Determination of Mercury and Arsenic in Oil-bearing Core by Soxhelt Extraction-Atomic Fluorescence Spectrometry
-
摘要: 原油对测定含油岩心中的汞和砷有很大影响,目前去除原油等有机物的方法主要有高温烧制、强酸高温氧化等,要求反应温度较高,会造成汞和砷的损失而使测定结果偏低。本文采用索氏提取法,以氯仿作为提取剂在75℃下低温提取分离岩心中的原油,再用50%的王水溶解剩余样品,原子荧光光谱法测定汞和砷的含量。该方法对汞和砷的检出限分别为0.003mg/kg和0.10mg/kg,相对标准偏差分别为7.3%和5.1%,加标回收率均大于92.5%。与传统方法相比较,该方法避免了由于原油的疏水性造成样品与王水接触不充分、样品分解不完全和反应温度过高导致汞元素损失的问题,测定汞的相对标准偏差由33.0%降低至7.3%,测定砷的相对标准偏差由25.0%提高至5.1%,为含油岩心中其他元素的检测提供了借鉴。要点
(1) 在测定含油岩心中的汞和砷之前通过索氏提取法将原油分离。
(2) 原油被提取后样品可以更充分地与酸接触,其中的汞和砷被更加充分地溶解。
(3) 提取方法操作温度低,不会造成汞和砷的挥发。
(4) 通过原油的提取分离,方法的准确度和精密度得到很大提高。
HIGHLIGHTS(1) Crude oil was separated by Soxhlet extraction before the determination of Hg and As in oil-bearing cores.
(2) Post-extraction samples can be fully exposed to acid, resulting in complete dissolution of Hg and As.
(3) Volatization of Hg and As did not occur, even though the extraction method was operated at a low temperature.
(4) A significant improvement of method accuracy and precision through the extraction and separation of crude oil.
Abstract:BACKGROUNDCrude oil had a great influence on the determination of mercury and arsenic in oil-bearing cores by atomic fluorescence spectrometry. At present, the main methods of removing organic matter such as crude oil are high-temperature firing and high-temperature oxidation with strong acid. In these methods, high reaction temperature will cause loss of mercury and arsenic, resulting in lower results.OBJECTIVESTo develop a separation method with low operating temperature.METHODSMercury and arsenic in oil-bearing cores were determined by atomic fluorescence spectrometry with Soxhlet extraction at a low temperature for this method of 75℃ and the remaining part was decomposed by 50% aqua regia.RESULTSThe detection limits were 0.003mg/kg and 0.10mg/kg for mercury and arsenic, respectively. The relative standard deviations were 7.3% and 5.1%, respectively. The relative standard deviation of mercury decreased from 33.0% to 7.3%, and the relative standard deviation of arsenic decreased from 25.0% to 5.1%. The recoveries of standard addition were greater than 92.5%.CONCLUSIONSCompared with traditional methods, this method avoided the problems of insufficient contact between samples and aqua regia due to the hydrophobicity of crude oil, incomplete decomposition of samples and mercury loss due to excessive reaction temperature. The proposed method provides a reference for the determination of other elements in oil-bearing cores.-
Keywords:
- oil-bearing core /
- Hg /
- As /
- Soxhelt extraction /
- aqua regia /
- atomic fluorescence spectrometry
-
-
表 1 经过提取和未经过提取的汞和砷的测定结果对比
Table 1 Comparison of analytical results of Hg and As in the extracted and unextracted samples
样品编号 氯仿沥青含量(%) Hg测定值(mg/kg) As测定值(mg/kg) 未经过提取 经过提取 未经过提取 经过提取 SY-1 0.078 0.065 0.105 19.3 24.4 SY-2 0.134 0.044 0.114 16.4 26.5 SY-3 0.033 0.076 0.108 18.3 22.4 SY-4 0.254 0.049 0.128 12.3 31.5 表 2 不同溶剂提取原油的结果对比
Table 2 Comparison of crude oil extracted by different solvents
样品编号 氯仿
(g)相对提取率
(%)石油醚
(g)相对提取率
(%)正己烷
(g)相对提取率
(%)SY-1 0.0777 100 0.0748 96.3 0.0722 92.9 SY-2 0.1336 100 0.1242 93.0 0.1205 90.2 SY-3 0.0328 100 0.0302 92.1 0.0284 86.6 SY-4 0.2536 100 0.2311 91.1 0.2206 87.0 表 3 精密度实验结果
Table 3 Precision tests of the method
样品处理 元素 分次测定值(mg/kg) RSD(%) 未经提取的SY-1 Hg 0.065 0.038 0.044 0.07
30.061 0.086 0.03533.0 As 15.3 11.4 14.2 18.7
17.0 20.1 9.6725.0 高氯酸处理的SY-1 Hg 0.089 0.082 0.068 0.073
0.089 0.094 0.07115.0 As 22.1 21.6 18.7 20.7
22.2 23.6 18.59.0 经过提取的SY-1 Hg 0.105 0.098 0.102 0.112
0.104 0.092 0.1147.3 As 24.4 26.5 23.2 23.5
25.6 24.1 25.95.1 表 4 加标回收实验结果
Table 4 Spiked recovery tests of the method
实验序号 元素 样品浓度
(mg/kg)加标浓度
(mg/kg)测得浓度
(mg/kg)回收率
(%)1 Hg 0.105 0.200 0.296 95.5 As 24.4 50.0 72.4 96.0 2 Hg 0.105 0.100 0.199 94.0 As 24.4 25.0 48.1 94.8 3 Hg 0.105 0.040 0.142 92.5 As 24.4 10.0 33.8 94.0 -
卢双舫, 李俊乾, 张鹏飞, 等.页岩油储集层微观孔喉分类与分级评价[J].石油勘探与开发, 2018, 45(3):436-444. http://d.old.wanfangdata.com.cn/Periodical/syktykf201803008 Lu S F, Li J Q, Zhang P F, et al.Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J].Petroleum Exporation and Development, 2018, 45(3):436-444. http://d.old.wanfangdata.com.cn/Periodical/syktykf201803008
阮东亮, 盘思伟, 韦正乐, 等.砷对商业V2O5-WO3/TiO2催化剂脱硝性能的影响[J].化工进展, 2014, 33(4):925-929. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201404023 Ruan D L, Pan S W, Wei Z L, et al.Effect of arsenic on de-NO efficiency over commercial V2O5-WO3/TiO2 catalyst[J].Chemical Industry and Engineering Progress, 2014, 33(4):925-929. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201404023
周曙光, 周克法, 王金林, 等.基于晕状特征提取的化探异常信息识别及其在成矿预测中的应用[J].干旱区地理, 2015, 38(7):763-769. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201504014 Zhou S G, Zhou K F, Wang J L, et al.Identifying of geochemical anomalies according to the Halo pattern of trace elements for mineral exploration[J].Arid Land Geography, 2015, 38(7):763-769. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201504014
尚玉俊, 王秀莉, 宋丹丹, 等.萃取分离-碘量自动电位滴定法测定三氧化二锑中砷[J].冶金分析, 2016, 36(3):31-34. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603007 Shang Y J, Wang X L, Song D D, et al.Determination of arsenic in antimony trioxide by automatic potentiometric-iodometry with extraction separation[J].Metallurgical Analysis, 2016, 36(3):31-34. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603007
孙蕾, 郭金喜.LC-AFS法测定新疆阿勒泰狗鱼中的无机汞、甲基汞、乙基汞[J].食品工业, 2018, 39(3):325-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgy201803086 Sun L, Guo J X.Determination of inorganic mercury, methylmercury, ethylmercury in Xinjiang Aletai Pike by LC-AFS[J].The Food Industry, 2018, 39(3):325-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgy201803086
陕红, 袁志华, 刘丹丹, 等.HPLC-ICP-MS法测定农业废水中有机砷与无机砷的方法研究[J].农业资源与环境学报, 2014, 31(2):197-201. http://d.old.wanfangdata.com.cn/Periodical/nyhjyfz201402016 Shan H, Yuan Z H, Liu D D, et al.Analysis of organic and inorganic arsenic in waste water of agricultural environment by high performance liquid chromatography and inductively coupled plasma mass spectrometry[J].Journal of Agricultural Resources and Environment, 2014, 31(2):197-201. http://d.old.wanfangdata.com.cn/Periodical/nyhjyfz201402016
黄会秋, 黄莉来, 夏坪, 等.水相衍生-气相色谱-质谱法同时测定水产品中甲基汞和无机砷[J].色谱, 2016, 34(9):918-924. http://d.old.wanfangdata.com.cn/Periodical/sp201609013 Huang H Q, Huang L L, Xia P, et al.Simultaneous determination of methylmercury and inorganic arsenics in aquatic products by gas chromatography-mass spectrometry with aqueous derivatization[J].Chinese Journal of Chromatography, 2016, 34(9):918-924. http://d.old.wanfangdata.com.cn/Periodical/sp201609013
杜米芳, 聂富强, 杜丽丽, 等.电感耦合等离子体原子发射光谱法测定船用钢中砷锡锑[J].冶金分析, 2017, 37(2):70-75. http://d.old.wanfangdata.com.cn/Periodical/yjfx201702015 Du M F, Nie F Q, Du L L, et al.Determination of arsenic, tin and antimony in steel for ship by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2017, 37(2):70-75. http://d.old.wanfangdata.com.cn/Periodical/yjfx201702015
杨理勤, 陈占生, 谢璐, 等.卡林型金矿金砷成分分析标准物质研制[J].岩矿测试, 2018, 37(2):209-216. doi: 10.15898/j.cnki.11-2131/td.201711210183 Yang L Q, Chen Z S, Xie L, et al.Preparation of gold and arsenic certified reference materials for chemical composition analysis in Carlin-type gold deposits[J].Rock and Mineral Analysis, 2018, 37(2):209-216. doi: 10.15898/j.cnki.11-2131/td.201711210183
苟体忠, 张文华, 王艳, 等.微波消解-氢化物发生-冷原子荧光光谱法快速测定水系沉积物中的总汞[J].分析试验室, 2015, 34(12):1457-1459. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201512023 Gou T Z, Zhang W H, Wang Y, et al.Rapid determination of total mercury contents in aquo-system sediment by microwave digestion and hydride generation-cold atomic fluorescence spectrometry[J].Chinese Journal of Analysis Laboratory, 2015, 34(12):1457-1459. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201512023
Kumar K R, Madhavi K, Shyamala P, et al.A novel sy-nergetic salt-and acid-induced ligandless mixed micelle cloud point extraction of ultratrace levels of Cd, Hg, Bi, and Tl from petrochemical effluents followed by ETAAS determination[J].Atomic Spectroscopy, 2018, 39(3):118-125.
Suvarapu L N, Baek S O.Recent studies on the specia-tion and determination of mercury in different environmental matrices using various analytical techniques[J].International Journal of Analytical Chemistry, 2017, 2017:3624015. https://www.researchgate.net/publication/321192650_Recent_Studies_on_the_Speciation_and_Determination_of_Mercury_in_Different_Environmental_Matrices_Using_Various_Analytical_Techniques
Yuksel B, Arica E.Assessment of toxic, essential, and other metal levels by ICP-MS in Lake Eymir and Mogan in Ankara, Turkey:An environmental application[J].Atomic Spectroscopy, 2018, 39(5):179-184.
吕天峰, 袁懋, 吕怡兵.测汞仪直接测定空气颗粒物中的总汞[J].中国测试, 2016, 42(12):42-44. doi: 10.11857/j.issn.1674-5124.2016.12.009 Lü T F, Yuan M, Lü Y B.Direct determination of total mercury in air particulates by mercury analyzer[J].China Measurement & Test, 2016, 42(12):42-44. doi: 10.11857/j.issn.1674-5124.2016.12.009
聂黎行, 张烨, 朱俐, 等.便携式X射线荧光光谱快速无损分析牛黄清心丸(局方)中汞、砷含量及均匀度[J].光谱学与光谱分析, 2017, 37(10):3225-3228. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201710046 Nie L X, Zhang Y, Zhu L, et al.Fast nondestructive analysis of content of mercury and aesenic and homogeneity of Niuhuang Qinxin pills by portable X-ray florescence spectrometry[J].Spectrometry and Spectral Analysis, 2017, 37(10):3225-3228. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201710046
苏明跃, 臧世阳, 冯爽, 等.顺序注射-氢化物发生-原子荧光光谱法测定矿石中砷和汞含量[J].理化检验(化学分册), 2013, 49(8):943-945. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201308014 Su M Y, Zang S Y, Feng S, et al.Sequential injection-HG-AFS determination of arsenic and mercury in ores[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(8):943-945. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201308014
倪润祥, 雒昆利.湿消解-原子荧光法测定煤中硒和砷[J].光谱学与光谱分析, 2015, 35(5):1404-1408. doi: 10.3964/j.issn.1000-0593(2015)05-1404-05 Ni R X, Luo K L.Deterniation of total selenium and arsenic in coal by wet digestion hydride generation atomic fluorescence spectrometry (HG-AFS)[J].Spectroscopy and Spectral Analysis, 2015, 35(5):1404-1408. doi: 10.3964/j.issn.1000-0593(2015)05-1404-05
于跃, 高亚丽, 赵雪, 等.悬浮颗粒物浓度对溢油沉潜过程影响的试验研究[J].海洋环境科学, 2017, 36(6):858-863. http://d.old.wanfangdata.com.cn/Periodical/hyhjkx201706010 Yu Y, Gao Y L, Zhao X, et al.A laboratory study on the effect of suspended particulate matter concentration on the submerging and sinking process of oil spill[J].Marine Environment Science, 2017, 36(6):858-863. http://d.old.wanfangdata.com.cn/Periodical/hyhjkx201706010
罗荣根.应用固体测汞仪直接测定载金炭中的总汞[J].岩矿测试, 2016, 35(4):420-424. doi: 10.15898/j.cnki.11-2131/td.2016.04.014 Luo R G.Detrermination of total mercury in gold-loaded carbon by solid mercury analyzer[J].Rock and Mineral Analysis, 2016, 35(4):420-424. doi: 10.15898/j.cnki.11-2131/td.2016.04.014
杨常青, 张双双, 吴楠, 等.微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J].岩矿测试, 2016, 35(5):481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006 Yang C Q, Zhang S S, Wu N, et al.Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J].Rock and Mineral Analysis, 2016, 35(5):481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006
刘景龙, 罗守娟.原子荧光光谱法测定汞标准系列溶液稳定性的探讨[J].中国无机分析化学, 2018, 8(4):61-64. doi: 10.3969/j.issn.2095-1035.2018.04.015 Liu J L, Luo S J.Determination of the mercury standard solution serious stability by atomic fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4):61-64. doi: 10.3969/j.issn.2095-1035.2018.04.015
江朝华, 陈旭明.茶叶及大米中有机氯农药残留量前处理方法的研究[J].包装与食品机械, 2018, 36(3):59-61. doi: 10.3969/j.issn.1005-1295.2018.03.013 Jiang C H, Chen X M.Research on the pretreatment methods for determination of residual organochlorine pesticides in tea and rice[J].Packaging and Food Machinery, 2018, 36(3):59-61. doi: 10.3969/j.issn.1005-1295.2018.03.013
袁永海, 尹昌慧, 元志红, 等.氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J].冶金分析, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009 Yuan Y H, Yin C H, Yuan Z H, et al.Determination of arsenic and antimony in tin ore by hydride generation-atomic fluorescence spectrometry[J].Metallurgical Analysis, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009
吴伟.酸化返排液无害化处理技术研究[J].石油与天然气化工, 2017, 46(3):110-114. doi: 10.3969/j.issn.1007-3426.2017.03.022 Wu W.A study on acidizing flowback water treatment[J].Chemical Engineering of Oil & Gas, 2017, 46(3):110-114. doi: 10.3969/j.issn.1007-3426.2017.03.022
黄风林, 王迪, 李荣春.石油产品酸含量测定标准的有效性研究[J].石油与天然气化工, 2017, 46(2):89-93. doi: 10.3969/j.issn.1007-3426.2017.02.018 Huang F L, Wang D, Li R C.Study on the validity of the standard for determination of acid content in petroleum product[J].Chemical Engineering of Oil & Gas, 2017, 46(2):89-93. doi: 10.3969/j.issn.1007-3426.2017.02.018
陈莎莎, 朱信旭, 贾望鲁, 等.用于单体氢同位素分析的混合溶剂洗脱5Å分子筛吸附正构烷烃的方法[J].岩矿测试, 2017, 36(4):413-419. doi: 10.15898/j.cnki.11-2131/td.201611030166 Chen S S, Zhu X X, Jia W L, et al.Elution of adsorbed n-alkanes by 5Å molecular sieve using solvent mixtures for compound-specific hydrogen isotopic analysis[J].Rock and Mineral Analysis, 2017, 36(4):413-419. doi: 10.15898/j.cnki.11-2131/td.201611030166
Tesfaye B, Tefera T.Extraction of essential oil from Neem seed by using Soxhlet extraction methods[J].International Journal of Advanced Engineering, Management and Science, 2017, 3(6):646-650. doi: 10.24001/ijaems.3.6.5
潘爱芳, 黎荣剑, 赫英, 等.鄂尔多斯盆地石油氯仿沥青稀土元素地球化学特征[J].大地构造与成矿学, 2007, 31(2):245-250. doi: 10.3969/j.issn.1001-1552.2007.02.014 Pan A F, Li R J, He Y, et al.Geochemical features of the rare earth elements in petroleum bitumen from the Ordos Basin[J].Geotectonica et Metallogenia, 2007, 31(2):245-250. doi: 10.3969/j.issn.1001-1552.2007.02.014
涂先新, 赵红静, 李双林, 等.高分子量烃油气化探方法的模拟实验研究——以黄海沉积物为例[J].岩矿测试, 2015, 34(6):684-691. doi: 10.15898/j.cnki.11-2131/td.2015.06.013 Tu X X, Zhao H J, Li S L, et al.Application of high molecular weight hydrocarbon to geochemical exploration for oil and gas with a simulated method using the sediment of the Yellow Sea as an example[J].Rock and Mineral Analysis, 2015, 34(6):684-691. doi: 10.15898/j.cnki.11-2131/td.2015.06.013
Chen T, Jin Y Y, Qiu X P, et al.A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste[J].Journal of the Air & Waste Management Association, 2015, 65:278-286. http://cn.bing.com/academic/profile?id=0fb5bb6ee8043dbd4c7eb8654dc0a905&encoded=0&v=paper_preview&mkt=zh-cn
Dombrowski N, Teske A P, Baker B J.Expansive micro-bial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments[J].Nature Communications, 2018, 9:4999. doi: 10.1038/s41467-018-07418-0
Seema S B, Suresh M T.Oxidation of clindamycin phos-phate by cerium(Ⅳ) in perchloric acid medium-A kinetic and mechanistic approach[J].Arabian Journal of Chemistry, 2017, 10:S1469-S1476. doi: 10.1016/j.arabjc.2013.04.025
-
期刊类型引用(31)
1. 谢心怡,罗玉霞,邱慧,王健行,赵学付,王春英. 离子型稀土矿中残留氨氮的淋洗去除及动力学研究. 有色金属科学与工程. 2025(01): 143-151 . 百度学术
2. 轩诗垚,王占刚. 结合风场的土壤重金属污染扩散过程模拟. 计算机应用与软件. 2024(02): 68-72+151 . 百度学术
3. 韦春妙,章艳红,唐玉红,刘斌. 江西某退役焦化厂土壤重金属赋存形态分析及生物有效性评价. 土壤通报. 2024(03): 810-818 . 百度学术
4. 张振国,王月,陈军典,高倩,邢杰,骆念岗,田释梦,代佳浩. 冀东代表性铁尾矿库表层重金属含量特征及生态风险评价. 金属矿山. 2024(07): 231-240 . 百度学术
5. 张永康,曹耀华,冯乃琦,刘岩,张耀,王庆,刘佳. 某废弃煤矿区土壤重金属污染风险评价. 煤炭学报. 2024(07): 3188-3198 . 百度学术
6. 迟崇哲,刘影,王超,张大勇,王春慧. 有色金属矿山尾矿土壤化生态修复技术研究进展. 黄金. 2024(12): 8-12+138 . 百度学术
7. 汪媛媛,廖启林,李文博,徐宏婷,崔晓丹,刘玮晶,李文婷,周强. 江苏典型农田土壤重金属形态分布初步研究. 土壤. 2024(06): 1326-1338 . 百度学术
8. 魏光普,于晓燕,康瑜,宋宇辰. 稀土矿山“菌根-油松-耐性蚯蚓”修复土壤效应评价. 稀土. 2023(02): 120-129 . 百度学术
9. 吴灿萍,周罕,陈安,徐继刘,付俊. 某铜选冶场地土壤重金属污染特征及风险评价. 西南农业学报. 2023(02): 402-408 . 百度学术
10. 魏洪斌,罗明,向垒,查理思,杨慧丽. 矿业废弃地重金属形态分布特征与迁移转化影响机制分析. 环境科学. 2023(06): 3573-3584 . 百度学术
11. 杨洋,高慧敏,陶红,张秋灯. 重金属复合污染河道底泥淋洗动力学特征. 净水技术. 2023(06): 152-160+175 . 百度学术
12. 张永康,冯乃琦,刘岩,徐志强,张耀,王庆. 江西某铅锌矿区土壤重金属形态分析及风险评价. 矿产综合利用. 2023(03): 199-204+210 . 百度学术
13. 陈丹利,刘冠男,行正松,刘伟,潘飞飞,徐建军,赵元艺. 河南栾川钼铅锌多金属矿集区土壤重金属累积及源解析. 岩矿测试. 2023(04): 839-851 . 本站查看
14. 黄方昱,明光艳,谢玮琛,吴道铭,陈燕明. 稀土矿迹地周边农田土壤重金属生态风险评价. 世界有色金属. 2023(14): 178-181 . 百度学术
15. 林小淳,刘晓瑜,袁欣,张隆隆,刘斯文,冯亚鑫,赵晓倩,黄园英. 碱改性沸石吸附铅和氨氮性能及对稀土矿山土壤的修复作用. 岩矿测试. 2023(06): 1177-1188 . 本站查看
16. 杨士,刘祖文,龙焙,毕永顺,林苑,左华伟. 生物炭负载氧化石墨烯对离子型稀土矿区土壤中重金属的阻控效应. 环境科学. 2022(03): 1567-1576 . 百度学术
17. 陈陵康,陈海霞,金雄伟,张恋,刘金辉,柳传毅,徐狮,吴开兴,何书,孙涛,刘卫明. 离子型稀土矿粒度、粘土矿物、盐基离子迁移及重金属释放研究及展望. 中国稀土学报. 2022(02): 194-215 . 百度学术
18. 刘斯文,黄园英,赵文博,魏吉鑫,徐春丽,马嘉宝,刘久臣,黄采文. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价. 岩矿测试. 2022(03): 488-498 . 本站查看
19. 范晨子,袁继海,刘成海,郭威,孙冬阳,刘崴,赵九江,胡俊栋,赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价. 物探与化探. 2022(03): 761-771 . 百度学术
20. 彭红丽,谭海霞,王颖,魏建梅,冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价. 生态环境学报. 2022(06): 1235-1243 . 百度学术
21. 鲍丽萍,陈芸,杨海博,董学林,孙勇,周佳,周新. 鄂西北稀土矿区粮食与蔬菜中重金属污染风险评价. 食品安全质量检测学报. 2022(15): 5062-5069 . 百度学术
22. 白宇明,李永利,周文辉,胡浩远,卢震,边鹏. 典型工业城市土壤重金属元素形态特征及生态风险评估. 岩矿测试. 2022(04): 632-641 . 本站查看
23. 张笑辰,刘煜,张兴绘,孙小艳. 江西省主要城市土壤重金属污染及风险评价. 环境科学与技术. 2022(08): 206-217 . 百度学术
24. 杨贤房,郑林,万智巍,王远东,孟丽红,俞大杰. 酸性矿山5种植被恢复措施下土壤碱性磷酸酶基因细菌群落特征及其与重金属关系. 环境科学学报. 2022(12): 251-261 . 百度学术
25. 范晨子,郭威,袁继海,郝乃轩,赵九江,刘成海. 西南地区典型工矿业城市土壤—作物系统中重金属和硒元素特征及评价. 西南农业学报. 2022(08): 1909-1919 . 百度学术
26. 王毛兰,何昶,赵茜宇. 江西某养殖场废水灌溉土壤重金属污染特征及健康风险评价. 岩矿测试. 2022(06): 1072-1081 . 本站查看
27. 谭启海,赵永红,黄璐,万臣,杨智,周丹. 硫酸铵对离子型稀土矿区土壤重金属的释放和形态转化影响. 有色金属科学与工程. 2022(06): 134-144 . 百度学术
28. 陈月茹,曾敏静,程媛媛,龙焙,张斌超,曾玉,林树涛,易名儒,黄思浓. 温度对好氧颗粒污泥硝化-反硝化耦合脱氮性能影响. 环境科技. 2021(03): 7-12 . 百度学术
29. 范晨子,刘永兵,赵文博,刘成海,袁继海,郭威,郝乃轩. 云南安宁水系沉积污染物分布特征与风险评价. 岩矿测试. 2021(04): 570-582 . 本站查看
30. 徐春丽,刘斯文,魏吉鑫,黄园英,马嘉宝,曾普胜,李旭光. 离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征. 矿产保护与利用. 2021(04): 1-11 . 百度学术
31. 高娟琴,于扬,李以科,李瑞萍,柯昌辉,王登红,于沨,张塞,王雪磊. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征. 岩矿测试. 2021(06): 871-882 . 本站查看
其他类型引用(19)