中的痕量金[J].岩矿测试, 2015, 34(3):319-324. doi: 10.15898/j.cnki.11-2131/td.2015.03.010

    Xing X, Xu J L, Chen H J, et al.Determination of trace gold in plant samples from a gold mining area by graphite furnace atomic absorption spectrometry with ascorbic acid as the matrix modifier[J].Rock and Mineral Analysis, 2015, 34(3):319-324. doi: 10.15898/j.cnki.11-2131/td.2015.03.010

    Mann A W.Strong versus weak digestion:Ligand based soil extraction geochemistry[J].Geochemistry:Exploration, Environment, Analysis, 2010, 10(1):17-26. doi: 10.1144/1467-7873/09-216

    孟贵祥, 吕庆田, 严加永, 等."穿透性"探测技术在覆盖区地质矿产调查中的应用研究[J].地球学报, 2019, 40(5):637-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201905001

    Meng G X, Lü Q T, Yan J Y, et al.The research and application of explorational technology of "penetrating" to geology and mineral investigation in overburden area[J].Acta Geoscientica Sinica, 2019, 40(5):637-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201905001

    鲁美, 叶荣, 张必敏, 等.覆盖区地球化学勘查进展[J].矿床地质, 2019, 38(6):1408-1411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201906014

    Lu M, Ye R, Zhang B M, et al.The development of geochemical exploration in the covered area[J].Mineral Deposits, 2019, 38(6):1408-1411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201906014

    徐洋.覆盖区隐伏矿地球化学弱信息提取技术研究[D].北京: 中国地质大学(北京), 2015.

    Xu Y.The geochemical methods to extract the weak geochemical signals from concealed deposits[D].Beijing: China University of Geosciences (Beijing), 2015.

    徐善法, 刘汉彬, 王玮, 等.深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J].物探与化探, 2017, 42(2):189-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201702001

    Xu S F, Liu H B, Wang W, et al.An experimental study of deep penetration geochemical technology in the Shihongtan uranium deposit[J].Geophysical and Geochemical Exploration, 2017, 42(2):189-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201702001

    Xie X J, Lu Y X, Yao W S, et al.Further study on deep penetrating geochemistry over the spence porphyry copper deposit, Chile[J].Earth Science Frontiers, 2011, 2(3):303-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy-e201103003

    Wang X Q, Zhang B M, Lin X, et al.Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J].Ore Geology Reviews, 2016, 73(3):417-431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c15dfb3b5879c254055a70c88c2946c3

    姚文生.元素活动态提取剂机理及实验条件研究[D].北京: 中国地质科学院, 2011: 24-36.

    Yao W S. Leaching mechanism and conditions of extractants on mobile forms of elements in soils[D].Beijing: Chinese Academy of Geological Sciences, 2011: 24-36.

    Williams T M, Gunn A G.Application of enzyme leach soil analysis for epithermal gold exploration in the Andes of Ecuador[J].Applied Geochemistry, 2002, 17(4):367-385. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5cfe65e3f53fbe2db0a537eeb2b23c17

    叶信栋, 孙彬彬, 周国华.河北蔡家营铅锌多金属矿地电化学提取有效性及提取条件试验[J].地质与勘探, 2018, 54(5):979-987. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201805009

    Ye X D, Sun B B, Zhou G H. Effectiveness and conditions tests of geo-electrochemical extraction in the Caijiaying Pb-Zn polymetallic mining area[J].Geology and Exploration, 2018, 54(5):979-987. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201805009

    Lu M, Ye R, Wang Z K, et al.Geogas prospecting for buried deposits under loess overburden:Taking Shenjiayao gold deposit as an example[J].Journal of Geochemical Exploration, 2019, 197:122-129. doi: 10.1016/j.gexplo.2018.11.015

    Sadeghi M, Albanese S, Morris G, et al.REE concen-trations in agricultural soil in Sweden and Italy:Comparison of weak MMI® extraction with near total extraction data[J].Applied Geochemistry, 2015, 63:22-36. doi: 10.1016/j.apgeochem.2015.07.004

    Birrell R D, Fedikow M A, Mann A W, et al.Vertical ionic migration:Mechanisms, soil anomalies, and sampling depth for mineral exploration[J].Geochemistry:Exploration, Environment, Analysis, 2005, 5(3):201-210. doi: 10.1144/1467-7873/03-045

    王学求, 张必敏, 叶荣.纳米地球化学与覆盖区矿产勘查[J].矿物岩石地球化学通报, 2016, 35(1):43-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201601005

    Wang X Q, Zhang B M, Ye R.Nanogeochemistry for mineral exploration through covers[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1):43-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201601005

    毛永新.黑龙江金厂金矿Ⅻ号矿体金活动态地球化学测量应用研究[D].长春: 吉林大学, 2014.

    Mao Y X.Study on the application of MOMEO geochemical survey in Ⅻ ore body of Jinchang gold deposit, Heilongjiang Province[D].Changchun: Jilin University, 2014.

    白金峰, 卢荫庥, 文雪琴.金的活动态分析方法及其应用[J].物探与化探, 2006, 30(5):410-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200605008

    Bai J F, Lu Y X, Wen X Q.The analytical method for mobile forms of gold and its application[J].Geophysical and Geochemical Exploration, 2006, 30(5):410-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200605008

    赵伟, 王玉林, 钟莅湘, 等.土壤样品中贵金属活动态提取技术[J].岩矿测试, 2010, 29(3):212-216. http://www.ykcs.ac.cn/article/id/ykcs_20100303

    Zhao W, Wang Y L, Zhong L X, et al.Exreaction and determination method for mobile forms of precious metals in soil samples[J].Rock and Mineral Analysis, 2010, 29(3):212-216. http://www.ykcs.ac.cn/article/id/ykcs_20100303

    徐进力, 邢夏, 张鹏鹏, 等.元素活动态提取条件和分析方法的应用研究[J].地质学报, 2020, 94(3):982-990. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb202003022

    Xu J L, Xing X, Zhang P P, et al.Application research on extraction conditions and analysis methods of active state elements[J].Acta Geologica Sinica, 2020, 94(3):982-990. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb202003022

    曹立峰, 王敏捷, 申硕果, 等.活动态提取-电感耦合等离子体质谱法测定栾川矿集区深穿透地球化学样品中铜铅锌钨钼[J].岩矿测试, 2015, 34(4):424-429. doi: 10.15898/j.cnki.11-2131/td.2015.04.008

    Cao L F, Wang M J, Shen S G, et al.Determination of Cu, Pb, Zn, W and Mo in deep-penetrating geochemical samples of the Lunchan ore concentrated district by ICP-MS with extraction elements of mobile forms[J].Rock and Mineral Analysis, 2015, 34(4):424-429. doi: 10.15898/j.cnki.11-2131/td.2015.04.008

    唐志中, 陈静, 孙自军, 等.深穿透地球化学样品中金活动态提取条件研究[J].黄金, 2013, 34(6):71-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201306024

    Tang Z Z, Chen J, Sun Z J, et al.Leaching conditions for determination of mobile forms gold in deep-penetrating geochemical samples[J].Gold, 2013, 34(6):71-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201306024

    连文莉, 来新泽, 刘军, 等.黑色岩型铂族矿物中铂钯金相态ICP-MS分析方法研究[J].岩矿测试, 2017, 36(2):120-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.003

    Lian W L, Lai X Z, Liu J, et al.Phase analysis method of Pt, Pd and Au in black rock-type platinum group element minerals by ICP-MS[J].Rock and Mineral Analysis, 2017, 36(2):120-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.003

    刘军, 闫红岭, 连文莉, 等.封闭溶矿-电感耦合等离子体质谱法测定地质样品中金银铂钯[J].冶金分析, 2016, 36(7):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201607004

    Liu J, Yan H L, Lian W L, et al.Determination of gold, silver, platimun and palladium in geological samples by inductively coupled plasma mass spectrometry with sealed dissolution[J].Metallurgical Analysis, 2016, 36(7):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201607004

    Chen S Z, Yan J T, Wang C L, et al.Preconcentration and determination of Au(Ⅲ), Pd(Ⅱ), and Pt(Ⅳ) using dispersive micro-solid phase extraction with multi-porous ZnFe2O4 nanotubes and ICP-MS[J].Atomic Spectroscopy, 2019, 40(6):199-205. doi: 10.46770/AS.2019.06.001

    Guo W, Xie W K, Jin L L, et al.Determination of sub-ng·g-1 Au in geological samples by ion molecule reaction ICP-MS and CH4 plasma modifier[J].RSC Advances, 2015, 5:103189-103194. doi: 10.1039/C5RA19692B

    何桂春, 吴艺鹏, 冯金妮.含金硫精矿焙烧除砷选铁-硫脲法提金试验研究[J].矿冶工程, 2012, 32(5):62-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201205018

    He G C, Wu Y P, Feng J N.Experimental study on gold extraction from gold-bearing pyrite concentrate by roasting for arsenic removal and thiourea leaching of gold[J].Mining and Metallurgical Engineering, 2012, 32(5):62-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201205018

    王学求, 叶荣.纳米金属微粒发现——深穿透地球化学的微观证据[J].地球学报, 2011, 32(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201101002

    Wang X Q, Ye R.Findings of nanoscale metal particles:Evidence for deep-penetrating geochemsitry[J].Acta Geoscientica Sinica, 2011, 32(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201101002

    张必敏, 王学求, 叶荣, 等.土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨[J].桂林理工大学学报, 2019, 39(2):301-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201902006

    Zhang B M, Wang X Q, Ye R, et al.Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies[J].Journal of Guilin University of Technology, 2019, 39(2):301-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201902006

    耿艳, 梁斌, 徐志强, 等.中性盐溶液提取土壤中金属活动态及其对隐伏矿的指示:以甲基卡稀有金属矿区为例[J].高校地质学报, 2019, 25(1):51-57. http://www.cqvip.com/QK/90539X/201901/7001371678.html

    Geng Y, Liang B, Xu Z Q, et al.Neutral salt solution extraction of mobile forms of metals in soils and its indication of concealed orebody:A case study of the Jiajika rare metal deposits[J].Geological Journal of China Universities, 2019, 25(1):51-57. http://www.cqvip.com/QK/90539X/201901/7001371678.html

    许世伟, 王建英, 郑升, 等.用硫脲从低品位尾矿中提取金的试验研究[J].湿法冶金, 2013, 32(2):79-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sfyj201302003

    Xu S W, Wang J Y, Zheng S, et al.Extraction of gold from low grade tailings using thiourea[J].Hydrometallurgy of China, 2013, 32(2):79-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sfyj201302003

    韩彬, 童雄, 谢贤, 等.硫代硫酸盐浸金体系研究进展[J].矿产综合利用, 2015(3):11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly201503003

    Han B, Tong X, Xie X, et al.Progress of thosulfate system in gold leaching[J].Multipurpose Utilization of Mineral Resources, 2015(3):11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly201503003

  • 期刊类型引用(5)

    1. 符招弟,张晓娟,杨林. 伟晶岩型锂矿石中锂的化学物相分析方法研究. 岩矿测试. 2024(03): 432-439 . 本站查看
    2. 彭晶晶,林锴. 锂矿成矿规律研究的知识图谱分析. 中国矿业. 2024(09): 228-235 . 百度学术
    3. 王成辉,王登红,刘善宝,张永生,王春连,王九一,周雄,代鸿章,于扬,孙艳,邢恩袁. 战略新兴矿产调查工程进展与主要成果. 中国地质调查. 2022(05): 1-14 . 百度学术
    4. 郭晓剑,胡欢,刘亦晴,梁雁茹. 基于CiteSpace的我国绿色矿山研究可视化分析. 黄金科学技术. 2020(02): 203-212 . 百度学术
    5. 叶亚康,周家云,周雄. 川西塔公松林口岩体LA-ICP-MS锆石U -Pb年龄与地球化学特征. 岩矿测试. 2020(06): 921-933 . 本站查看

    其他类型引用(4)

图(2)  /  表(4)
计量
  • 文章访问数:  3397
  • HTML全文浏览量:  1126
  • PDF下载量:  53
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-09-22
  • 修回日期:  2020-01-29
  • 录用日期:  2020-04-15
  • 发布日期:  2020-06-30

目录

/

返回文章
返回