• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑

郑智慷, 曾江萍, 王家松, 乔赵育, 刘义博, 吴良英, 王力强

郑智慷, 曾江萍, 王家松, 乔赵育, 刘义博, 吴良英, 王力强. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208-215. DOI: 10.15898/j.cnki.11-2131/td.201906110084
引用本文: 郑智慷, 曾江萍, 王家松, 乔赵育, 刘义博, 吴良英, 王力强. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208-215. DOI: 10.15898/j.cnki.11-2131/td.201906110084
ZHENG Zhi-kang, ZENG Jiang-ping, WANG Jia-song, QIAO Zhao-yu, LIU Yi-bo, WU Liang-ying, WANG Li-qiang. Determination of Antimony in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208-215. DOI: 10.15898/j.cnki.11-2131/td.201906110084
Citation: ZHENG Zhi-kang, ZENG Jiang-ping, WANG Jia-song, QIAO Zhao-yu, LIU Yi-bo, WU Liang-ying, WANG Li-qiang. Determination of Antimony in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208-215. DOI: 10.15898/j.cnki.11-2131/td.201906110084

常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑

基金项目: 

中国地质调查局地质调查项目“地质调查标准化与标准制修订(2019—2021)(中国地质调查局天津地质调查中心)” DD20190472

中国地质调查局地质调查项目“地质调查标准化与标准制修订(2019—2021)(中国地质调查局天津地质调查中心)”(DD20190472)

详细信息
    作者简介:

    郑智慷, 工程师, 主要从事岩矿分析测试工作。E-mail:1016271514@qq.com

    通讯作者:

    王家松, 高级工程师, 主要从事化学分析和标准化工作。E-mail:372516720@qq.com

  • 中图分类号: O657.31

Determination of Antimony in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

  • 摘要: 采用王水溶解锑矿石常出现溶矿不彻底、提取过程中锑水解的问题,导致测定结果偏低;虽然原子荧光光谱法广泛应用于锑的测定,但是该方法由于仪器线性范围窄,对于高含量锑(>5%)的测定容易引入较大稀释误差。本文对样品采用氢氟酸-硝酸-盐酸混合酸溶后,在提取过程中加入酒石酸与锑络合,充分抑制了锑的水解。实验结果表明:采用氢氟酸、硝酸、盐酸混合酸体系的溶矿方式,能够有效分解矿石中的硅酸盐组分,使溶解更加彻底,锑的测定结果优于王水溶矿,且检出限更低(1.10μg/g);通过酒石酸与锑的络合及盐酸对锑水解的抑制,锑的测定结果优于王水介质及盐酸介质的结果,且方法精密度(RSD,n=6)为0.11%~1.11%,较其他介质更稳定。在ICP-OES分析中通过对锑元素分析谱线的优选,可以获得更宽的线性范围,从而实现了对较高含量锑的准确测定。本方法能快速、有效溶解锑矿石并避免锑元素水解,经国家一级标物验证,所得结果与认定值相符,适用于分析锑矿石中含量范围在0.7%~40%的锑。
    要点

    (1) 选取了氢氟酸-硝酸-盐酸混合酸溶矿体系。

    (2) 优选了酒石酸-盐酸混合提取液。

    (3) 本方法溶矿彻底、提取完全,ICP-OES线性范围宽。

    HIGHLIGHTS

    (1) The mixed acid solution system of hydrofluoric acid, nitric acid, and hydrochloric acid was selected.

    (2) The mixed extraction solution of tartaric acid and hydrochloric acid was chosen.

    (3) Advantages of using the method were complete dissolution, complete extraction and wide linear range.

  • 水资源是人类生存、经济和区域可持续发展的重要组成部分,水质安全日益成为国家可持续发展和保障国民健康面临的重要课题[1-2]。联合国开发计划署(UNDP)提出了17项全球可持续发展目标(SDGs),其中“清洁水源”是其重要目标。健康中国行动(2019—2030年)也将饮用水水质达标和持续改善作为环境健康促进行动的重要内容,对水质、水生态和水安全提出了更高要求[3]。金属类矿山开采容易导致矿体及尾矿中的有害元素释放[4],通过水循环进入生态系统,由饮用水途径进入人体[5],重金属元素在人体中的累积效应给区域人群健康带来了巨大的潜在风险[6-9]

    中国是世界稀土矿重要产地,赣南地区是全球离子型稀土矿发现地和首采地,近50年来的粗放式开采对流域水体产生了深刻的影响。已有研究表明中国南方离子型稀土矿集区范围内的赣江流域水体中存在明显的铅、锰、砷元素异常[6, 8, 10]。赣南离子型稀土矿山流域调查研究也发现,流域内存在氨氮、重金属元素含量异常,地表水中的Pb、As、Mn含量与氨氮浓度呈现良好的正相关性。模拟稀土矿开采的浸矿实验证实,浸矿过程中NH4+和H+取代黏土矿物吸附点上的重金属离子,导致重金属离子活化随多余的浸矿液迁移到水系中[11-12],因此,稀土矿山是所在流域水体中有害指标异常的重要来源[8, 12]。已有对矿集区及周边水体健康风险评价研究案例[13]为地方政府提供了科学的水质评价结果及准确的健康风险评估成果。然而,目前研究主要集中在矿区外围地表水水质分析和单一生态风险评估,对复垦后的稀土矿山所在流域水质缺乏系统调查,对地表水和地下水的人体健康风险缺乏全面评价。

    均值法、单因子评价法和综合污染指数法、内梅罗指数法是常用的水质评价方法[7, 9]。相比较,水质指数法(Water Quality Index, WQI)综合考虑了不同污染指标的毒理学权重,较好地实现了对水质的科学评价[14-16]。基于人体健康的水体风险评价大多采用美国环保署推荐的经口摄入暴露剂量风险评估模型(ADD)[14, 17-19]。中国也在2021年出台了卫生评价规范《化学物质环境健康风险评估技术指南》(WS/T 777—2021),该指南从危害识别、反应评估、暴露评估和风险表征等方面提出更为系统全面的化学物质健康风险评价标准。本研究基于自然资源部定点帮扶赣州宁都县乡村振兴地质调查基础展开,通过对赣南北部黄陂河流域稀土矿区及周边地表水和地下水的系统调查,对水体中氨氮、锰等9种指标进行水质和健康风险评价,旨在:①刻画矿区所在流域地表水和地下水中9种指标的空间分布特征;②根据水质指数(WQI)科学评价地表水和地下水的水质特征;③通过摄入吸收模型(ADD)计算各指标的危害商(HQ)和致癌风险(CR),科学评价水体的健康风险。研究成果拟为地方促进水源地环境改善、优化村镇国土空间规划等提供决策参考和科学依据。

    研究区位于江西省赣州市宁都县(图 1)。研究区年均气温14~19℃,属亚热带季风气候区。北部以山区为主,南部以丘陵、河谷为主。主要土地利用类型为林地,河谷地带和丘陵缓坡为耕地和园地。黄陂河是赣江二级支流,发源于宁都县蔡江乡大坑村大坪坑,流经黄陂镇,在东山镇汇入赣江一级支流梅江,全长约60km。黄陂河流域岩石地层主要为震旦系老虎塘组变余砂岩夹千枚岩,西南部有大片混合岩、混合花岗岩分布。黄陂稀土矿地处黄陂河流域上游,黄陂镇以北5km的花岗岩区,各类规模矿点十余处,矿区面积约5.4km2。矿区周边的土地利用类型以农田和果园为主,农产品以水稻和脐橙为主。黄陂稀土矿于二十世纪末开始大规模的堆浸式开采,2005年达到顶峰,2016年至今矿山关停进入复垦治理时期。依照《赣州市地表水功能区划》(2010年),黄陂河是宁都县境内重要的饮用水取水区,河水水质直接关系着下游乡村饮用水的安全和人群健康。

    图  1  研究区位置及取样点位分布图
    Figure  1.  Location of the study area and sampling sites

    2019年6月项目组围绕黄陂稀土矿集区,在黄陂河流域自上游到下游开展实地调查。共采集23处水样,其中稀土矿集区及上游附近地表水水样16个,下游黄陂河干流地表水样品5个。依托矿区及下游的2口地下水监测井,采集地下水样品2个。为减少季节性水量变化对水质产生的影响,依照水样指标分析结果分别在矿区、矿区下游和远离矿区下游选取4个地表水采样点(GNSW-19009、GNSW-19010、GNSW-19014、GNSW-19016)进行监测,如图 1所示,在2020年8月和2021年2月作为流域丰水期和枯水期进行对比样品采集。

    Optima 8300电感耦合等离子体发射光谱仪(美国PerkinElmer公司)。仪器工作条件为:等离子体功率1250W, 冷却气流速15.0L/min, 载气流速0.60L/min。

    NexION 300Q电感耦合等离子体质谱仪(美国PerkinElmer公司)。仪器工作条件为:等离子体功率1000W,冷却气流速16.0L/min, 载气流速0.96L/min。

    AFS 830原子荧光光谱仪(北京吉天仪器有限公司)。仪器工作条件为:负高压260mV, 灯电流30mA。WTWPH3210便携式pH计(德国赛莱默公司)。ICS5000+型高压离子色谱仪(美国ThermoFisher公司)。TR900氨氮快速测定仪(深圳同奥科技),测定范围为0~50mg/L,检测下限为0.05mg/L,测定误差 < ±5%,重复性 < ±5%。

    硝酸(BVIII级,德国Merck公司)。50%硝酸用体积比为1∶1的水和硝酸配制而成。0.45μm微孔滤膜(Φ25mm,天津津腾实验设备有限公司)。

    所有采样设备(有机玻璃)取样前使用原水润洗三次后立即取样,装入100mL塑料瓶(PET)中。在24h内所有水样都需要通过0.45μm微孔滤膜过滤到30mL白色塑料瓶(聚乙烯)中,一瓶加入2mL浓度为50%的硝酸,另一瓶不做处理,均放入冰箱冷藏待测。

    根据《生活饮用水标准检验方法金属指标》(GB/T 5750.6—2006)标准(本方法适用于生活饮用水、水源水的测试分析),使用电感耦合等离子体发射光谱法(ICP-OES)测定锰含量,选择Mn 257.61nm谱线为分析线;使用电感耦合等离子体质谱法(ICP-MS)测定镉、铜、镍、铅含量,选取114Cd、63Cu、60Ni、208Pb为分析物质量。使用原子荧光光谱法(AFS)测定砷含量。使用离子色谱法测定硝酸根(NO3-)、硫酸根(SO42-)含量。

    使用德国WTWPH3210便携式pH计野外现场测定pH值。根据《水质氨氮的测定纳氏试剂分光光度法》(HJ 535—2009)标准(本方法适用于地表水和地下水氨氮测定),使用TR900便携式多参数水质测定仪现场测定氨氮(NH3-N)含量。

    采用水质指数(Water Quality Index, WQI)对水样水质进行评价,其计算如公式(1)。

    $$ W Q I=\Sigma\left[w_{\mathrm{i}} \times\left(\frac{C_{\mathrm{i}}}{S_{\mathrm{i}}}\right) \times 100\right] $$ (1)

    式中:wi代表目标元素权重[20-21]。按照元素对水质产生的影响程度,将权重分为5级,其中Cd、Cr、Mn、Pb、NH3-N、NO3-、SO42-的权重为5,pH、Fe的权重为4,Al、Ba、Cu的权重为2,Co、Ni、Zn的权重为1[13]Ci是测定的微量元素浓度;Si是中国饮用水的标准;数字100表示常数。

    WQI分为五级:WQI < 50,表示水质极好;50≤WQI < 100,水质好;100≤WQI < 200,水质差;200≤WQI < 300,水质极差,WQI≥ 300,水质不可饮用。

    经口摄入是人类主要的环境暴露途径之一[13, 22]。本文采用美国环保署(2004年)推荐的暴露剂量风险评估模型(Average Daily Dose,ADD)对水体进行健康风险评价,其计算如公式(2)。

    $$ A D D=\frac{C_{\mathrm{w}} \times I R \times E F \times E D}{B W \times A T} $$ (2)

    式中:ADD表示平均每日摄入剂量;Cw为水样中微量元素的平均浓度(μg/L);IR为摄入量,成人为2.0L/天,儿童为0.64L/天; EF为暴露频率(350天/年);ED为暴露时间,成人为30年,儿童为6年;BW为平均体重,成人70kg,儿童15kg;AT是平均时间(用于非致癌物),AT=ED×365天/年;对于致癌物AT=365天/年×70年)。

    潜在非致癌风险评估采用危害商(Hazard Quotient,HQ)进行计算,主要评估水中Cu、Ni、Mn等非致癌物的健康风险,其计算如公式(3)。

    $$ H Q=\frac{A D D}{R f D} $$ (3)

    式中:HQ是通过摄入的危害商(无量纲);ADD表示平均每日摄入剂量;RfD是特定口服毒性金属参考剂量。当HQ>1时,可能会对人类健康产生不良影响;当HQ < 1时,表明对人类健康没有不良影响。

    水中Cr、As等致癌性化学污染物引起的潜在人体致癌风险水平计算如公式(4)。

    $$ CR=ADD×SF $$ (4)

    式中:CR为致癌风险;ADD表示平均每日摄入剂量;SF为口腔癌斜率因子(mg/kg/day)-1。当CR < 10-6时,表明致癌风险可忽略不计;当CR>10-4时,对人类致癌的风险较高;如果10-4 < CR < 10-6,则对人类存在可接受的风险。

    黄陂河流域稀土矿集区的地表水和地下水水质参数统计特征如表 1。地表水pH值分布范围为6.43~7.03,平均值为6.85;地下水pH值分布范围为6.96~7.43,平均值为7.19,略高于地表水。河水总体呈中性偏酸性,地下水的pH标准偏差略高于地表水。水体中的微量元素含量可分为:低丰度(< 1μg/L),中丰度(1~100μg/L),高丰度(>100μg/L)[23-24]。研究区地表水样品中的As、Cd、Ni平均浓度低于1μg/L,为低丰度元素;Cu和Pb平均浓度在1~100μg/L范围内,为中丰度元素。Mn浓度大于100μg/L,属高丰度元素。SO42-、NO3-、NH3-N的浓度则超过1000μg/L。地下水中各指标呈现出与地表水类似的分布。地表水中指标平均值排序为:NO3->SO42->NH3-N>Mn>Pb>Cu>Ni>As>Cd;地下水中指标平均值排序为:NH3-N>SO42->Mn>NO3->Ni>Pb>As>Cu>Cd。地表水中NO3-、As、Cu、Pb的平均值高于地下水,表明地表水中该类指标的污染相对于地下水较为严重。然而,对于Mn、NH3-N、SO42-等指标,地下水的平均值高于地表水,表明地下水中这些指标的污染相对于地表水较为严重。与赣江流域其他稀土矿区水质相比,黄陂河流域的地表水和地下水水质相对良好,其中地表水各指标含量平均值除Mn外比赣江龙迳河流域的平均值低[8],地下水NH3-N、NO3-、Pb平均含量远低于赣州南部的足洞稀土矿集区[6]

    表  1  黄陂河流域地表水、地下水化学统计参数和WQI参数
    Table  1.  Parameters of chemical statistics and WQI obtained from surface water and groundwater in Huangpi River Basin
    指标 地表水 地下水 WQI参数
    最小值
    (μg/L)
    最大值
    (μg/L)
    平均值
    (μg/L)
    标准差
    (μg/L)
    最小值
    (μg/L)
    最大值
    (μg/L)
    平均值
    (μg/L)
    标准差
    (μg/L)
    水质
    标准a
    权重
    (wi)
    相对权重
    (Wi)
    pH 6.43 7.03 6.85 0.14 6.96 7.43 7.19 0.23 6.5~8.5a 4 0.095
    NH3(以N计) 134 1517 750 386 727 8338 4533 3805 500a 5 0.119
    SO42- 457 4222 1940 869 3257 4783 4020 762 250000b 5 0.119
    NO3- 0.00 10890 2721 2401 50.00 4329 2189 2139 50000b 5 0.119
    As 0.22 0.84 0.58 0.18 0.33 0.44 0.38 0.06 10a 5 0.119
    Cd 0.02 0.10 0.05 0.02 0.04 0.25 0.14 0.11 5a 5 0.119
    Cu 0.86 10.20 3.61 2.56 0.12 0.59 0.35 0.23 1000a 2 0.048
    Mn 42.0 659 207 155 782 7236 4009 3227 100a 5 0.119
    Ni 0.45 1.02 0.70 0.18 1.73 8.30 5.01 3.28 20a 1 0.024
    Pb 1.06 24.12 8.13 5.50 1.77 2.50 2.14 0.36 10a 5 0.119
    注:a为中国《生活饮用水卫生标准》(GB 5749—2006);b为世界卫生组织(WHO)标准(2011)。
    下载: 导出CSV 
    | 显示表格

    本研究中,通过WQI值对黄陂河流域的水体质量情况是否能够达到饮用水的标准进行评价。WQI值的计算涉及Mn、NH3-N、Pb等9项指标。黄陂河流域矿集区地表水体水质WQI最大值为132.8,最小值为24.5,平均值为62.63,整体水平为“好”,85.7%的地表水适宜饮用。上述结果表明经过矿山复垦治理,稀土矿山周边地区水质处于较好状态,这与林圣玉等[25]的生态修复工程成效评估报告结果相一致。但矿区中也存在部分水样点WQI值处于“差”水平,其中Mn、NH3-N、Pb三个指标是造成水样WQI值较高的主要原因。

    氨氮是稀土矿山开采的主要污染物,稀土开采过程中主要使用硫酸铵作为浸矿剂,而铵根离子会取代黏土矿物吸附点上的稀土元素,残留在矿区土壤表面及其间隙中的氨氮在降雨的淋浸下,通过浓度差作用进入水体[23-24, 26],这与本次调查研究发现稀土矿山附近氨氮严重超标的情况类似。根据对稀土矿山地区土壤重金属的赋存形态研究发现,重金属主要以残渣态存在[27],但是有研究表明,长期酸性条件下,H+会加速矿物风化,破坏硅酸盐、次生矿物、氧化物的晶格,造成晶格内重金属元素(残渣态)的迁移[28-30]。根据对停止开采后的稀土矿区土壤等介质调查研究发现,存在Pb含量较高的现象[27, 31]。此次调查发现矿山附近水样点有明显的Pb超标现象,这表明稀土矿区即使停止开采后依然存在重金属缓慢释放的现象,对矿区下游居民的饮用水安全及农田环境质量存在较大的威胁。根据陈能汪等[32]的研究发现,Mn元素的活化与释放主要与水体中酸碱度的降低有关,长期的稀土矿开采造成土壤酸化[33],使大量的Mn元素释放到环境中,造成水体中Mn元素异常分布。

    中国南方丘陵山丘居民分散式饮水主要依赖地下水,约70%人群饮水以地下水为主要来源[34]。此次对矿区及下游地区地下水监测评价发现,矿区地下水监测井样品WQI>300,属不可饮用级别,但下游地区监测井的WQI值较矿山附近的低,随样品离稀土矿区距离的增加,地下水水质呈逐渐变好的趋势。通过对WQI值的权重分析、污染物浓度及标准分析发现,Mn、NH3-N是造成地下水水质极差的主要原因,其中地下水Mn元素的平均值是地表水的20倍。对于Mn元素在土壤中的赋存形态以及如何迁移到水体中的研究现在还较少。陈能汪等[32]研究了福建省九龙江流域的Mn元素来源和迁移,发现Mn元素的迁移主要与高pH值的含Mn颗粒流失以及河流pH值降低有关。卢陈彬等[35]对赣南稀土矿区的Mn元素形态学和矿物学分析表明,Mn主要富集在含锰矿物中,仅少量以分散相形式吸附在黏土矿物表面,具有较高的潜在迁移能力。

    通过对黄陂河流域地表水的枯水期和丰水期监测,发现枯水期的WQI值都比丰水期的大(表 2),主要是由于枯水期降雨少,指标浓度相对较高所致。

    表  2  地表水监测点枯水期和丰水期WQI值比较
    Table  2.  Comparison of WQI values of surface water monitoring points in dry season and wet season
    黄陂河流域 监测站位WQI
    GNSW-19009 GNSW-19010 GNSW-19014 GMSW-19016)
    丰水期 48.46 12.12 35.80 14.14
    枯水期 67.83 25.77 47.38 27.01
    下载: 导出CSV 
    | 显示表格

    本研究采用美国环保署(EPA)推荐的健康风险评估模型对研究区地表水和地下水健康风险进行评价,由于硫酸根离子单独未被美国纳入US EPA综合风险信息查询系统中,因此本评价不包括硫酸根。而儿童和成人剂量效应不同,因此分别进行计算更符合人体健康评价标准。评价得到的黄陂河流域地表水和地下水中NH3(以N计)、NO3-、As、Cd、Cu、Mn、Ni、Pb的危害商(HQ)和致癌风险(CR)如表 3所示。

    表  3  黄陂河流域地表水和地下水危害商和致癌风险
    Table  3.  HQ and CR values of surface water and groundwater in Huangpi River Basin
    地表水中的元素 危害商(HQ) 致癌风险(CR)
    成人 儿童 成人 儿童
    NH3(以N计) 1.03×10-1 1.54×10-1 - -
    NO3- 4.66×10-2 6.96×10-2 - -
    As 4.66×10-2 6.96×10-2 2.39×10-5 3.56×10-5
    Cd 2.85×10-3 4.26×10-3 - -
    Cu 3.57×10-5 5.33×10-5 - -
    Mn 2.37×10-1 3.54×10-1 - -
    Ni 9.54×10-4 1.42×10-3 - -
    Pb 1.59×10-1 2.38×10-1 - -
    地下水中的元素 危害商(HQ) 致癌风险(CR)
    成人 儿童 成人 儿童
    NH3(以N计) 6.21×10-1 9.27×10-1 - -
    NO3- 3.75×10-2 5.60×10-2 - -
    As 3.49×10-2 5.21×10-2 1.57×10-5 2.34×10-5
    Cd 7.84×10-3 1.17×10-2 - -
    Cu 2.42×10-4 3.61×10-4 - -
    Mn 4.58 6.84 - -
    Ni 6.87×10-3 1.03×10-2 - -
    Pb 4.18×10-2 6.25×10-2 - -
    注:“-”表示无对应数值。
    下载: 导出CSV 
    | 显示表格

    地表水和地下水的危害商(HQ)如图 2所示。在地表水中,儿童和成人所选指标的HQ平均值均小于1,说明对人类健康没有不良影响和潜在的非致癌风险。对于地下水,儿童和成人Mn元素的HQ值均在1以上,表明可能对人类健康产生非致癌风险,而儿童和成人的其他元素HQ值均在1以下则属于在安全范围内。此外,儿童HQ值与成人相比具有更高数值,这意味着儿童比成人相比健康风险更大, Gao等[13]和Xiao等[22]研究证实了这一点。研究结果表明,在有稀土矿集区存在的黄陂河流域,地下水中Mn可能对人类健康产生非致癌风险,且儿童的非致癌风险性更高。

    图  2  儿童和成人在(a)地表水和(b)地下水中摄入量的HQ
    Figure  2.  In-taken HQ values of (a) surface and (b) groundwater by children and adults

    过度摄入或长期接触重金属元素可能会引起毒性作用,如长期暴露于低剂量镉与肾毒性、骨质疏松症和神经毒性相关。此外,Cd元素可能通过破坏雄激素受体在前列腺癌中发挥作用[36-37]。Pb暴露可导致肾病、情感性障碍、智力、记忆和认知缺陷下降,尤其是儿童暴露后神经损伤更严重[38]。在对比数据中,两类水体中多数HQ值低于1,表明对人类健康无非致癌风险,但儿童风险明显高于成人。且两类水体中Mn的HQ值均大于1,表明对人体有较高的非致癌性风险。

    本研究计算了影响人体健康的重要因素——As的致癌风险(表 3)。根据美国环境保护署推荐的CR分类,儿童和成人通过地表水和地下水所摄入致癌风险物质As的CR值范围如图 3所示。

    图  3  地表水和地下水中儿童和成人As元素的CR值对比
    Figure  3.  Comparison of CR values of As between children and adults in surface water and groundwater

    图 3可见,地表水中儿童CR值为1.32×10-5~5.14×10-5,成人为8.86×10-6~3.45×10-5; 地下水中儿童CR值为2.00×10-5~2.68×10-5,成人为1.34×10-5~1.79×10-5,儿童组可能会有较高的致癌风险。地表水区As的平均致癌风险高于地下水区,儿童组的平均致癌风险高于成人,可能与成人比儿童需要更多饮用水相关,这与Tong等[15]的研究一致。与以往研究[10]不同的是,本调查研究未发现黄陂河流域稀土矿区存在人体致癌性风险。

    考虑到As元素的浓度平均值、成人及儿童体重、每日摄入量等涉及不同区域的风险评估计算存在差异,这些因素构成的潜在风险具有一定的不确定性。尽管微量元素如As的生物有效性、与价态相关的毒性会影响到最终的健康风险评价,但在目前条件下,本研究采用的元素浓度评价方式为人体健康评价提供了相对可靠的科学参考。

    基于《生活饮用水卫生标准》(GB 5749—2006),利用水质指数法和暴露剂量风险评估模型相结合对江西省赣南黄陂河流域复垦后的水质及健康风险进行系统性调查评价。水质指数(WQI)评价结果表明,地表水和地下水中氨氮、Mn属于异常指标,应予以重视。依据暴露剂量风险评估模型,首先通过危害商(HQ)来进行非致癌健康风险评价,评价结果显示黄陂河流域稀土矿区及周边乡村除Mn元素以外7种指标对儿童和成人无不良影响和潜在的非致癌风险。其次,致癌健康风险评价表明As的致癌风险(CR)在可接受范围之内。

    综合以上评价结果,对于村庄和人口密集型分布的此类稀土矿山,建议关注水体氨氮及重金属元素含量的状况,加强对所在流域水体Mn元素的协同监测,完善修复治理及效果评估方法。

  • 图  1   溶样后析出沉淀的X射线衍射图谱

    Figure  1.   X-ray diffraction spectrum of precipitation after sample dissolution

    表  1   微波消解升温程序

    Table  1   Program of microwave digestion

    步骤 升温时间(min) 目标温度(℃) 保持时间(min) 功率(W)
    1 5 100 0 1200
    2 5 120 3 1200
    3 5 130 25 1200
    下载: 导出CSV

    表  2   不同提取介质的测定结果

    Table  2   Analytical results of Sb in sample pretreated with different volumetric methods

    标准物质编号 Sb认定值(%) 定容方式1 (5%酒石酸与5%盐酸混合溶液) 定容方式2 (15%王水定容) 定容方式3 (20%盐酸定容)
    4次测定值(%) 平均值(%) 4次测定值(%) 平均值(%) 4次测定值(%) 平均值(%)
    GBW07175 18.97 19.01 18.99
    19.04 19.00
    19.01 16.24 16.31
    16.13 16.20
    16.22 18.64 18.57
    18.69 18.62
    18.63
    GBW07176 39.7 39.74 39.81
    39.77 39.73
    39.76 33.57 33.49
    33.26 33.38
    33.43 39.36 39.31
    39.24 39.38
    39.32
    GBW07279 6.26 6.28 6.31
    6.27 6.29
    6.29 5.31 5.46
    5.37 5.34
    5.37 5.97 5.89
    5.91 5.84
    5.90
    GBW07280 1.81 1.83 1.84
    1.80 1.82
    1.82 1.44 1.51
    1.55 1.53
    1.51 1.64 1.59
    1.61 1.63
    1.62
    下载: 导出CSV

    表  3   不同消解方式下锑的测定结果对比

    Table  3   Comparison of the analytical results of Sb pretreated with different digestion methods

    溶样方式 用酸量(mL) 溶样温度(℃) 溶样时间(h) Sb测定值(%)
    敞口酸溶 26 160 4 18.93
    常压密闭微波消解 8 130 1.5 18.96
    高压密闭消解 6 180 6 18.94
    下载: 导出CSV

    表  4   方法准确度和精密度

    Table  4   Accuracy and precision tests of the method

    标准物质编号 Sb含量(%) 相对误差(%) RSD(%)
    分次测定值 平均值 认定值
    GBW07175 19.01  19.04  18.98
    19.00  18.99  19.02
    19.01 18.97 0.21 0.11
    GBW07176 39.81  39.74  39.74
    39.82  39.77  39.80
    39.79 39.7 0.23 0.11
    GBW07279 6.31  6.29  6.24
    6.28  6.30  6.34
    6.29 6.26 0.48 0.53
    GBW07280 1.77  1.73  1.76
    1.74  1.72  1.73
    1.74 1.81 0.13 1.11
    下载: 导出CSV

    表  5   方法加标回收率

    Table  5   Spiked recovery of the method

    项目 Sb测定值(%)
    样品1 样品2 样品3
    称样量(g) 0.1000 0.1000 0.1000
    溶液体积(mL) 100 100 100
    加标前样品溶液测定浓度(μg/mL) 8.74 15.31 32.60
    加标前样品溶液锑含量(μg) 874 1531 3260
    锑标准溶液浓度(μg/mL) 100 100 100
    加标体积(mL) 10 20 40
    加标量(μg) 1000 2000 4000
    加标后样品溶液测定浓度(μg/mL) 18.91 35.22 72.89
    加标后样品溶液锑含量(μg) 1891 3522 7289
    加标回收率(%) 102.0 99.6 101.0
    下载: 导出CSV
  • 罗英杰, 王小烈, 柳群义, 等.中国未来锑资源需求预测[J].中国矿业, 2017, 26(3):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201703001

    Luo Y J, Wang X L, Liu Q Y, et al.The future demand of antimony in China[J]. China Mining Magazine, 2017, 26(3):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201703001

    李皓, 张尼, 马熠罡.碱熔样电感耦合等离子体发射光谱法测定锑矿石中锑[J].化学分析计量, 2016, 25(2):69-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfxjl201602031

    Li H, Zhang N, Ma Y G.Determination of antimony in antimony ore by inductively coupled plasma emission spectrometry combined with alkali fusion pretreatment[J]. Chemical Analysis and Meterage, 2016, 25(2):69-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfxjl201602031

    孟郁苗, 胡瑞忠, 高剑峰, 等.锑的地球化学行为以及锑同位素研究进展[J].岩矿测试, 2016, 35(4):339-348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    Meng Y M, Hu R Z, Gao J F, et al.Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 2016, 35(4):339-348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    何贵, 韦平, 王禄军, 等.溶样方法对化探样品中砷锑测定的影响[J].黄金, 2013, 34(2):77-79. http://d.old.wanfangdata.com.cn/Periodical/huangj201302020

    He G, Wei P, Wang L J, et al.Impact of dissolving reagent on determination of arsenic and stibium of geochemical samples[J]. Gold, 2013, 34(2):77-79. http://d.old.wanfangdata.com.cn/Periodical/huangj201302020

    魏轶, 窦向丽, 巨力佩, 等.四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑[J].岩矿测试, 2013, 32(5):715-718. http://www.ykcs.ac.cn/article/id/393aaaac-cb25-48c2-9c09-81a82f1e1b97

    Wei Y, Dou X L, Ju L P, et al.Determination of antimony in gold-antimony ore and antimony ore by inductively coupled plasma-atomic emission spectrometry with four acids dissolution[J]. Rock and Mineral Analysis, 2013, 32(5):715-718. http://www.ykcs.ac.cn/article/id/393aaaac-cb25-48c2-9c09-81a82f1e1b97

    高春英, 王琳, 范世华.自动点位滴定法测定锑矿石中锑[J].分析试验室, 2016, 35(12):1441-1444.

    Gao C Y, Wang L, Fan S H.Determination of total antimony in antimony ores with an automatic potentiometric titration method[J]. Chinese Journal of Analysis Laboratory, 2016, 35(12):1441-1444.

    高云, 宋召霞.硫化钠还原-硫酸铈滴定法测定含锑金精矿中锑[J].冶金分析, 2017, 37(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201703006

    Gao Y, Song Z X.Determination of antimony in gold concentrate containing antimony by cerium sulfate titrimetry with sodium sulfide reduction[J]. Metallurgical Analysis, 2017, 37(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201703006

    陈珍娥, 马超, 张海.分光光度计的改装及在锑测定中的应用[J].冶金分析, 2017, 37(5):77-81. http://d.old.wanfangdata.com.cn/Periodical/yjfx201705016

    Chen Z E, Ma C, Zhang H.Modification of spectrophotometer and its application in determination of antimony[J]. Metallurgical Analysis, 2017, 37(5):77-81. http://d.old.wanfangdata.com.cn/Periodical/yjfx201705016

    Unutkan T, Koyuncu I, Diker C, et al.Accurate and sensitive analytical strategy for the determination of antimony:Hydrogen assisted t-shaped slotted quartz tube-atom trap-flame atomic absorption spectrometry[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(1):122-127.

    刘志仓, 郭国涛, 王宏强, 等.火焰原子吸收法测定矿石中锑元素的方法试验[J].中国金属通报, 2018(4):198, 200. http://d.old.wanfangdata.com.cn/Periodical/zgjstb201804113

    Liu Z C, Guo G T, Wang H Q, et al.Determination of antimony in ores by flame atomic absorption spectrometry[J]. China Metal Bulletin, 2018(4):198, 200. http://d.old.wanfangdata.com.cn/Periodical/zgjstb201804113

    Zurynková P, Dědina J, Kratzer J.Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer[J]. Analytica Chimica Acta, 2018(1010):11-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88872ee60aa1a9972a768b6a8ad4badb

    Mattiazzi P, Bohrer D, Viana C, et al.Determination of antimony in pharmaceutical formulations and beverages using high-resolution continuum-source graphite furnace atomic absorption spectrometry[J]. Journal of AOAC International, 2017, 100(3):737-742. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ccf79cff7f4343e332859fb9aeabdec

    袁永海, 尹昌慧, 元志红, 等.氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J].冶金分析, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009

    Yuan Y H, Yin C H, Yuan Z H, at al.Determination of arsenic and antimony in tin ore by hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009

    李颜君, 杨占菊, 董更福, 等.氢化物发生-原子荧光光谱法同时测定铅锭中砷锑[J].冶金分析, 2017, 37(11):75-79. http://d.old.wanfangdata.com.cn/Periodical/yjfx201711015

    Li Y J, Yang Z J, Dong G F, et al.Simultaneous determination of arsenic and antimony in lead ingot by hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2017, 37(11):75-79. http://d.old.wanfangdata.com.cn/Periodical/yjfx201711015

    李美秀, 齐少华.微波消解-双通道原子荧光光谱法同时测定土壤中的硒和锑[J].化学分析计量, 2018, 27(6):81-86. http://d.old.wanfangdata.com.cn/Periodical/hxfxjl201806020

    Li M X, Qi S H.Simultaneous determination of selenium and antimony in soil by microwave digestion and double channel atomic fluorescence spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(6):81-86. http://d.old.wanfangdata.com.cn/Periodical/hxfxjl201806020

    Dos S, Gerffeson S, Silva L, et al.Analytical strategies for determination and environmental impact assessment of inorganic antimony species in natural waters using hydride generation atomic fluorescence spectrometry (HG-AFS)[J]. Journal of the Brazilian Chemical Society, 2018, 29(1):185-190.

    刘江斌, 余宇, 段九存, 等.熔融制样X射线荧光光谱法测定锑矿石中的锑和14种微量元素[J].岩矿测试, 2014, 33(6):828-833. http://www.ykcs.ac.cn/article/id/c32669d9-7be4-483c-81cf-b28e4b5ce66e

    Liu J B, Yu Y, Duan J C, et al.Determination of antimony and 14 trace elements in antimony ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2014, 33(6):828-833. http://www.ykcs.ac.cn/article/id/c32669d9-7be4-483c-81cf-b28e4b5ce66e

    修凤凤, 樊勇, 李俊雨, 等.粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J].岩矿测试, 2018, 37(5):526-532. doi: 10.15898/j.cnki.11-2131/td.201704170061

    Xiu F F, Fan Y, Li J Y, et al.Determination of 18 minor elements in the structural superimposed halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2018, 37(5):526-532. doi: 10.15898/j.cnki.11-2131/td.201704170061

    王干珍, 王子杰, 郭腊梅, 等.稀释剂粉末压片-X射线荧光光谱法测定锑矿石中锑及主量组分[J].中国无机分析化学, 2016, 6(1):22-25. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201601006

    Wang G Z, Wang Z J, Guo L M, et al.Determination of antimony and main components in antimony ores by X-ray fluorescence spectrometer with diluent-pressed powder pellet[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1):22-25. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201601006

    黎香荣, 唐梦奇, 袁焕明, 等.熔融制样-X射线荧光光谱法测定锑矿石中主次成分[J].冶金分析, 2014, 34(7):38-42. http://d.old.wanfangdata.com.cn/Periodical/yjfx201407006

    Li X R, Tang M Q, Yuan H M, et al.Determination of major and minor components in antimony ore by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2014, 34(7):38-42. http://d.old.wanfangdata.com.cn/Periodical/yjfx201407006

    高永宏, 刘江斌, 祝建国. X射线荧光光谱法同时快速测定锑矿石中伴生及有害元素[J].分析测试技术与仪器, 2014, 20(2):98-102. http://d.old.wanfangdata.com.cn/Periodical/fxcsjsyyq201402007

    Gao Y H, Liu J B, Zhu J G.Simultaneous rapid determination of associated and harmful elements in antimony ores by X-ray fluorescence spectrometry[J]. Analysis and Testing Technology and Instruments, 2014, 20(2):98-102. http://d.old.wanfangdata.com.cn/Periodical/fxcsjsyyq201402007

    严慧, 王干珍, 汤行, 等.电感耦合等离子体发射光谱法同时测定锑矿石中14种元素的含量[J].理化检验(化学分册), 2017, 53(1):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201701007

    Yan H, Wang G Z, Tang X, et al.Simultaneous determination of 14 elements in antimony ores by inductively coupled plasma-atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(1):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201701007

    魏灵巧, 付胜波, 罗磊, 等.电感耦合等离子体发射光谱法多向观测同时测定锑矿石中锑砷铜铅锌[J].岩矿测试, 2012, 31(6):967-970. http://www.ykcs.ac.cn/article/id/ykcs_20120610

    Wei L Q, Fu S B, Luo L, et al.Simultaneous determination of Sb, As, Cu, Pb and Zn in antimony ores by inductively coupled plasma-atomic emission spectrometry with a multi-directional observation mode[J]. Rock and Mineral Analysis, 2012, 31(6):967-970. http://www.ykcs.ac.cn/article/id/ykcs_20120610

    任志海, 牟思名, 程功, 等.王水密闭溶矿-电感耦合等离子体原子发射光谱法测定锑矿石中的锑[J].中国无机分析化学, 2014, 4(1):53-55. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201401014

    Ren Z H, Mu S M, Cheng G, et al.Determination of Sb in stibium ore by inductively coupled plasma-atomic emission spectrometry with closed digestion using aqua regia[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1):53-55. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201401014

    张世龙, 吴周丁, 刘小玲, 等.电感耦合等离子体原子发射光谱法测定多金属矿石中铁、铜、铅、锌、砷、锑、钼和镉的含量[J].理化检验(化学分册), 2015, 51(7):930-933. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201507009

    Zhang S L, Wu Z D, Liu X L, et al.ICP-AES Determination of Fe, Cu, Pb, Zn, As, Sb, Mo and Cd in multi-metal ores[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(7):930-933. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201507009

    陈丽珠, 曹胜.电感耦合等离子体发射光谱(ICP-OES)法测定矿石中锑[J].中国无机分析化学, 2017, 7(4):60-63. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201704013

    Chen L Z, Cao S.Determination of antimony in ores by inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(4):60-63. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201704013

    冯源强, 王烨彬, 苏思强, 等.电感耦合等离子体发射光谱法测定锑矿石中的锑[J].广州化工, 2017, 45(18):98-100. http://d.old.wanfangdata.com.cn/Periodical/gzhg201718037

    Feng Y Q, Wang Y B, Su S Q, et al.Determination of Sb in antimony ores by inductively coupled plasma-atomic emission spectrometry[J]. Guangzhou Chemical Industry, 2017, 45(18):98-100. http://d.old.wanfangdata.com.cn/Periodical/gzhg201718037

    Chen S, Zhu S, Lu D.Dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction for speciation of antimony in environmental water samples by electrothermal vaporization ICP-MS[J]. Atomic Spectroscopy, 2018, 39(2):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a36ce8f7f0fc39dc1352779e43f1aca

    Dundar M S, Kaptan F, Caner C, et al.Speciation of antimony using dithizone ligand via cloud point extraction and determination by USN-ICP-OES[J]. Atomic Spectroscopy, 2018, 39(3):100-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa813790bc0446bbdbcad6114b7378bf

    张志刚, 刘凯, 陈泓, 等.酒石酸络合掩蔽锑-氢醌容量法测定锑矿石样品中的常量金[J].岩矿测试, 2015, 34(4):454-458. doi: 10.15898/j.cnki.11-2131/td.2015.04.013

    Zhang Z G, Liu K, Chen H, et al.Determination of gold in antimony ores by hydroquinone volumetric method with antimony tartrate as complexing and masking agent[J]. Rock and Mineral Analysis, 2015, 34(4):454-458. doi: 10.15898/j.cnki.11-2131/td.2015.04.013

    曾昭文, 郑成, 毛桃嫣, 等.微波在化工过程中的研究及应用进展[J].化工学报, 2019, 70(增刊):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb2019z1001

    Zeng Z W, Zheng C, Mao T Y, et al.Progress in research and application of microwave in chemical process[J]. CIESC Journal, 2019, 70(Supplement):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb2019z1001

    童兵, 许虹, 刘陟娜.全球锑矿资源分布现状及对中国勘察投资建议[J].中国矿业, 2017, 26(A1):5-10.

    Tong B, Xu H, Liu Z N.Distribution of global antimony resources and proposals of exploration investment for China[J]. China Mining Magazine, 2017, 26(A1):5-10.

  • 期刊类型引用(3)

    1. 安彩秀,赫彦涛,冉卓,李然,刘淑红. 石油烃红外分光光度法与气相色谱法(C_(10)~C_(40))测定结果比对研究. 应用化工. 2023(08): 2423-2426 . 百度学术
    2. 张鹏辉,司升玲,向蕾,罗婷婷,张蒙,杨嘉伟. 四氯乙烯中石油类溶液标准物质制备. 化学分析计量. 2023(10): 1-6 . 百度学术
    3. 李媛,段小燕,施玉格,李刚. 振荡提取-荧光分光光度法分析土壤样品中石油类物质. 岩矿测试. 2023(06): 1240-1247 . 本站查看

    其他类型引用(2)

图(1)  /  表(5)
计量
  • 文章访问数:  2715
  • HTML全文浏览量:  748
  • PDF下载量:  86
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-06-10
  • 修回日期:  2019-08-24
  • 录用日期:  2019-10-20
  • 发布日期:  2020-02-29

目录

/

返回文章
返回