• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
KONG Shengnan,XU Shi. Determination of Silicon in Soil and Sediment by ICP-OES with Rapid Ultrasonic Digestion[J]. Rock and Mineral Analysis,2024,43(6):928−935. DOI: 10.15898/j.ykcs.202409020177
Citation: KONG Shengnan,XU Shi. Determination of Silicon in Soil and Sediment by ICP-OES with Rapid Ultrasonic Digestion[J]. Rock and Mineral Analysis,2024,43(6):928−935. DOI: 10.15898/j.ykcs.202409020177

Determination of Silicon in Soil and Sediment by ICP-OES with Rapid Ultrasonic Digestion

More Information
  • Received Date: September 01, 2024
  • Revised Date: October 15, 2024
  • Accepted Date: December 05, 2024
  • Available Online: December 27, 2024
  • Published Date: December 27, 2024
  • HIGHLIGHTS
    (1) When determining silicon in soil and sediment, ultrasonic heating method is used to digest the sample, which is easy to operate and cost-effective.
    (2) Dissolve the sample with dilute aqua regia-hydrofluoric acid under sealed conditions to avoid loss of silicon fluoride, ensuring accurate results.
    (3) Adding hydrogen peroxide during sample digestion accelerates the reaction process, improves reaction efficiency, and is fast and efficient.

    The literature provides references for the accurate determination of silicon content in soil and sediment by inductively coupled plasma-optical emission spectrometry (ICP-OES). Sample decomposition methods often use acid dissolution or melting methods. Silicon reacts with hydrofluoric acid in concentrated acid solution to form volatile silicon tetrafluoride, which is lost due to heating. The melting method can process soil and sediment samples, but it introduces a large amount of salt, a significant matrix effect and high detection limit. This article describes a method for determining silicon content in soil and sediment using ultrasonic sealed acid dissolution and ICP-OES. After the sample was dissolved in dilute aqua regia, hydrofluoric acid, and hydrogen peroxide in an ultrasonic apparatus and diluted to a constant volume, the sample was measured using ICP-OES equipped with a hydrofluoric acid resistant injection system. During ICP-OES testing, 251.611nm was selected as the analytical spectral line for silicon. The correlation coefficient of the standard curve in the range of 5mg/L to 50mg/L was greater than 0.99997, and the detection limit of the method was 0.0395mg/g. This method was used to test different types of soil and sediment standard substances, with relative standard deviations (RSD) ranging from 0.26% to 0.54% and relative errors ranging from −0.28%−0.25%. The actual sample testing RSD range from 0.52% to 0.77%. Verified by national standard substances GBW07401a, GBW07405a, GBW07377, and GBW07379, the measured values of silicon element were consistent with the standard values. At the same time, X-ray fluorescence spectrometry was used to determine the silicon content in these four national standard substances, and the results were consistent.

  • [1]
    发展硅肥前景广阔[J]. 化工文摘, 2001(11): 53.

    The development of silicon fertilizer has broad prospects[J]. Chemical Abstract, 2001(11): 53.
    [2]
    田福平, 陈子萱, 张自和, 等. 硅对植物抗逆性作用的研究[J]. 中国土壤与肥料, 2007(3): 10−14. doi: 10.11838/sfsc.20070303

    Tian F P, Chen Z X, Zhang Z H, et al. Study on the effect of silicon on plant stress resistance[J]. Chinese Soil and Fertilizer, 2007(3): 10−14. doi: 10.11838/sfsc.20070303
    [3]
    余浪, 杨晓燕, 肖皓天, 等. 一种测定土壤中全硅含量的方法[P]. 中国: CN 116068144 A, 2023.05. 05.
    [4]
    梁琼英, 欧阳钢锋. 硅含量测定方法的新进展[J]. 广州化工, 2000, 28(1): 48−49. doi: 10.3969/j.issn.1001-9677.2000.01.013

    Liang Q Y, Ouyang G F. New progress in silicon content determination methods[J]. Guangzhou Chemical Industry, 2000, 28(1): 48−49. doi: 10.3969/j.issn.1001-9677.2000.01.013
    [5]
    洪秀杰, 张俊, 杨秀红. 不同浸提方法对稻田土壤硅含量测试结果的影响[J]. 农业科技通讯, 2011(12): 31−33. doi: 10.3969/j.issn.1000-6400.2011.12.014

    Hong X J, Zhang J, Yang X H. The influence of different extraction methods on the determination of silicon content in paddy soil[J]. Agricultural Science and Technology Communication, 2011(12): 31−33. doi: 10.3969/j.issn.1000-6400.2011.12.014
    [6]
    王俊, 李义辉, 卢娇婷, 等. 一种土壤中有效硅的测定方法[P]. 中国: CN202111650964.7, 2022.4. 12.
    [7]
    双龙, 白杰, 唐琪, 等. 超声浸提-电感耦合等离子体发射光谱法测定土壤有效硅的含量[J]. 理化检验(化学分册), 2023, 59(11): 1297−1302. doi: 10.11973/lhjy-hx202311009

    Shuang L, Bai J, Tang Q, et al. Determination of available silicon in soil by inductively coupled plasma atomic emission spectrometry with ultrasonic extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(11): 1297−1302. doi: 10.11973/lhjy-hx202311009
    [8]
    董学林, 何海洋, 储溱, 等. 封闭酸溶-硅钼蓝比色分光光度法测定地质样品中的硅[J]. 岩矿测试, 2019, 38(5): 575−582. doi: CNKI:SUN:YKCS.0.2019-05-015

    Dong X L, He H Y, Chu Q, et al. Determination of silica in geological sample by silicon-molybdenum blue spectrophometry using high-pressure acid digestion[J]. Rock and Mineral Analysis, 2019, 38(5): 575−582. doi: CNKI:SUN:YKCS.0.2019-05-015
    [9]
    金燕, 武中波, 李广柱, 等. 碱熔-电感耦合等离子体原子发射光谱法对土壤和沉积物中硅的测定[J]. 环境化学, 2012, 31(4): 558−559. doi: CNKI:SUN:HJHX.0.2012-04-028

    Jin Y, Wu Z B, Li G Z, et al. Determination of silicon in soil and sediments by alkali melting inductively coupled plasma atomic emission spectroscopy[J]. Environmental Chemistry, 2012, 31(4): 558−559. doi: CNKI:SUN:HJHX.0.2012-04-028
    [10]
    周鹏, 李冬梅, 李海涛, 等. 大亚湾西部海域沉积物中生物硅的含量及其分布特征[J]. 应用海洋学报, 2019, 38(1): 109−117. doi: 10.3969/J.ISSN.2095-4972.2019.01.012

    Zhou B, Li D M, Li H T, et al. Biogenic silica contents and its distribution in the sediments of the west Daya Bay[J]. Journal of Applied Oceanography, 2019, 38(1): 109−117. doi: 10.3969/J.ISSN.2095-4972.2019.01.012
    [11]
    诸晓锋, 徐克, 胡祖国. 一种土壤和沉积物中硅的测定方法[P]. 中国: CN 107505275 A, 2017.12. 22.
    [12]
    杨晓燕. 熔融制样-X射线荧光光谱法测定土壤矿质全量元素[J]. 中国无机分析化学, 2023, 13(12): 1396−1401. doi: 10.3969/j.issn.2095-1035.2023.12.018

    Yang X Y. Determination of total mineral elements in soil by X-ray fluorescence spectroscopy with melting sample preparation[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(12): 1396−1401. doi: 10.3969/j.issn.2095-1035.2023.12.018
    [13]
    胡梦颖, 张鹏鹏, 刘彬, 等. 高压制样-激光诱导击穿光谱技术测定土壤中的硅铝铁钾[J]. 光谱学与光谱分析, 2023, 43(7): 2174−2180. doi: 10.3964/j.issn.1000-0593(2023)07-2174-07

    Hu M Y, Zhang P P, Liu B, et al. Determination of silicon, aluminum, iron, and potassium in soil using high-pressure sample preparation laser induced breakdown spectroscopy technology[J]. Spectroscopy and Spectral Analysis, 2023, 43(7): 2174−2180. doi: 10.3964/j.issn.1000-0593(2023)07-2174-07
    [14]
    王龙山, 郝辉, 王光照, 等. 偏硼酸锂熔矿-超声提取-电感耦合等离子体原子发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素[J]. 岩矿测试, 2008, 27(4): 287−290. doi: 10.3969/j.issn.0254-5357.2008.04.011

    Wang L S, Hao H, Wang G Z, et al. Determination of 10 elements including silicon, iron and aluminum in rock, stream sediment and soil samples by ICP-AES with lithium metaborate fusion and ultrasonic extraction[J]. Rock and Mineral Analysis, 2008, 27(4): 287−290. doi: 10.3969/j.issn.0254-5357.2008.04.011
    [15]
    杨娜. 微波消解-电感耦合等离子体发射光谱法快速测定盐渍土中二氧化硅[J]. 化学分析计量, 2024, 33(1): 53−57. doi: 10.3969/j.issn.1008-6145.2024.01.010

    Yang N. Rapid determination of silicon dioxide in saline soil by microwave digestion inductively coupled plasma optical emission spectrometry[J]. Chemical Analysis and Meterage, 2024, 33(1): 53−57. doi: 10.3969/j.issn.1008-6145.2024.01.010
    [16]
    范学忠, 张春涛, 吴若昕, 等. 超声/消解-电感耦合等离子体质谱法测定烟丝, 卷烟纸及香精中钾钠钙镁元素含量[J]. 分析科学学报, 2018, 34(4): 573−576. doi: 10.13526/j.issn.1006-6144.2018.04.024

    Fan X Z, Zhang C T, Wu R X, et al. Determination of potassium, sodium, calcium and magnesium in cut tobacco, cigarette paper and essence by ultrasonic/digestion inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2018, 34(4): 573−576. doi: 10.13526/j.issn.1006-6144.2018.04.024
    [17]
    葛少林, 雷丽丹, 明佳佳. 对比超声-辅助逆王水提取法和王水-微波消解法对PM2.5中24种金属元素的提取效果[J]. 中国卫生检验杂志, 2022, 32(7): 769−774.

    Ge S L, Lei L D, Ming J J. Comparing extraction effects of aqua regia-microwave digestion method and ultrasonic-assisted-inverse aqua regia extraction method for 24 kinds of metallic elements in PM2.5[J]. Chinese Journal of Health Laboratory Technology, 2022, 32(7): 769−774.
    [18]
    张晨芳, 刘献锋, 楼锦花, 等. 超声水浴提取-电感耦合等离子体质谱法测定土壤中的7种元素[J]. 分析科学学报, 2022, 38(1): 43−48. doi: 10.13526/j.issn.1006-6144.2022.01.008

    Zhang C F, Liu X F, Lou J H, et al. Quantification of 7 elements in soil by inductively coupled plasma-mass spectrometry after ultrasonic-assisted extraction[J]. Journal of Analytical Science, 2022, 38(1): 43−48. doi: 10.13526/j.issn.1006-6144.2022.01.008
  • Related Articles

    [1]LIU Ze, CHEN Zhenyu, CHEN Xiaodan, XU Wentan, LIU Chunhua, ZHU Zeying, NIU Zhijian, ZHAO Chenhui, ZHAO Yunbiao. Quantitative Analysis of Be in Herderite by Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2024, 43(5): 703-712. DOI: 10.15898/j.ykcs.202311010171
    [2]LIU Jin, WANG Jian, WANG Guijun, ZHANG Xiaogang, SHANG Ling. Analysis of Mineralogical Characteristics of Leucosphenite from the Fengcheng Formation in the Junggar Basin by Electron Probe Microanalyzer and X-ray Diffractometer[J]. Rock and Mineral Analysis, 2022, 41(5): 764-773. DOI: 10.15898/j.cnki.11-2131/td.202108190101
    [3]Mei-fang YE, San LIU, Gu-wei XIE, Hui-bo ZHAO, Ning-chao ZHOU, Xiao-yan WEI, Jian-guo YANG, Hong HOU, Lei WANG, Yi WANG. Characteristics of Micas from Sericitolite of the Gongpoquan and Baishantang Deposits, Beishan Area by Scanning Electron Microscope, X-ray Diffraction and Electron Microprobe Analyses[J]. Rock and Mineral Analysis, 2016, 35(2): 166-177. DOI: 10.15898/j.cnki.11-2131/td.2016.02.009
    [4]Han WANG, Zheng-yu ZHOU, Qian ZHONG, Rui-ting LIU, Qi LIU, Ying-bo LI. Study on Petrological and Mineralogical Characteristics of Laos Stone by EPMA-XRD-SEM[J]. Rock and Mineral Analysis, 2016, 35(1): 56-61. DOI: 10.15898/j.cnki.11-2131/td.2016.01.010
    [5]Yan LAN, Tai-jin LU, Wei-ming CHEN, Yang LIU, Rong LIANG, Ying MA, Xiao-hu ZHANG. A Non-destructive Measurement Method of Gem Jadeite Content in Jadeitite Based on Specific Gravity and X-ray Powder Diffraction[J]. Rock and Mineral Analysis, 2015, 34(2): 207-212. DOI: 10.15898/j.cnki.11-2131/td.2015.02.009
    [6]Nai-cen XU, Jia-lin SHEN, Jing ZHANG. Application of X-ray Diffraction, X-ray Fluorescence Spectrometry and Electron Microprobe in the Identification of Basalt[J]. Rock and Mineral Analysis, 2015, 34(1): 75-81. DOI: 10.15898/j.cnki.11-2131/td.2015.01.010
    [7]Yi WANG, Na CHANG, Ya-fei LIU, Hui-bo ZHAO, San LIU. Study on the Mineralogical Characteristics of Cinnabar Jade by X-ray Powder Diffraction-Laser Raman Spectroscopy-Electron Probe from Xunyang, Shan'xi Province[J]. Rock and Mineral Analysis, 2014, 33(6): 802-807. DOI: 10.15898/j.cnki.11-2131/td.2014.06.007
    [8]Wei REN, Lijin WANG, Jiaping LI. Detection of Emerald from Xinjiang by Electron Probe Microanalyzer and X-ray Diffractometer[J]. Rock and Mineral Analysis, 2010, 29(2): 179-181.
    [9]Progress in Background Subtraction and Spectral Interference Correction in Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49-54.
    [10]Evaluation of the Methods for Quantitative Determination of FeO and Fe2O3 by Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2007, 26(3): 213-218.

Catalog

    Article views (131) PDF downloads (41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return