• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

固相萃取掺氧空气-乙炔火焰原子吸收光谱法测定水和植物样品中的痕量镓

叶陆芳, 宋小华, 余代顺, 杨小慢, 谢文根, 吴少尉

叶陆芳, 宋小华, 余代顺, 杨小慢, 谢文根, 吴少尉. 固相萃取掺氧空气-乙炔火焰原子吸收光谱法测定水和植物样品中的痕量镓[J]. 岩矿测试, 2020, 39(2): 243-250. DOI: 10.15898/j.cnki.11-2131/td.201905280073
引用本文: 叶陆芳, 宋小华, 余代顺, 杨小慢, 谢文根, 吴少尉. 固相萃取掺氧空气-乙炔火焰原子吸收光谱法测定水和植物样品中的痕量镓[J]. 岩矿测试, 2020, 39(2): 243-250. DOI: 10.15898/j.cnki.11-2131/td.201905280073
YE Lu-fang, SONG Xiao-hua, YU Dai-shun, YANG Xiao-man, XIE Wen-gen, WU Shao-wei. Determination of Trace Ga in Water and Plant Samples by O2-doped Air-Acetylene FAAS with Solid Phase Extraction Preconcentration[J]. Rock and Mineral Analysis, 2020, 39(2): 243-250. DOI: 10.15898/j.cnki.11-2131/td.201905280073
Citation: YE Lu-fang, SONG Xiao-hua, YU Dai-shun, YANG Xiao-man, XIE Wen-gen, WU Shao-wei. Determination of Trace Ga in Water and Plant Samples by O2-doped Air-Acetylene FAAS with Solid Phase Extraction Preconcentration[J]. Rock and Mineral Analysis, 2020, 39(2): 243-250. DOI: 10.15898/j.cnki.11-2131/td.201905280073

固相萃取掺氧空气-乙炔火焰原子吸收光谱法测定水和植物样品中的痕量镓

基金项目: 

大学生创新创业训练项目 

国家自然科学基金项目 21565013

国家自然科学基金项目(21565013);大学生创新创业训练项目

详细信息
    作者简介:

    叶陆芳, 在读本科生, 从事痕量分析及样品前处理技术研究。E-mail:2530335171@qq.com

    通讯作者:

    吴少尉, 博士, 教授, 从事原子光谱/质谱联用分析技术研究。E-mail:2361130534@qq.com

  • 中图分类号: O657.31

Determination of Trace Ga in Water and Plant Samples by O2-doped Air-Acetylene FAAS with Solid Phase Extraction Preconcentration

  • 摘要: 目前研究萃取分离富集镓大多偏向在强酸性体系中,一定程度上给操作带来安全风险,另需耐酸器皿设备,易污染,空白背景值高。本文开发了一种在弱酸性条件下萃取分离富集痕量镓的方法。以大孔吸附树脂为载体,十六烷基三甲基溴化铵调节其表面极性,热固化负载2-乙基己基磷酸(2-乙基己基)酯,制备了镓的萃取树脂。动态考察了固相萃取镓的吸附容量,优化选择固相萃取分离富集条件,实验表明萃取条件温和,分离富集痕量镓效果理想。当溶液酸度为pH 2.5时,Ga(Ⅲ)达到最大的回收率99%,并确定了掺氧空气乙炔火焰原子吸收光谱法(FAAS)测定镓的最佳参数,提升了常规空气乙炔FAAS测定镓的灵敏度。方法检出限(3σ)为2.6ng/mL,相对标准偏差(RSD,n=7)为2.87%,加标回收率在95.7%~102.0%之间,理论富集倍数为40。本方法已应用于自来水、中药材和水培蔬菜样品中痕量镓的测定,简便、快速、可靠。
    要点

    (1) 制备价廉的固相萃取介质。

    (2) 在弱酸性体系中对痕量Ga进行固相萃取分离预富集前处理。

    (3) 优化了固相萃取O2-空气-乙炔FAAS测定镓的方法,拓宽了FAAS使用范围。

    HIGHLIGHTS

    (1) A cheap solid-phase extraction media was prepared.

    (2) Preconcentration of trace Ga in weak acidic system by solid phase extraction was established.

    (3) A method for determination of trace gallium by O2-air-C2H2 FAAS with solid phase extraction was established, and the application of FAAS was extended.

  • 图  1   镓固相萃取条件的选择

    Figure  1.   Choice of solid phase extraction conditions for Ga

    表  1   本文与文献报道固相萃取分析镓的方法性能比较

    Table  1   Comparison of the method with those reported in the literature for Ga(Ⅲ)

    吸附剂 方法 富集倍数 检出限 样品 文献
    聚氨酯塑料 SPE-ICP-MS - 22ng/g 稀土矿石 [24]
    改性胺基硅胶 SPE-FAAS 200 4.1ng/mL 水,沉积物 [25]
    Amberlite XAD-4树脂 SPE-UV-Vis 500 3.1ng/mL 水,生物 [26]
    聚氨酯泡沫体强酸阳离子交换纤维 SPE-FAAS
    SPE-ICP-AES
    40
    -
    6.0ng/mL
    3.9ng/mL
    铝合金,尿液
    铝土岩
    [27]
    [28]
    离子印迹多壁碳纳米管 SPE-FAAS 43 3.03ng/mL 飞灰 [29]
    磷酸三丁酯纤维棉 SPE-ICP-AES 5 65ng/mL 地质样品 [30]
    改性大孔树脂 SPE-掺氧空气乙炔FAAS 40 2.6ng/mL 水,植物 本研究
    下载: 导出CSV

    表  2   样品测定分析结果(n=3)

    Table  2   Analytical results for Ga(Ⅲ) in water solution and solid samples (n=3)

    样品 样品含量水样(μg/L)
    植物(μg/g)
    平均值水样(μg/L)
    植物(μg/g)
    加标量水样(μg/L) 测定值水样(μg/L) 回收率
    (%)
    ICP-MS法水样(μg/L)
    植物(μg/g)
    自来水 20.9,20.3, 19.1 20.1 15
    25
    33.6
    46.0
    95.7
    102.0
    19.3
    何首乌 1.27,1.29, 1.36 1.31 - - - 1.27
    花生芽 61.3, 61.9, 60.5 61.2 - - - 62.3
    注:标注“-”为植物固体样未做加标回收实验。
    下载: 导出CSV
  • Takekawa F, Kuroda R.Determination of gallium in geological materials by graphite-furnace atomic absorption spectrometry[J].Talanta, 1988, 35(9):737-739. doi: 10.1016/0039-9140(88)80174-7

    Kamat J V, Guin S K, Pillai J S, et al.Scope of detection and determination of gallium(Ⅲ) in industrial ground water by square wave anodic stripping voltammetry on bismuth film electrode[J].Talanta, 2011, 86:256-265. doi: 10.1016/j.talanta.2011.09.010

    郑路, 王治伦, 陈群, 等."有机镓胶囊"治疗成人大骨节病的效果研究[J].中国地方病防治杂志, 2014, 29(4):249-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdfbfzzz201404004

    Zheng L, Wang Z L, Chen Q, et al.Treatment effect of organic gallium capsule on the adult KBD[J].Chinese Journal of Control of Endemic Diseases, 2014, 29(4):249-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdfbfzzz201404004

    Thangavel S, Dash K, Dhavile S M, et al.Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES)[J].Talanta, 2015, 131:505-509. doi: 10.1016/j.talanta.2014.08.026

    Santanade F A, Barbosa J T P, Matos G D, et al.Direct determination of gallium in bauxite employing ICP-OES using the reference element technique for interference elimination[J].Microchemical Journal, 2013, 110:198-201. doi: 10.1016/j.microc.2013.03.011

    文加波, 商丹, 宋婉虹, 等.电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较[J].岩矿测试, 2011, 30(4):481-485. doi: 10.3969/j.issn.0254-5357.2011.04.019

    Wen J B, Shang D, Song W H, et al.Quantification of gallium in bauxites by inductively coupled plasma-atomic emission spectrometry-Comparison of sample pretreatment methods between alkali fusion and acid dissolution[J].Rock and Mineral Analysis, 2011, 30(4):481-485. doi: 10.3969/j.issn.0254-5357.2011.04.019

    周含英, 周方钦, 白祖海, 等.镓-槲皮素的分光光度法研究与应用[J].分析科学学报, 2005, 21(1):107-108. doi: 10.3969/j.issn.1006-6144.2005.01.033

    Zhou H Y, Zhou F Q, Bai Z H, et al.Study on gallium-quercetin complex spectrophotometry for the determination of gallium in Chinese herhal medicine[J].Journal of Analytical Science, 2005, 21(1):107-108. doi: 10.3969/j.issn.1006-6144.2005.01.033

    乐淑葵.催化分光光度法测定地质样品中微量镓[J].中国无机分析化学, 2018, 8(3):12-15. doi: 10.3969/j.issn.2095-1035.2018.03.004

    Le S K.Determination of trace gallium in geological samples by catalytic photometric method[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(3):12-15. doi: 10.3969/j.issn.2095-1035.2018.03.004

    罗道成, 罗铸.萃取富集-8-羟基喹啉显色光度法测定赤泥中微量Ga(Ⅲ)[J].分析科学学报, 2015, 31(6):805-808. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxkxxb201506014

    Luo D C, Luo Z.Spectrophotometric determination of micro Ga in red mud[J].Journal of Analytical Science, 2015, 31(6):805-808. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxkxxb201506014

    米瑞华.稼的原子吸收光谱分析进展[J].岩矿测试, 1996, 15(1):53-55. http://www.ykcs.ac.cn/article/id/ykcs_19960115

    Mi R H.Advances in AAS determination of gallium[J].Rock and Mineral Analysis, 1996, 15(1):53-55. http://www.ykcs.ac.cn/article/id/ykcs_19960115

    Ma D, Okamoto Y, Kumamaru T, et al.Determination of gallium by graphite furnace atomic absorption spectrometry with combined use of a tungsten-coated L'vov platform tube and a chemical modification technique[J].Analytical Chimica Acta, 1999(390):201-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d366cfbac24fe8f046cecef08ef67eec

    Lopez-Garcia I, Campillo N, Arnau-Jerez I, et al.ETAAS determination of gallium in soils using slurry sampling[J].Journal of Analytical Atomic Spectrometry, 2004, 19(7):935-937. doi: 10.1039/B401317D

    Nie X D, Liang Y Z, Tang Y G, et al.Determination of trace elements in high purity nickel by high resolution inductively coupled plasma mass spectrometry[J].Journal of Central South University, 2012, 19(9):2416-2420. doi: 10.1007/s11771-012-1290-0

    唐碧玉, 施意华, 杨仲平, 等.灰化酸溶-电感耦合等离子体质谱法测定煤炭中的镓锗铟[J].岩矿测试, 2018, 37(4):371-378. http://www.ykcs.ac.cn/article/id/fe82630d-e20b-4e8f-91c5-62bbbfdd66b3

    Tang B Y, Shi Y H, Yang Z P, et al.Determination of gallium, germanium and indium in coal by inductively coupled plasma-mass spectrometry with ashing acid digestion[J].Rock and Mineral Analysis, 2018, 37(4):371-378. http://www.ykcs.ac.cn/article/id/fe82630d-e20b-4e8f-91c5-62bbbfdd66b3

    Filella M, Rodushkin I.A concise guide for the determination of less-studied technology-critical elements (Nb, Ta, Ga, In, Ge, Te) by inductively coupled plasma mass spectrometry in environmental samples[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 141:80-84. doi: 10.1016/j.sab.2018.01.004

    Chevallier E, Chekri R, Zinck J, et al.Simultaneous determination of 31 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion:Method validation based on the accuracy profile[J].Journal of Food Composition and Analysis, 2015, 41:35-41. doi: 10.1016/j.jfca.2014.12.024

    高贺凤, 王超, 张立纲.电感耦合等离子体质谱法精确测定地质样品中的微量元素镓[J].岩矿测试, 2013, 32(5):709-714. doi: 10.3969/j.issn.0254-5357.2013.05.006

    Gao H F, Wang C, Zhang L G.Accurate determination of trace gallium in geological samples by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2013, 32(5):709-714. doi: 10.3969/j.issn.0254-5357.2013.05.006

    李国榕, 王亚平, 孙元方, 等.电感耦合等离子体质谱法测定地质样品中稀散元素铬镓铟碲铊[J].岩矿测试, 2010, 29(3):255-258. doi: 10.3969/j.issn.0254-5357.2010.03.012

    Li G R, Wang Y P, Sun Y F, et al.Determination of Cr, Ga, In, Te and Tl in geological samples by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2010, 29(3):255-258. doi: 10.3969/j.issn.0254-5357.2010.03.012

    Filatova D G, Seregina I F, Foteeva L S, et al. Determination of gallium originated from a gallium-based anticancer drug in human urine using ICP-MS[J].Analytical and Bioanalytical Chemistry, 2011, 400(3):709-714. doi: 10.1007/s00216-011-4791-z

    邱德仁.原子光谱分析[M].上海:复旦大学出版社, 2002:367.

    Qiu D R.Atomic Spectrometry Analysis[M].Shanghai:Fudan University Press, 2002:367.

    Wu S W, Zheng X X.Measurement of the O2-air-C2H2 flame temperature by a two-line atomic absorption way of gallium[J].Metallurgical Analysis, 2010, 30(12):26-29.

    武新宇.酸性介质中镓的吸附和萃取性质及回收工艺研究[D].西安: 长安大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014071245.htm

    Wu X Y.Study on the Sorption and Extraction Properties of Gallium in Acidic Medium and Its Recovery Technology[D].Xi'an: Chang'an University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014071245.htm

    Hasanin T H A, Okamoto Y, Fujiwara T.A flow method based on solvent extraction coupled on-line to a reversed micellar mediated chemiluminescence detection for selective determination of gold(Ⅲ) and gallium(Ⅲ) in water and industrial samples[J].Talanta, 2016, 148:700-706. doi: 10.1016/j.talanta.2015.04.045

    董学林, 何海洋.泡沫塑料吸附分离富集-电感耦合等离子体质谱法测定稀土矿石中的镓[J].岩矿测试, 2016, 35(1):42-47. http://www.ykcs.ac.cn/article/id/e76ed280-4f23-43e2-a99e-bc8be6fc79f4

    Dong X L, He H Y.Determination of gallium in rare earth ore by inductively coupled plasma-mass spectrometry using polyurethane foam pre-concentration/separation[J].Rock and Mineral Analysis, 2016, 35(1):42-47. http://www.ykcs.ac.cn/article/id/e76ed280-4f23-43e2-a99e-bc8be6fc79f4

    Hassanien M M, Mortada W I, Kenawy I M, et al.Solid phase extraction and preconcentration of trace gallium, indium, and thallium using new modified amino silica[J].Applied Spectroscopy, 2017, 71(2):288-299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bea527debf8d91e10e65f8b97d347921

    Amin A S, Moalla S M N.Utility of solid phase extraction for UV-visible spectrophotometric determination of gallium in environmental and biological samples[J].RSC Advances, 2016, 6(3):1938-1944. doi: 10.1039/C5RA21368A

    Anthemidis A.Gallium trace on-line preconcentration/separation and determination using a polyurethane foam mini-column and flame atomic absorption spectrometry:Application in aluminum alloys, natural waters and urine[J].Talanta, 2003, 60(5):929-936. doi: 10.1016/S0039-9140(03)00156-5

    Gong Q, Wei X L, Wu J N, et al.A solid phase extraction method for determination of trace gallium in aluminum-iron samples by atomic spectrometry[J].Journal of Analytical Atomic Spectrometry, 2012, 27(11):1920-1927. doi: 10.1039/c2ja30208j

    Zhang Z H, Zhang H B, Hu Y F, et al.Novel surface molecularly imprinted material modified multi-walled carbon nanotubes as solid-phase extraction sorbent for selective extraction gallium ion from fly ash[J].Talanta, 2010, 82(1):304-311. doi: 10.1016/j.talanta.2010.04.038

    班俊生, 任俊涛.地质样品中痕量镓的磷酸三丁酯纤维棉富集及其在电感耦合等离子体原子发射光谱法测定中的应用[J].冶金分析, 2013, 33(8):68-71. doi: 10.3969/j.issn.1000-7571.2013.08.015

    Ban J S, Ren J T.Enrichment of trace gallium in geological sample by tributyl phosphate cellucotton and its application in ICP-AES determination[J].Metallurgical Analysis, 2013, 33(8):68-71. doi: 10.3969/j.issn.1000-7571.2013.08.015

    《岩石矿物分析》编委会.岩石矿物分析(第四版第一分册)[M].北京: 地质出版社, 2011: 724.

    The Editorial Committee of < Rock and Mineral Analysis>.Rock and Mineral Analysis (The Fourth Edition: Vol.Ⅰ)[M].Beijing: Geological Publishing House, 2011: 724.

  • 期刊类型引用(31)

    1. 谢心怡,罗玉霞,邱慧,王健行,赵学付,王春英. 离子型稀土矿中残留氨氮的淋洗去除及动力学研究. 有色金属科学与工程. 2025(01): 143-151 . 百度学术
    2. 轩诗垚,王占刚. 结合风场的土壤重金属污染扩散过程模拟. 计算机应用与软件. 2024(02): 68-72+151 . 百度学术
    3. 韦春妙,章艳红,唐玉红,刘斌. 江西某退役焦化厂土壤重金属赋存形态分析及生物有效性评价. 土壤通报. 2024(03): 810-818 . 百度学术
    4. 张振国,王月,陈军典,高倩,邢杰,骆念岗,田释梦,代佳浩. 冀东代表性铁尾矿库表层重金属含量特征及生态风险评价. 金属矿山. 2024(07): 231-240 . 百度学术
    5. 张永康,曹耀华,冯乃琦,刘岩,张耀,王庆,刘佳. 某废弃煤矿区土壤重金属污染风险评价. 煤炭学报. 2024(07): 3188-3198 . 百度学术
    6. 迟崇哲,刘影,王超,张大勇,王春慧. 有色金属矿山尾矿土壤化生态修复技术研究进展. 黄金. 2024(12): 8-12+138 . 百度学术
    7. 汪媛媛,廖启林,李文博,徐宏婷,崔晓丹,刘玮晶,李文婷,周强. 江苏典型农田土壤重金属形态分布初步研究. 土壤. 2024(06): 1326-1338 . 百度学术
    8. 魏光普,于晓燕,康瑜,宋宇辰. 稀土矿山“菌根-油松-耐性蚯蚓”修复土壤效应评价. 稀土. 2023(02): 120-129 . 百度学术
    9. 吴灿萍,周罕,陈安,徐继刘,付俊. 某铜选冶场地土壤重金属污染特征及风险评价. 西南农业学报. 2023(02): 402-408 . 百度学术
    10. 魏洪斌,罗明,向垒,查理思,杨慧丽. 矿业废弃地重金属形态分布特征与迁移转化影响机制分析. 环境科学. 2023(06): 3573-3584 . 百度学术
    11. 杨洋,高慧敏,陶红,张秋灯. 重金属复合污染河道底泥淋洗动力学特征. 净水技术. 2023(06): 152-160+175 . 百度学术
    12. 张永康,冯乃琦,刘岩,徐志强,张耀,王庆. 江西某铅锌矿区土壤重金属形态分析及风险评价. 矿产综合利用. 2023(03): 199-204+210 . 百度学术
    13. 陈丹利,刘冠男,行正松,刘伟,潘飞飞,徐建军,赵元艺. 河南栾川钼铅锌多金属矿集区土壤重金属累积及源解析. 岩矿测试. 2023(04): 839-851 . 本站查看
    14. 黄方昱,明光艳,谢玮琛,吴道铭,陈燕明. 稀土矿迹地周边农田土壤重金属生态风险评价. 世界有色金属. 2023(14): 178-181 . 百度学术
    15. 林小淳,刘晓瑜,袁欣,张隆隆,刘斯文,冯亚鑫,赵晓倩,黄园英. 碱改性沸石吸附铅和氨氮性能及对稀土矿山土壤的修复作用. 岩矿测试. 2023(06): 1177-1188 . 本站查看
    16. 杨士,刘祖文,龙焙,毕永顺,林苑,左华伟. 生物炭负载氧化石墨烯对离子型稀土矿区土壤中重金属的阻控效应. 环境科学. 2022(03): 1567-1576 . 百度学术
    17. 陈陵康,陈海霞,金雄伟,张恋,刘金辉,柳传毅,徐狮,吴开兴,何书,孙涛,刘卫明. 离子型稀土矿粒度、粘土矿物、盐基离子迁移及重金属释放研究及展望. 中国稀土学报. 2022(02): 194-215 . 百度学术
    18. 刘斯文,黄园英,赵文博,魏吉鑫,徐春丽,马嘉宝,刘久臣,黄采文. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价. 岩矿测试. 2022(03): 488-498 . 本站查看
    19. 范晨子,袁继海,刘成海,郭威,孙冬阳,刘崴,赵九江,胡俊栋,赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价. 物探与化探. 2022(03): 761-771 . 百度学术
    20. 彭红丽,谭海霞,王颖,魏建梅,冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价. 生态环境学报. 2022(06): 1235-1243 . 百度学术
    21. 鲍丽萍,陈芸,杨海博,董学林,孙勇,周佳,周新. 鄂西北稀土矿区粮食与蔬菜中重金属污染风险评价. 食品安全质量检测学报. 2022(15): 5062-5069 . 百度学术
    22. 白宇明,李永利,周文辉,胡浩远,卢震,边鹏. 典型工业城市土壤重金属元素形态特征及生态风险评估. 岩矿测试. 2022(04): 632-641 . 本站查看
    23. 张笑辰,刘煜,张兴绘,孙小艳. 江西省主要城市土壤重金属污染及风险评价. 环境科学与技术. 2022(08): 206-217 . 百度学术
    24. 杨贤房,郑林,万智巍,王远东,孟丽红,俞大杰. 酸性矿山5种植被恢复措施下土壤碱性磷酸酶基因细菌群落特征及其与重金属关系. 环境科学学报. 2022(12): 251-261 . 百度学术
    25. 范晨子,郭威,袁继海,郝乃轩,赵九江,刘成海. 西南地区典型工矿业城市土壤—作物系统中重金属和硒元素特征及评价. 西南农业学报. 2022(08): 1909-1919 . 百度学术
    26. 王毛兰,何昶,赵茜宇. 江西某养殖场废水灌溉土壤重金属污染特征及健康风险评价. 岩矿测试. 2022(06): 1072-1081 . 本站查看
    27. 谭启海,赵永红,黄璐,万臣,杨智,周丹. 硫酸铵对离子型稀土矿区土壤重金属的释放和形态转化影响. 有色金属科学与工程. 2022(06): 134-144 . 百度学术
    28. 陈月茹,曾敏静,程媛媛,龙焙,张斌超,曾玉,林树涛,易名儒,黄思浓. 温度对好氧颗粒污泥硝化-反硝化耦合脱氮性能影响. 环境科技. 2021(03): 7-12 . 百度学术
    29. 范晨子,刘永兵,赵文博,刘成海,袁继海,郭威,郝乃轩. 云南安宁水系沉积污染物分布特征与风险评价. 岩矿测试. 2021(04): 570-582 . 本站查看
    30. 徐春丽,刘斯文,魏吉鑫,黄园英,马嘉宝,曾普胜,李旭光. 离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征. 矿产保护与利用. 2021(04): 1-11 . 百度学术
    31. 高娟琴,于扬,李以科,李瑞萍,柯昌辉,王登红,于沨,张塞,王雪磊. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征. 岩矿测试. 2021(06): 871-882 . 本站查看

    其他类型引用(19)

图(1)  /  表(2)
计量
  • 文章访问数:  2626
  • HTML全文浏览量:  770
  • PDF下载量:  26
  • 被引次数: 50
出版历程
  • 收稿日期:  2019-05-27
  • 修回日期:  2019-09-10
  • 录用日期:  2019-12-15
  • 发布日期:  2020-02-29

目录

    /

    返回文章
    返回