• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景

付山岭, 赵成海

付山岭, 赵成海. 原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景[J]. 岩矿测试, 2017, 36(1): 1-13. DOI: 10.15898/j.cnki.11-2131/td.2017.01.002
引用本文: 付山岭, 赵成海. 原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景[J]. 岩矿测试, 2017, 36(1): 1-13. DOI: 10.15898/j.cnki.11-2131/td.2017.01.002
Shan-ling FU, Cheng-hai ZHAO. Progress of in situ U-Th/He Isotopic Dating Technique and Its Application to Low Temperature Deposits[J]. Rock and Mineral Analysis, 2017, 36(1): 1-13. DOI: 10.15898/j.cnki.11-2131/td.2017.01.002
Citation: Shan-ling FU, Cheng-hai ZHAO. Progress of in situ U-Th/He Isotopic Dating Technique and Its Application to Low Temperature Deposits[J]. Rock and Mineral Analysis, 2017, 36(1): 1-13. DOI: 10.15898/j.cnki.11-2131/td.2017.01.002

原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景

基金项目: 

国家自然科学基金重点项目(41230316);国家重点基础研究发展规划项目(2014CB440906)

国家重点基础研究发展规划项目 2014CB440906

国家自然科学基金重点项目 41230316

详细信息
    作者简介:

    付山岭, 博士, 助理研究员, 从事矿床地球化学和岩石学研究。E-mail:fushanling@mail.gyig.ac.cn

  • 中图分类号: P597.3

Progress of in situ U-Th/He Isotopic Dating Technique and Its Application to Low Temperature Deposits

  • 摘要: 应用传统单颗粒方法对目标矿物进行定年具有较高要求(如U、Th等母体同位素均匀分布),需要耗时的酸溶过程,同时还需进行α粒子射出效应校正。原位U-Th/He同位素定年技术是近年发展起来的一种定年技术,其主要原理是采用激光加热目标矿物,并通过与激光系统连接的稀有气体质谱(Alphachron)和电感耦合等离子体质谱(ICP-MS)分别完成4He和U、Th等母体同位素分析,将4He和U、Th分析结果代入年龄公式计算即可获得目标矿物的U-Th/He年龄。本文阐述了原位U-Th/He同位素定年技术的主要原理、实验测试流程、适用矿物等,重点对原位U-Th/He同位素定年的技术难点和低温矿床学应用前景进行了分析。相对于传统单颗粒方法,原位测试方法解决了两个关键问题:①无需进行α粒子射出效应的校正,提高了定年结果的可靠性和准确度;②能完成母体同位素分布不均匀样品的测试,扩展了U-Th/He同位素定年的应用范围。尽管原位U-Th/He同位素定年技术在侧向加热效应、剥蚀坑体积测定以及标准矿物等方面尚存在一些亟待解决的问题,但已在硅酸盐、磷酸盐、钛铁氧化物等矿物的年代学研究方面展示了良好的应用前景。随着原位U-Th/He同位素定年技术的发展和进步,尤其是硫化物的U-Th/He同位素定年的发展,将为解决低温矿床的年代学问题提供一种新的思路。
  • 铌、钽属难熔稀有金属,它们的物理化学性质很相似,在自然界中总是相互伴生。由于铌钽矿的矿物组合复杂,干扰铌钽测定的元素种类较多,且钽、铌化学性质相似,因此铌钽矿石矿物的化学成分分析一直是研究的难点之一,尤其是测定铌、钽在百分含量以上的铌钽矿。文献中已有很多分析铌钽矿的方法,目前主要是应用电感耦合等离子体发射光谱仪(ICP-OES)[1-9]进行测定。

    铌钽矿石的溶矿方法有酸溶法[1-4, 9]、微波消解法[5-6]、碱熔法[2, 7-9]等。酸溶法通常采用氢氟酸-硝酸体系消解,碱熔法通常采用过氧化钠或氢氧化钠-过氧化钠熔融。张军等[2]、许涛等[9]采用酸溶法和碱熔法处理铌钽矿样品,ICP-OES法测定,但铌钽样品铌钽含量比较低,不足0.5%,所以两种消解方法分析铌钽的结果比较一致。相比较而言,酸溶法可以提高工作效率,同时还节能环保,当样品含量低于检出限时,还可以分取稀释后用ICP-MS法测定[10-12]。但是传统的ICP-OES、ICP-MS仪器测定方法,通常需要赶掉分解的溶液中的氢氟酸,再用酒石酸保护复溶、提取,实验发现在酒石酸介质中高浓度的铌、钽的测定结果仍然会偏低,主要是因为铌、钽在蒸干形成盐类之后,很难再完全溶解到除了氢氟酸以外的溶液中,不加氢氟酸时,铌、钽部分溶解在酒石酸溶液中,形成不稳定的溶液。而经典的国家标准方法——光度法不仅测定过程繁琐,而且测定钽、铌矿石的范围比较窄(铌0.0010%~1.0%,钽0.0050%~1.0%),仅能准确测定1%以下含量的铌钽矿。

    微波能穿透绝缘体介质,直接把能量辐射到有电介特性的物质上,可以完全溶解矿石中的铌、钽。但是普通的微波单次分解样品的量比较少,一般单次溶样12~24个,不能支持大批量样品的分析测试。本文采用模块化的小罐型、多罐体组合(70罐/组)的封闭性双层结构的酸溶罐体的微波消解溶样模式,样品用氢氟酸、硝酸微波消解后不需要赶氢氟酸,定容后直接利用耐氢氟酸系统的ICP-OES测定铌钽矿中铌、钽等易水解元素,建立了高、低品位铌钽矿的分析方法。

    Optima 8300电感耦合等离子体发射光谱仪(美国PerkinElmer公司),采用同心雾化器及旋流雾室,耐氢氟酸系统。仪器工作参数为:ICP射频功率1300 W,辅助气流量0.2 L/min,冷却气流量10.0 L/min,载气流量0.5 L/ming,氩气吹扫光路系统,轴向观测,观测距离为3,溶液提升量1.5 mL/min。

    使用耐氢氟酸的刚玉中心管、雾室和雾化器。

    铌、钽单元素标准储备溶液:购买浓度为1000 μg/mL(1 mol/L氢氟酸介质)单元素标准储备溶液(中国计量科学研究院)。

    蒸馏水:经Mili-Q离子交换纯化系统纯化,电阻率达到18 MΩ·cm。

    硝酸(1.42 g/mL),氢氟酸(1.16 g/mL)。

    称取0.0500~0.1000 g(精确至0.01 mg)铌钽矿石试样(粒径应小于74 μm)放置于专用的微波消解罐中,加入1.5 mL氢氟酸和1.0 mL硝酸,密封。将消解罐放入微波消解仪中,按表 1的条件进行程序消解。冷却后取出内罐,将溶液转移至50.0 mL或100 mL塑料容量瓶中,用蒸馏水定容至刻度,此溶液直接用于ICP-OES测定(高含量的铌钽样品需要不同倍数稀释后测定)。

    表  1  铌钽矿微波分解条件
    Table  1.  The microwave decomposition conditions of niobium-tantalum ore
    微波消解步骤控制温度(℃)消解时间(min)功率(W)
    1130151200
    2160151200
    3190251200
    下载: 导出CSV 
    | 显示表格

    点燃等离子体并稳定30 min后,用标准工作溶液对仪器进行标准化。以配制的空白溶液作为低点,用一个或多个标准溶液作为高点,以两点或多点建立校准曲线,然后对样品溶液进行测定。测定过程中,每间隔几个样品测定一个标准样品,对检测结果进行监控。

    本文采用由国家地质实验测试中心与上海新仪微波仪器公司共同研制的新型微波仪器,这是一种小罐型、多罐体组合模块微波消解熔样装置。其特点是将常规的封闭溶样器和微波溶样器结合,一次可容纳70个样品溶样罐,比常用的微波溶样罐的数量(12~24个)大大增加,采用改良的聚四氟乙烯材料加工溶样内罐,比常规的封闭溶样罐[10-11]压力和温度都有一定提高(单只罐体最高耐压5 MPa,最高使用温度200℃),既提高了样品消解通量又充分利用了微波消解的能力,使其更适合于难溶地质样品的消解。

    该新型微波仪器采用了航空非金属新型高强度纤维材料制作溶样罐外套,解决了常规封闭溶样器不锈钢金属外套被酸腐蚀易于污染的问题。经过多次实验,确定了微波分解铌钽矿的条件列于表 1。70个铌钽矿样品在1 h内完成了分解,而封闭酸溶[10-11]需要48 h,显著缩短了样品分解时间。而且这种新型微波仪器比普通微波仪器单次分解样品的量多出几倍,比较适合实验室的大批量样品分析,大大提高了铌钽矿的分析效率和分析结果的及时率。

    采用耐氢氟酸进样系统的ICP-OES和ICP-MS仪器,高、低含量的铌钽矿样品经硝酸和氢氟酸分解后不赶氢氟酸,定容后均可直接测定。邵海舟等[4]建立了用硝酸和氢氟酸溶样,使铌以稳定可溶性络合物形态存在,利用ICP-OES耐氢氟酸系统测定铌铁中的铌的含量可以达到65%。王蕾等[13]采用封闭压力酸溶的方法分解钨矿石样品,再用耐氢氟酸进样系统的ICP-OES测定钨的含量,有效地解决了钨在酸性介质中极易水解而影响其准确测定的问题。

    在氢氟酸存在时,铌、钽以氟配离子状态([NbF7]2-、[TaF7]2-)存在,成为稳定的真溶液,有效防止了铌、钽的水解。

    由于现有的铌钽标准物质的含量比较低,实验选用铌钽含量较高的稀有稀土矿石标准物质GBW07185进行实验。称取0.1000 g的GBW07185样品9个,其中3个样品加入5.0 mL氢氟酸+1.0 mL硝酸,3个样品加入2.5 mL氢氟酸+1.0 mL硝酸,另3个样品加入1.5 mL氢氟酸+1.0 mL硝酸,微波酸溶,冷却后取出内罐,将溶液转移至50 mL塑料容量瓶中,用蒸馏水稀释定容至刻度,此溶液直接用于ICP-OES测定。测定结果(表 2)表明,三种酸溶体系都可以很好地溶解铌钽矿石,铌、钽的测定结果和推荐值一致,但考虑到氢氟酸的腐蚀性以及环境污染等因素,本方法最终选择1.5 mL氢氟酸+1.0 mL硝酸分解样品。

    表  2  不同酸度条件下铌、钽测定结果
    Table  2.  Analytical results of Nb and Ta under the different acidity
    GBW07185样品5.0 mL氢氟酸+1.0 mL硝酸2.5 mL氢氟酸+1.0 mL硝酸1.5 mL氢氟酸+1.0 mL硝酸
    NbTaNbTaNbTa
    3次分次测定值(μg/g)3792 3539 37018596 8803 87343733 3767 36658313 8518 85353733 3767 3665 8513 8518 8563
    测定平均值(μg/g)367787113722845537228531
    标准值(μg/g)3635±708353±1643635±708353±1643635±708353±164
    RSD(%)3.51.21.41.61.40.3
    相对误差(%)1.24.32.41.32.42.1
    下载: 导出CSV 
    | 显示表格

    通过实验考察了不同称样量对分解效果的影响,分别称取50.0、100.0、200.0 mg的样品,分别加入1.5 mL氢氟酸、1.0 mL硝酸,微波消解后分别用蒸馏水定容到25、50.0、100 mL塑料容量瓶中,即稀释500倍,ICP-OES测定的结果见表 3,铌、钽含量的测定结果都与其标准值一致。

    表  3  称样量的影响
    Table  3.  Effect of sample weight
    称样量(mg)Nb2O5Ta2O5
    测定值 (μg/g)标准值 (μg/g)测定值 (μg/g)标准值 (μg/g)
    50.0531010314
    100.052815200±1001045710200±20
    200.0525810351
    下载: 导出CSV 
    | 显示表格

    一般对粒度小于74 μm(200目)的样品测试,取样100 mg可以保证取样代表性。就仪器测定来说,称样25.00 mg就可以实现分析测定,但为了保证取样的代表性,常常要求加大取样量。从实验结果可以看出,该方法可以溶解50.0~200.0 mg的铌钽矿。

    用市售的1 mg/mL铌、钽单元素标准储备溶液(1 mol/L氢氟酸介质)配制浓度为0~100 μg/mL的铌钽混合校准溶液。根据测定样品含量的高低,可以选高浓度或者低浓度系列。该方法比较常用的Nb、Ta标准系列为0.0、1.0、5.0、10.0、20.0、50.0 μg/mL,铌、钽线性方程的相关系数均大于0.9999,线性良好。

    方法检出限是用该方法流程空白10次测定结果的3倍标准偏差计算,是最佳仪器条件测定。测定元素Nb所选谱线波长269.706 nm,方法检出限为5.58 μg/g;Ta所选谱线波长240.063 nm,方法检出限为5.87 μg/g。

    选用铌、钽的标准物质GBW07154(钽矿石)、GBW07155(钽矿石),以及铌、钽含量较高的稀有稀土矿石标准物质GBW07185进行方法准确度实验。主要步骤为:称取0.1000 g的GBW07154、GBW07155、GBW07185,分别加1.50 mL 氢氟酸、1.0 mL 硝酸,按微波消解条件分解后,冷却、定容至25.0 mL,GBW07154、GBW07155溶液直接用ICP-OES测定,含量较高的GBW07185溶液稀释1倍后用ICP-OES测定。从表 4分析结果来看,测定值都与标准值相一致。

    表  4  精密度和准确度实验
    Table  4.  Precision and accuracy tests of the method
    标准物质编号Nb2O5Ta2O5
    测定值(μg/g)标准值(μg/g)RSD(%)相对误差(%)测定值(μg/g)标准值(μg/g)RSD(%)相对误差(%)
    GBW0715443.342.3±2.56.02.385.988.6±6.05.2-3.0
    GBW07155466430±306.18.4684700±605.2-2.3
    GBW0718552885200±1003.71.71044410200±201.92.4
    下载: 导出CSV 
    | 显示表格

    由于GBW07154(钽矿石)、GBW07155(钽矿石)的铌、钽值比较低,用0.0、0.50、1.0 μg/mL三点标化的测试结果好于该方法提供的标准系列(0.0、1.0、5.0、10.0、20.0 μg/mL)。因此为了提高测定的准确度,低含量的铌、钽应该采用测定低浓度的标准系列,高浓度的溶液采用高浓度的标准系列,或者稀释后测定。实验发现,将上述的分解液稀释,采用耐氢氟酸系统的ICP-MS,能同时测定铌钽矿中的Li、W、Cu、Zn等元素。

    由于现有的铌钽标准物质的铌、钽值较低,利用ICP-OES线性范围宽的优势,用本法测定高品位的铌钽精矿,从表 5实验结果来看,使用本方法分析铌钽精矿的测定结果与过氧化钠碱熔后ICP-OES测定的结果一致。

    表  5  本法和碱熔ICP-OES方法的测定结果比较
    Table  5.  A comparison of analytical results of Nb and Ta determined by this method and alkali fusion method
    样品编号Nb2O5含量Ta2O5含量
    本方法测定值(%)碱熔方法测定值(%)相对误差(%)本方法测定值(%)碱熔方法测定值(%)相对误差(%)
    样品17.67.82-2.715.3214.74.2
    样品219.2818.99 1.527.426.91.9
    下载: 导出CSV 
    | 显示表格

    本研究采用的新型微波仪器,容量大,一次可容纳70个样品溶样罐,比普通微波仪器单次分解样品量多出几倍,有利于大批量的分析测试,同时与具有耐氢氟酸系统的ICP-OES仪器相结合分析铌钽矿,得到了比较理想的实验结果,Nb2O5测定范围为42 μg/g~19%,Ta2O5测定范围为86 μg/g~27%。

    该方法用硝酸和氢氟酸分解铌钽矿后不赶氢氟酸,分解液定容后直接用配制耐氢氟酸进样系统的ICP-OES测定,简化了分解流程,使得铌钽矿石中的易水解元素铌、钽的分析变得简单,提高了分析速度,尤其是解决了高品位铌钽矿的分析难题,也适合测定μg/g级低品位的铌钽原矿。

  • 图  1   矿物颗粒内U-Th分布特征及其对定年结果的影响 (据文献[46]修改)

    矿物内U-Th四种可能的分布特征对α粒子射出效应的校正影响:(a) 均匀分布,准确年龄;(b) 边部富集、核部均匀,年龄偏小;(c) 边部亏损、核部均匀,年龄偏老;(d) 分布复杂,年龄意义不定。

    Figure  1.   Possible distributions of U-Th elements within mineral grain and its effects on dating results (Modified after Reference [46])

    Four possible U-Th distributions on α-correction: (a) complete homogeneity resulting an accurate age; (b) enriched rims and homogenous core resulting in a "too young" age; (c) depleted rim and homogenous core resulting in a "too old" age, and (d) complex distribution resulting a "uncertain" age.

    图  2   剥蚀坑形态与剥蚀深度的关系示意图

    (a) 和 (b) 据文献[75]; (c) 和 (d) 据文献[33]。

    Figure  2.   Schematic diagrams for evolution of ablation pit topology with increasing depth (a and b are from Reference [75]; c and d are from Reference[33])

    图  3   不同矿物的U-Th/He同位素体系封闭温度

    各矿物数据来源文献:磷灰石[77];锆石[78];萤石[20, 60, 79];榍石[54];金红石[63, 80-82];独居石[59, 83];方解石[61];赤铁矿[66];磁铁矿[<

    Figure  3.   Close temperatures of U-Th/He isotope system for different minerals

  • Hurley P M.Alpha ionization damage as a cause of low helium ratios[J].Transactions American Geophysical Union, 1952, 33(2):174-183. doi: 10.1029/TR033i002p00174

    Hurley P M, Larsen Jr E S, Gottfried D.Comparison of radiogenic helium and lead in zircon[J].Geochimica et Cosmochimica Acta, 1956, 9(1-2):98-102. doi: 10.1016/0016-7037(56)90060-6

    Cox S E, Farley K A, Hemming S R.Insights into the age of the Mono Lake Excursion and magmatic crystal residence time from (U-Th)/He and 230Th dating of volcanic allanite[J].Earth and Planetary Science Letters, 2012, 319-320:178-184. doi: 10.1016/j.epsl.2011.12.025

    Blackburn T J, Stockli D F, Walker J D.Magnetite (U-Th)/He dating and its application the geochronology of intermediate to mafic volcanic rocks[J].Earth and Planetary Science Letters, 2007, 259(3-4):360-371. doi: 10.1016/j.epsl.2007.04.044

    Blackburn T J, Stockli D F, Carlson R W, et al.(U-Th)/He dating of kimberlites-A case study from North-Eastern Kansas[J].Earth and Planetary Science Letters, 2008, 275(1-2):111-120. doi: 10.1016/j.epsl.2008.08.006

    邱楠生, Reiners P W, 梅庆华, 等.(U-Th)/He年龄在沉积盆地构造-热演化研究中的应用--以塔里木盆地KQ1井为例[J].地球物理学报, 2009, 52(7):1825-1835. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907018.htm

    Qiu N S, Reiners P W, Mei Q H, et al.Application of the (U-Th)/He thermochronometry to the tectono-thermal evolution of sedimentary basin-A case history of Well KQ1 in the Tarim Basin[J].Chinese Journal of Geophysics, 2009, 52(7):1825-1835. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907018.htm

    俞顺, 陈文, 吕修祥, 等.(U-Th)/He技术约束下库车盆地北缘构造热演化--以吐孜2井为例[J].地球物理学报, 2014, 57(1):62-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401007.htm

    Yu S, Chen W, Lü X X, et al.(U-Th)/He thermochronometry constraints on the Mesozoic-Cenozoic tectono-thermal evolution of Kuqa Basin:A case study of well TZ2[J].Chinese Journal of Geophysics, 2014, 57(1):62-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401007.htm

    孙敬博, 孙腾飞, 陈文, 等.新疆东天山红云滩地区构造-热演化探讨:来自Ar-Ar和 (U-Th)/He热年代学的约束[J].岩石学报, 2015, 31(12):3732-3742.

    Sun J B, Sun T F, Chen W, et al.Thermo-tectono evolution history of Hongyuntan area, Eastern Tianshan, Xinjiang:Constrained from Ar-Ar and (U-Th)/He dating[J].Acta Petrologica Sinica, 2015, 31:3732-3742.

    Dai J G, Wang C S, Hourigan J, et al.Multi-stage tectono-magmatic events of the Eastern Kunlun Range, Northern Tibet:Insights from U-Pb geochronology and (U-Th)/He thermochronology[J].Tectonophysics, 2013, 599:97-106. doi: 10.1016/j.tecto.2013.04.005

    Wolff R, Dunkl I, Lange J M, et al.Superposition of burial and hydrothermal events:Post-Variscan thermal evolution of the Erzgebirge, Germany[J].Terra Nova, 2015, 27(4):292-299. doi: 10.1111/ter.12159

    周祖翼, 许长海, Reiners P W, 等.大别山天堂寨地区晚白垩世以来剥露历史的 (U-Th)/He和裂变径迹分析证据[J].科学通报, 2003, 48(6):598-602. doi: 10.1360/03tb9127

    Zhou Z Y, Xu C H, Reiners P W, et al.Evidence of (U-Th)/He & fission track analysis on denudation history after Late Cretaceous in the Tiantangzhai area of the Dabieshan Mountain[J].Chinese Science Bulletin, 2003, 48(6):598-602. doi: 10.1360/03tb9127

    Qiu N S, Jiang G, Mei Q H, et al.The Paleozoic tectonothermal evolution of the Bachu Uplift of the Tarim Basin, NW China:Constraints from (U-Th)/He ages, apatite fission track and vitrinite reflectance data[J].Journal of Asian Earth Sciences, 2011, 41(6):551-563. doi: 10.1016/j.jseaes.2011.02.008

    Wang E, Kirby E, Furlong K P, et al.Two-phase growth of high topography in eastern Tibet during the Cenozoic[J].Nature Geoscience, 2012, 5:640-645. doi: 10.1038/ngeo1538

    Yu S, Chen W, Evans N J, et al.Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U-Th)/He thermochronometry[J].Tectonophysics, 2014, 630:166-182. doi: 10.1016/j.tecto.2014.05.021

    Sobczyk A, Danisik M, Aleksandrowski P, et al.Post-Variscan cooling history of the central Western Sudetes (NE Bohemian Massif, Poland) constrained by apatite fission-track and zircon (U-Th)/He thermochronology[J].Tectonophysics, 2015, 649:47-57. doi: 10.1016/j.tecto.2015.02.021

    Ehlers T A, Farley K A.Apatite (U-Th)/He thermo-chronometry:Methods and applications to problems in tectonic and surface processes[J]. Earth and Planetary Science Letters, 2003, 206(1-2):1-14. doi: 10.1016/S0012-821X(02)01069-5

    Ehlers T A, Farley K A, Rusmore M E.Apatite (U-Th)/He signal of large-magnitude accelerated glacial erosion, Southwest British Columbia[J].Geology, 2006, 34(9):765-768. doi: 10.1130/G22507.1

    Campbell I H, Reiners P W, Allen C M, et al.He-Pb double dating of detrital zircons from the Ganges and Indus Rivers:Implications for quantifying sediments recycling and provenance studies[J].Earth and Planetary Science Letters, 2005, 237(3-4):402-432. doi: 10.1016/j.epsl.2005.06.043

    Rahl J M, Ehlers T A, van der Pluijm B A.Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits[J].Earth and Planetary Science Letters, 2007, 256(1-2):147-161. doi: 10.1016/j.epsl.2007.01.020

    Pi T, Sole J, Taran Y.(U-Th)/He dating of fluorite:Application to the La Azul fluorspar deposit in the Taxco mining district, Mexico[J].Mineralium Deposita, 2005, 39(8):976-982. doi: 10.1007/s00126-004-0443-y

    Cabral A R, Eugster O, Brauns M, et al.Direct dating of gold by radiogenic helium:Testing the method on gold from Diamantina, Minas Gerais, Brazil[J].Geology, 2013, 41(2):163-166. doi: 10.1130/G33751.1

    Wolff R, Dunkl I, Kempe U, et al.The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany:Constraints from fluorite (U-Th-Sm)/He thermochronology[J].Economic Geology, 2015, 110(8):2025-2040. doi: 10.2113/econgeo.110.8.2025

    保增宽, 袁万明, 王世成, 等.磷灰石 (U-Th)/He定年技术及应用简介[J].岩石矿物学杂志, 2005, 24(2):126-132. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200502005.htm

    Bao Z K, Yuan W M, Wang S C, et al.Apatite (U-Th)/He dating and its application[J].Acta Petrologica et Mineralogica, 2005, 24(2):126-132. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200502005.htm

    陈文, 何学贤, 张彦, 等.金属矿床年龄测定新技术--(U-Th)/He同位素定年方法[J].矿床地质, 2010, 29(增刊):821-822. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1412.htm

    Chen W, He X X, Zhang Y, et al.A new dating technique for metallic mineral deposit-(U-Th)/He isotopic dating[J].Mineral Deposits, 2010, 29(Supplement):821-822. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1412.htm

    蒋毅, 常宏.磷灰石 (U-Th)/He定年方法综述[J].岩石矿物学杂志, 2012, 31(5):757-766.

    Jiang Y, Chang H.Apatite (U-Th)/He dating:A review[J].Acta Petrologica et Mineralogica, 2012, 31(5):757-766.

    Evans N J, Byrne J, Keegan J, et al.Determination of uranium and thorium in zircon, apatite, and fluorite:Application to laser (U-Th)/He thermochronology[J].Journal of Analytical Chemistry, 2005, 60(12):1159-1165. doi: 10.1007/s10809-005-0260-1

    Boyce J W, Hodges K V, Olszewski W J, et al.Laser microprobe (U-Th)/He geochronology[J].Geochimica et Cosmochimica Acta, 2006, 70(12):3031-3039. doi: 10.1016/j.gca.2006.03.019

    Boyce J W, Hodges K V, King D, et al.Improved confidence in (U-Th)/He thermochronology using the laser microprobe:An example from a Pleistocene leucogranite, Nanga Parbat, Pakistan[J].Geochemistry Geophysics Geosystems, 2009, 10(9):1-13.

    van Soest M C, Monteleone B D, Boyce J W, et al.Advances in laser microprobe (U-Th)/He geochronology[R].American Geophysical Union (Fall Meeting), 2008.

    Tripathy-Lang A, Monteleone B D, van Soest M C, et al.In situ detrital zircon (U-Th)/He thermochronology[R].American Geophysical Union (Fall Meeting), 2010.

    Tripathy-Lang A, Hodges K V, Monteleone B D, et al.Laser (U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments[J].Journal of Geophysical Research:Earth Surface, 2013, 118(3):1333-1341. doi: 10.1002/jgrf.20091

    Vermeesch P, Sherlock S C, Roberts N M W, et al.A simple method for in-situ U-Th-He dating[J].Geochimica et Cosmochimica Acta, 2012, 79:140-147. doi: 10.1016/j.gca.2011.11.042

    Evans N J, McInnes B I A, McDonald B, et al.An in situ technique for (U-Th-Sm)/He and U-Pb double dating[J].Journal of Analytical Atomic Spectrometry, 2015, 30:1636-1645. doi: 10.1039/C5JA00085H

    Horne A M, van Soest M C, Hodges K V, et al.Integrated single crystal ablation U/Pb and (U-Th)/He dating of detrital accessory minerals-proof-of-concept studies of titanites and zircons from the Fish Canyon Tuff[J].Geochimica et Cosmochimica Acta, 2016, 178:106-123. doi: 10.1016/j.gca.2015.11.044

    Farley K A.(U-Th)/He dating:Techniques, calibrations, and applications[J].Reviews in Mineralogy and Geochemistry, 2002, 47(1):819-844. doi: 10.2138/rmg.2002.47.18

    吴堑红, 刘厚昌.(U-Th)/He定年--低温热年代学研究的一种新技术[J].地球科学进展, 2002, 17(1):126-131. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200201019.htm

    Wu Q H, Liu H C.(U-Th)/He dating-A new method of low-temperature thermochronometry[J].Advance in Earth Sciences, 2002, 17(1):126-131. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200201019.htm

    Boyce J W, Hodges K V.U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite:Insights regarding the impact of recoil redistribution of radiogenic 4He on (U-Th)/He thermochronology[J].Chemical Geology, 2005, 219(1-4):261-274. doi: 10.1016/j.chemgeo.2005.02.007

    Dobson K J, Stuart F M, Dempster T J, et al.U and Th zonation in Fish Canyon Tuff zircons:Implications for a zircon (U-Th)/He standard[J].Geochimica et Cosmochimica Acta, 2008, 72(19):4745-4755. doi: 10.1016/j.gca.2008.07.015

    Ault A K, Flowers R M.Is apatite U-Th zonation information necessary for accurate interpretation of apatite (U-Th)/He thermochronometry data[J].Geochimica et Cosmochimica Acta, 2011, 79:60-78.

    Farley K A, Shuster D L, Ketcham R A.U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U-Th)/He system[J].Geochimica et Cosmochimica Acta, 2011, 75(16):4515-4530. doi: 10.1016/j.gca.2011.05.020

    Hourigan J K, Reiners P W, Brandon M T.U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry[J].Geochimica et Cosmochimica Acta, 2005, 69(13):3349-3365. doi: 10.1016/j.gca.2005.01.024

    Farley K A, Wolf R A, Fallick A E.The effects of long alpha-stopping distances on (U-Th)/He ages[J].Geochimica et Cosmochimica Acta, 1996, 60(21):4223-4229. doi: 10.1016/S0016-7037(96)00193-7

    Ketcham R A, Gautheron C, Tassan-Got L.Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology:Refinement of the baseline case[J].Geochimica et Cosmochimica Acta, 2011, 75(24):7779-7791. doi: 10.1016/j.gca.2011.10.011

    Gautheron C, Tassan-Got L, Ketcham R R A, et al.Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology:3D modeling of diffusion, zoning, implantation, and abrasion[J].Geochimica et Cosmochimica Acta, 2012, 96:44-56. doi: 10.1016/j.gca.2012.08.016

    Meesters A G C A, Dunai T J.Solving the production-diffusion equation for finite diffusion domains of various shapes Part Ⅱ.Application to cases with α-ejection and nonhomogeneous distribution of the source[J].Chemical Geology, 2002, 186(3-4):57-73. https://www.researchgate.net/publication/223572432_Solving_the_production-diffusion_equation_for_finite_diffusion_domains_of_various_shapes_Part_II_Application_to_cases_with_a-ejection_and_nonhomogeneous_distribution_of_the_source

    Bargnesi E A, Stockli D F, Hourigan J K, et al.Improved accuracy of zircon (U-Th)/He ages by rectifying parent nuclide zonation with practical methods[J].Chemical Geology, 2016, 426:158-169. doi: 10.1016/j.chemgeo.2016.01.017

    Zeitler P K, Herczeg A L, McDougall I, et al.U-Th-He dating of apatite-A potential thermochronometer[J].Geochimica et Cosmochimica Acta, 1987, 51(10):2865-2868. doi: 10.1016/0016-7037(87)90164-5

    Lippolt H J, Leitz M, Wernicke R S, et al.(Uranium+thorium)/helium dating of apatite:Experience with samples from different geochemical environments[J].Chemical Geology, 1994, 112(1-2):179-191. doi: 10.1016/0009-2541(94)90113-9

    Wolf R A, Farley K A, Silver L T.Helium diffusion and low-temperature thermochronometry of apatite[J].Geochimica et Cosmochimica Acta, 1996, 60(21):4231-4240. doi: 10.1016/S0016-7037(96)00192-5

    House M A, Farley K A, Stockli D F.Helium chronometry of apatite and titanite using Nd-YAG laser heating[J].Earth and Planetary Science Letters, 2000, 183(3-4):365-368. doi: 10.1016/S0012-821X(00)00286-7

    Foeken J P, Stuart F M, Dobson K J, et al.A diode laser system for heating minerals for (U-Th)/He chronometry[J].Geochemistry, Geophysics, Geosystems, 2006, 7(4):1-9.

    Kelly S P, Cherniak D J, Farley K A, et al.Testing the limits to high spatial resolution laser analysis of noble gases in natural and experimental samples[J].Goldschmidt Conference Abstracts, 2009:A636.

    Reiners P W.Zircon (U-Th)/He thermochronometry[J].Reviews in Mineralogy and Geochemistry, 2005, 58(1):151-179. doi: 10.2138/rmg.2005.58.6

    Stockli D F, Farley K A.Empirical constraints on the titanite (U-Th)/He partial retention zone from the KTB drill hole[J].Chemical Geology, 2004, 207(3-4):223-236. doi: 10.1016/j.chemgeo.2004.03.002

    Aciego A, Kennedy B M, DePaolo D J, et al.U-Th/He age of phenocrystic garnet from the 79AD eruption of Mt.Vesuvius[J].Earth and Planetary Sciences Letters, 2003, 219(1-2):209-219.

    Farley K A, Stockli D F.(U-Th)/He dating of phosphates:Apatite, monazite, and xenotime[J].Reviews in Mineralogy and Geochemistry, 2002, 48(1):559-577. doi: 10.2138/rmg.2002.48.15

    Min K, Farley K A, Renne P R, et al.Single grain (U-Th)/He ages from phosphates in Acapulco meteorite and implications for thermal history[J].Earth and Planetary Science Letters, 2003, 209(3-4):323-336. doi: 10.1016/S0012-821X(03)00080-3

    Min K, Reiners P W, Shuster D L.(U-Th)/He ages of phosphates from St.S verin LL6 chondrite[J].Geochimica et Cosmochimica Acta, 2013, 100:282-296. doi: 10.1016/j.gca.2012.09.042

    Boyce J W, Hodges K V, Olszewski W J, et al.He diffusion in monazite:Implications for (U-Th)/He thermochronometry[J].Geochemistry, Geophysics, Geosystems, 2005, 6(12):1-12.

    Evans N J, Wilson N S F, Cline J S, et al.Fluorite (U-Th)/He thermochronology:Constraints on the low temperature history of Yucca Mountain, Nevada[J].Applied Geochemistry, 2005, 20(6):1099-1105. doi: 10.1016/j.apgeochem.2005.02.008

    Copeland P, Watson E B, Urizar S C, et al.Alpha thermochronology of carbonates[J].Geochimica et Cosmochimica Acta, 2007, 71(18):4488-4511. doi: 10.1016/j.gca.2007.07.004

    Cros A, Gautheron C, Pagel M, et al.4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies[J].Geochimica et Cosmochimica Acta, 2014, 125:414-432. doi: 10.1016/j.gca.2013.09.038

    Stockli D F, Wolfe M R, Blackburn T J, et al.He diffusion and (U-Th)/He thermochronometry of rutile[J].American Geophysical Union Fall Meeting, 2007:1548.

    Meinhold G.Rutile and its applications in earth sciences[J].Earth-Science Reviews, 2010, 102(1-2):1-28. doi: 10.1016/j.earscirev.2010.06.001

    Shuster D L, Vasconcelos P M, Heim J A, et al.Weathering geochronology by U-Th/He dating of goethite[J].Geochimica et Cosmochimica Acta, 2005, 69(3):659-673. doi: 10.1016/j.gca.2004.07.028

    Wernicke R S, Lippolt H J.(U-Th)-He evidence of Jurassic continuous hydrothermal activity in the Schwarzwald basement, Germany[J].Chemical Geology, 1997, 138(3-4):273-285. doi: 10.1016/S0009-2541(97)00020-X

    Shukolyukov Y A, Yakubovich O V, Rytsk Y A.About possibility of isotope dating of native gold by the (U-Th)/He method[J].Doklady Earth Sciences, 2010, 430(1):90-94. doi: 10.1134/S1028334X10010204

    Yakubovich O V, Shukolyukov Y A, Kotov A B, et al.U-Th-He dating of native gold:First results, problems and outlooks[J].Petrology, 2014, 22(5):429-437. doi: 10.1134/S0869591114050075

    LeHarzic R, Valette S, Huot N, et al.TEM Investigations of Thermal Effects on Material Structure Induced by Femtosecond and Nanosecond Laser Processing[C]//Sugioka K, Gower M C, Haglund R F, et al.Photon Processing in Microelectronics and Photonics:Proceedings of SPIE, Vol.4637.Bellingham, 2002:148-158.

    Yao Y L, Chen H Q, Zhang W W.Time scale effects in laser material removal:A review[J].International Journal of Advanced Manufacturing Technology, 2005, 26(5):598-608.

    van Soest M C, Monteleone B D, Boyce J W, et al.Laser depth profiling studies of helium diffusion in Durango fluorapatite[J].Geochimica et Cosmochimica Acta, 2011, 75(9):2409-2419. doi: 10.1016/j.gca.2011.02.008

    Liu W L, Xia H R, Wang X Q, et al.Characterization of deuterated potassium dihydrogen phosphate single crystals grown by circulating method[J].Journal of Crystal Growth, 2006, 293(2):387-393. doi: 10.1016/j.jcrysgro.2006.05.040

    Santos E A F, Silva W F, de Araújo M T, et al.Quantum efficiencies and thermo-optical properties of Er3+-, Nd3+-, and P3+-single doped lead-indium-phosphate glasses[J].Journal of Applied Physics, 2009, 106:1-6.

    Hodapp T W, Fleming P R.Modeling topology formation during laser ablation[J].Journal of Applied Physics, 1998, 84(1):577-583. doi: 10.1063/1.368063

    Usoskin A, Freyhardt H C, Krebs H U.Influence of light scattering on the development of laser-induced ridge-cone structures on target surfaces[J].Applied Physics A:Materials Science & Processing, 1999, 69:S823-S826.

    Woodhead J, Hergt J, Meffre S, et al.In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector and quadrupole) ICPMS[J].Chemical Geology, 2009, 262(3-4):344-354. doi: 10.1016/j.chemgeo.2009.02.003

    Wolf R A, Farley K A, Kass D M.Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer[J].Chemical Geology, 1998, 148(1-2):105-114. doi: 10.1016/S0009-2541(98)00024-2

    Reiners P W, Spell T L, Nicolescu S, et al.Zircon (U-Th)/He thermochronometry:He diffusion and comparisons with 40Ar/39Ar dating[J].Geochimica et Cosmochimica Acta, 2004, 68(8):1857-1887. doi: 10.1016/j.gca.2003.10.021

    Siebel W, Hann H P, Danisik M, et al.Age constraints on faulting and fault reactivation:A multi-chronological approach[J].International Journal of Earth Science, 2010, 99(6):1187-1197. doi: 10.1007/s00531-009-0474-9

    Crowhurst P, Farley K A, Ryan C, et al.Potential of rutile as a U-Th-He thermochronometer[J].Geochimica et Cosmochimica Acta, 2002(Supplement 1), 66:A158.

    Stockli D F, Farley K A, Walker J D, et al.Helium diffusion and (U-Th)/He thermochronometry of monazite and rutile[J].Geochimica et Cosmochimica Acta, 2005, 69(10):A8.

    Wolfe M R, Stockli D F, Shuster D L, et al.Assessment of the rutile (U-Th)/He thermochronometry on the KTB drill hole, Germany[R].American Geophysical Union (Fall Meeting), 2007.

    Peterman E M, Hourigan J K, Grove M.Experimental and geologic evaluation of monazite (U-Th)/He thermochronometry:Catnip Sill, Catalina core complex, Tucson, AZ[J].Earth and Planetary Science Letters, 2014, 403:48-55. doi: 10.1016/j.epsl.2014.06.020

    McInnes B I A, Evans N J, Fu F Q, et al.Thermal History Analysis of Selected Chilean, Indonesian and Iranian Porphyry Cu-Mo-Au Deposits[M]//Porter T M.Super Porphyry Copper & Gold Deposits:A Global Perspective.Adelaide:PGC Publishing, 2005:1-16.

    McInnes B I A, Evans N J, Fu F Q, et al.Application of thermochronology to hydrothermal ore deposits[J].Reviews in Mineralogy and Geochemistry, 2005, 58(1):467-498. doi: 10.2138/rmg.2005.58.18

    Harris A, Dunlap W J, Reiners P W, et al.Multimillion year thermal history of a porphyry copper deposit:Application of U-Pb, 40Ar/39Ar and (U-Th)/He chrono-meters, Bajo de la Alumbrera copper-gold deposit, Argentina[J].Mineralium Deposita, 2008, 43(3):295-314. doi: 10.1007/s00126-007-0151-5

    Betsi T B, Lentz D, McInnes B I A, et al.Emplacement ages and exhumation rates for intrusion-hosted Cu-Mo-Sb-Au mineral systems at Freegold Mountain (Yukon, Canada):Assessment from U-Pb, Ar-Ar, and (U-Th)/He geochronometer[J].Canada Journal of Earth Sciences, 2012, 49(5):653-670. doi: 10.1139/e2012-009

    Li G M, Cao M J, Qin K Z, et al.Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U-Pb, biotite Ar/Ar and zircon/apatite (U-Th)/He dating[J].Journal of Asian Earth Sciences, 2014, 79(Part B):741-758.

    Li J X, Qin K Z, Li G M, et al.Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet:Insights from U-Pb and U-Th/He dating, and zircon Hf isotopes and trace element analysis[J].Mineralogy and Petrology, 2012, 105(3):201-221.

    Liu X, Fan H R, Evans N J, et al.Cooling and exhumation of the mid-Jurassic porphyry copper systems in Dexing City, SE China:Insights from geo-and thermochronology[J].Mineralium Deposita, 2014, 49(7):809-819. doi: 10.1007/s00126-014-0536-1

    Arehart G B, Chakurian A M, Tertbar D R, et al.Evaluation of radioisotope dating of Carlin-type deposits in the Great Basin, Western North America, and implications for deposit genesis[J].Economic Geology, 2003, 98(2):235-248.

    Zeng Q T, Evans N J, McInnes B I A, et al.Geological and thermochronological studies of the Dashui gold deposit, West Qinling Orogen, Central China[J].Mineralium Deposita, 2013, 48(3):397-412. doi: 10.1007/s00126-012-0433-4

    Eugster O, Hofmann B, Krahenbuhl U, et al.Noble gases in alpine gold:U/Th-He dating and excesses of radiogenic He and Ar[J].Meteoritics, 1992, 27(3):219-220.

    Eugster O, Niedermann S, Thalmann C, et al.Noble gases, K, U, Th, and Pb in native gold[J]. Journal of Geophysical Research, 1995, 100(B12):24677-24689. doi: 10.1029/95JB02843

    Niedermann S, Eugster O, Frei R, et al.Formation of alpine Au~30Ma ago:Further results of the develop-ment of a dating method for native Au[J].Meteoritics, 1993, 28(3):411-412.

    Pettke T, Frei R, Kramers J D, et al.Isotope systematics in vein gold from Brusson, Vald'Ayas (NW Italy):2.(U+Th)/He and K/Ar in native Au and its fluid inclusions[J].Chemical Geology, 1997, 135(3-4):173-187. doi: 10.1016/S0009-2541(96)00114-3

    Shukolyukov Y A, Yakubovich O V, Yakovleva S Z, et al.Geothermochronology based on noble gases:Ⅲ.Migration of radiogenic He in the crystal structure of native metals with applications to their isotopic dating[J].Petrology, 2012, 20(1):1-20. doi: 10.1134/S0869591112010043

    Heim J A, Vasconcelos P M, Shuster D L, et al.Dating paleochannel iron ore by (U-Th)/He analysis of supergene goethite, Hamersley Province, Australia[J].Geology, 2006, 34(3):173-176. doi: 10.1130/G22003.1

    Farley K A, Flowers R M.(U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from Eastern Grand Canyon[J].Earth and Planetary Science Letters, 2012, 359-360:131-140. doi: 10.1016/j.epsl.2012.10.010

    Danisik M, Evans N J, Ramanaidou E R, et al.(U-Th)/He chronology of the Robe River channel iron deposits, Hamersley Province, Western Australia[J].Chemical Geology, 2013, 354:150-162. doi: 10.1016/j.chemgeo.2013.06.012

    Burnard P G, Polya D A.Importance of mantle derived fluids during granite associated hydrothermal circulation:He and Ar isotopes of ore minerals from Panasqueira[J].Geochimica et Cosmochimica Acta, 2004, 68(7):1607-1615. doi: 10.1016/j.gca.2003.10.008

    Jean-Baptiste P H, Fouquet Y.Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N[J].Geochimica et Cosmochimica Acta, 1996, 60(1):87-93. doi: 10.1016/0016-7037(95)00357-6

  • 期刊类型引用(19)

    1. 李光一,马景治,李策,汪岸,贾正勋,董学林. 电弧分馏富集-发射光谱法测定含铌钽矿石中铌钽. 冶金分析. 2025(02): 49-55 . 百度学术
    2. 韩亚军,王啸,甘黎明,冯博鑫,李荣华,王佳明,宋永涛. 氟化氢铵焙烧分离-碱熔-电感耦合等离子体质谱(ICP-MS)法测定高硅矿物中稀土元素及铌、钽. 中国无机分析化学. 2025(04): 500-505 . 百度学术
    3. 洪涛,翟明国,王岳军,刘星成,徐兴旺,高俊,胡明曦,马靖. 锂铍络合物稳定性与花岗伟晶岩中锂铍“差异跃迁”耦合关联. 地学前缘. 2023(05): 93-105 . 百度学术
    4. 刘勇胜,屈文俊,漆亮,袁洪林,黄方,杨岳衡,胡兆初,朱振利,张文. 中国岩矿分析测试研究进展与展望(2011—2020). 矿物岩石地球化学通报. 2021(03): 515-539+776 . 百度学术
    5. 姚玉玲,赵朝辉,刘淑君. 树脂交换分离—电感耦合等离子质谱法测定锡矿石的铌钽. 矿产综合利用. 2021(05): 146-151 . 百度学术
    6. 郭晓瑞,樊蕾,毛香菊,张宏丽,王甜甜,姚明星. 耐氢氟酸系统进样-电感耦合等离子体质谱法测定铀铌铅多金属矿中铌. 冶金分析. 2021(11): 31-36 . 百度学术
    7. 涂建求. 电感耦合等离子体发射光谱法测定岩石矿物中的铌和钽. 江西化工. 2020(01): 73-75 . 百度学术
    8. 夏传波,成学海,赵伟,王卿,孙雨沁. 增压消解-电感耦合等离子体质谱法测定硅藻土中26种微量元素. 理化检验(化学分册). 2020(03): 277-283 . 百度学术
    9. 黄靖,王英滨,周冠轩,马真乾. 混合酸溶-电感耦合等离子体发射光谱法测定粉煤灰样品中的微量元素镓. 环境化学. 2020(05): 1427-1433 . 百度学术
    10. 秦明,朱尧伟,班俊生,杨惠玲. 微波消解–电感耦合等离子体发射光谱法测定多金属矿中10种主次元素. 化学分析计量. 2019(02): 45-49 . 百度学术
    11. 程文翠,付永立,马会春,胡艳巧,支云川,张金明,张佳林,张兆法. 纸上层析分离-ICP-AES测定稀有金属矿中的铌钽. 分析试验室. 2018(02): 168-173 . 百度学术
    12. 李刚,姚玉玲,李婧祎,赵朝辉,罗涛,李崇瑛. 铌钽元素分析技术新进展. 岩矿测试. 2018(01): 1-14 . 本站查看
    13. 邓长生,李盛富,张建梅,王明力,勒孚河,牛芳红. 常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽. 岩矿测试. 2018(04): 364-370 . 本站查看
    14. 李可及,赵朝辉. 低稀释比熔融-X射线荧光光谱法分析铌钽矿石. 理化检验(化学分册). 2018(12): 1410-1414 . 百度学术
    15. 吴德明,刘贝叶. 电感耦合等离子体质谱法测定铌钽矿中的铌和钽. 资源环境与工程. 2017(05): 628-630 . 百度学术
    16. 张杰芳,闫玉乐,夏承莉,焦发存,张海侠. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬. 岩矿测试. 2017(01): 46-51 . 本站查看
    17. 王小强,夏辉,秦九红,王书勤,杨惠玲,宋志敏,杜天军. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分. 岩矿测试. 2017(01): 52-58 . 本站查看
    18. 宫嘉辰,姜炳南,褚晓君. 电感耦合等离子体发射光谱法测定无机纤维中的钙、镁、铝、铁. 有色矿冶. 2017(06): 53-55 . 百度学术
    19. 张纹俊,李颖. 电感耦合等离子体发射光谱法测定铌钽的研究. 低碳世界. 2016(35): 123-124 . 百度学术

    其他类型引用(2)

图(3)
计量
  • 文章访问数:  1723
  • HTML全文浏览量:  366
  • PDF下载量:  43
  • 被引次数: 21
出版历程
  • 收稿日期:  2016-09-22
  • 修回日期:  2016-12-12
  • 录用日期:  2017-01-11
  • 发布日期:  2016-12-31

目录

/

返回文章
返回