Citation: | LIU Ze,CHEN Zhenyu,CHEN Xiaodan,et al. Quantitative Analysis of Be in Herderite by Electron Probe Microanalysis[J]. Rock and Mineral Analysis,2024,43(5):703−712. DOI: 10.15898/j.ykcs.202311010171 |
Previously, researchers employed electron probe microanalysis (EPMA) furnishedwith LDEB or LDE3H to establish a quantitative analysis approach for the Be content in berylliumsilicates, beryllium oxides, and beryllium borates. Nevertheless, a quantitative analysis method forthe Be content in beryllophosphate minerals is still lacking. At present, when EPMA equippedwith LSA300 crystal is used to analyze beryllophosphate minerals, the higher-order peaks of Pwill raise the upper background value of the Be Kα peak, resulting in inaccurate measurementresults of Be content. In this study, the EPMA equipped with LDE3H crystal was used to explorethe optimal quantitative analysis conditions for herderite in Shiziling granite in Jiangxi Provinceby using different accelerating voltages and probe currents. The experimental results show that theoptimal EPMA quantitative analysis conditions for herderite are: acceleration voltage of 10kV, andprobe current of 20nA. Under these conditions, the average content of P2O5, BeO, CaO, F is43.23%, 15.39%, 33.89%, and 7.94%, respectively, and the standard error of BeO is 0.3%. It isfound that the EPMA equipped with LDE3H crystal can set a suitable Be background to eliminatethe interference of the higher order peaks of P. In addition, the difficulty of Be measurement isrelated to Be characteristic X-ray, crystal structures and chemical composition of Be minerals. Theexploration of a quantitative analysis method of herderite solves the problem of interference of Pelement when the EPMA accurately quantifies the Be element of beryllophosphate minerals, andfurther improves the accuracy of the measurement of beryllium content by EPMA.
[1] |
梁飞, 赵汀, 王登红, 等. 中国铍资源供需预测与发展战略[J]. 中国矿业, 2018, 27(11): 6−10, 17. doi: 10.12075/j.issn.1004-4051
Liang F, Zhao T, Wang D H, et al. Supply and demand forecast and development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11): 6−10, 17. doi: 10.12075/j.issn.1004-4051
|
[2] |
李建康, 邹天人, 王登红, 等. 中国铍矿成矿规律[J]. 矿床地质, 2017, 36(4): 951−978. doi: 10.16111/j.0258-7106.2017.04.011
Li J K, Zou T R, Wang D H, et al. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 2017, 36(4): 951−978. doi: 10.16111/j.0258-7106.2017.04.011
|
[3] |
Bea F, Pereira M D, Stroh A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study)[J]. Chemical Geology, 1994, 117(1-4): 291−312. doi: 10.1016/0009-2541(94)90133-3
|
[4] |
Hervig R L. Beryllium analyses by secondary ion mass spectrometry[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 319−332. doi: 10.1007/978-3-319-18806-5_4
|
[5] |
Ottolini L, Bottazzi P, Vannucci R. Quantification of lithium, beryllium, and boron in silicates by secondary-ion mass spectrometry using conventional energy filtering[J]. Analytical Chemistry, 1993, 65(15): 1960−1968. doi: 10.1021/ac00063a007
|
[6] |
Ottolini L, Cámara F, Hawthorne F C, et al. SIMS matrix effects in the analysis of light elements in silicate minerals: Comparison with SREF and EMPA data[J]. American Mineralogist, 2002, 87(10): 1477−1485. doi: https://doi.org/10.2138/am-2002-1025
|
[7] |
Gadas P, Novák M, Galiová M V, et al. Secondary beryl in cordierite/sekaninaite pseudomorphs from granitic pegmatites—A monitor of elevated content of beryllium in the precursor[J]. The Canadian Mineralogist, 2020, 58(6): 785−802. doi: https://doi.org/10.3749/canmin.2000014
|
[8] |
Allaz J M, Smyth J R, Henry R E, et al. Beryllium-silicon disorder and rare earth crystal chemistry in gadolinite from the White Cloud pegmatite, Colorado, USA[J]. The Canadian Mineralogist, 2020, 58(6): 829−845. doi: 10.3749/canmin.1900084
|
[9] |
Khiller V V. Detection of beryllium in oxides and silicates by electron-probe microanalysis[J]. News of the Ural State Mining University, 2017, 4(48): 52−56. doi: 10.21440/2307-2091-2017-4-52-56
|
[10] |
Wang R C, Che X D, Zhang W L, et al. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay# 3 pegmatite (Altai, NW China)[J]. European Journal of Mineralogy, 2009, 21(4): 795−809. doi: 10.1127/0935-1221/2009/0021-1936
|
[11] |
张文兰, 汤志敏, 胡欢, 等. 含超轻元素Be矿物的电子探针定量分析——测试条件的约束[J]. 岩石学报, 2022, 38(7): 1879−1889. doi: 10.18654/100O-0569/2022.07.04
Zhang W L,Tang Z M, Hu H, et al. Quantitative analysis of ultra-light elements beryllium byelectron microprobe: Constraints of analysis conditions[J]. Acta Petrologica Sinica, 2022, 38(7): 1879−1889. doi: 10.18654/100O-0569/2022.07.04
|
[12] |
Hawthorne F C, Huminicki D M C. The crystal chemistry of beryllium[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 333−403. doi: 10.2138/rmg.2002.50.9
|
[13] |
Dyar M D, Wiedenbeck M, Robertson D, et al. Reference minerals for the microanalysis of light elements[J]. Geostandards Newsletter, 2001, 25(2−3): 441−463. doi: 10.1111/j.1751-908x.2001.tb00616.x
|
[14] |
张文兰, 王汝成, 蔡淑月. 超轻元素Be元素的电子探针定量分析以绿柱石为例[J]. 电子显微学报, 2006, 25(S1): 293−294. doi: CNKI:SUN:DZXV.0.2006-S1-162
Zhang W L, Wang R C, Cai S Y. EPMA quantitative analysis of super-light element Be: As a sample of beryl[J]. Journal of Chinese Electron Microscopy Society, 2006, 25(S1): 293−294. doi: CNKI:SUN:DZXV.0.2006-S1-162
|
[15] |
赵同新, 陈文迪, 殷婷, 等. 电子探针对含Be矿物绿柱石的定量分析[J]. 矿物学报, 2020, 40(2): 169−175. doi: 10.16461/j.cnki.1000-4734.2019.39.105
Zhao T X, Chen W D, Yin T, et al. EPMA quantitative analysis of beryllium mineral beryl[J]. Acta Mineralogica Sinica, 2020, 40(2): 169−175. doi: 10.16461/j.cnki.1000-4734.2019.39.105
|
[16] |
吴润秋, 饶灿, 王琪, 等. 关键金属铍的电子探针分析[J]. 科学通报, 2020, 65(20): 2161−2168. doi: 10.1360/TB-2020-0082
Wu R Q, Rao C, Wang Q, et al. Electron probe microanalysis of the key metal beryllium[J]. Chinese Science Bulletin, 2020, 65(20): 2161−2168. doi: 10.1360/TB-2020-0082
|
[17] |
张文兰, 车旭东, 王汝成, 等. 超轻元素铍的电子探针定量分析最佳条件探索: 以绿柱石为例[J]. 科学通报, 2020, 65(Z2): 3205−3216. doi: 10.1360/TB-2020-0316
Zhang W L, Che X D, Wang R C, et al. Optimum conditions for quantitative analysis of beryllium by electron probe microanalysis: A case study of beryl[J]. Chinese Science Bulletin, 2020, 65(Z2): 3205−3216. doi: 10.1360/TB-2020-0316
|
[18] |
Wu R Q, Rao C, Wang R C, et al. In situ quantitative analysis of beryllium by EPMA: Analytical conditions and further insights into beryllium geochemistry[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(9): 1824−1834. doi: 10.1039/D2JA00103A
|
[19] |
Lederer G W, Foley N K, Jaskula B W, et al. Beryllium—A critical mineral commodity—Resources, production, and supply chain[R]. US Geological Survey, 2016.
|
[20] |
Foley N K, Hofstra A H, Lindsey D A, et al. Occurrence model for volcanogenic beryllium deposits[R]. US Geological Survey, 2012.
|
[21] |
Ana M R. Beryl from the granitic pegmatite at Namivo, Alto Ligonha, Mozambique[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 2005, 181(2): 173−182. doi: 10.1127/0077-7757/2005/0015
|
[22] |
Charoy B. Beryllium speciation in evolved granitic magmas: Phosphates versus silicates[J]. European Journal of Mineralogy, 1999, 11: 135−148. doi: 10.1127/ejm/11/1/0135
|
[23] |
Galliski M Á, Černý P, Márquez-Zavalía M F, et al. An association of secondary Al-Li-Be-Ca-Sr phosphates in the San Elías pegmatite, San Luis, Argentina[J]. The Canadian Mineralogist, 2012, 50(4): 933−942. doi: 10.3749/ canmin.50.4.933
|
[24] |
Huang X L, Wang R C, Chen X M, et al. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, Southern China[J]. The Canadian Mineralogist, 2002, 40(4): 1047−1068. doi: https://doi.org/10.2113/gscanmin.40.4.1047
|
[25] |
车旭东, 王汝成, 胡欢, 等. 江西宜春黄玉-锂云母花岗岩中的铍矿化作用: 铍磷酸盐矿物组合[J]. 岩石学报, 2007, 23(6): 1552−1560. doi: 10.3969/j.issn.1000-0569.2007.06.029
Che X D, Wang R C, Hu H, et al. Beryllium mineralization in the Yichun topaz-lepidolite granite, Jiangxi: Associations of beryllium phosphate minerals[J]. Acta Petrologica Sinica, 2007, 23(6): 1552−1560. doi: 10.3969/j.issn.1000-0569.2007.06.029
|
[26] |
黄小龙, 王汝成, 陈小明, 等. 江西雅山富氟高磷花岗岩中的磷酸盐矿物及其成因意义[J]. 地质论评, 2001, 47(5): 542−550. doi: 10.16509/j.georeview.2001.05.018
Huang X L, Wang R C, Chen X M, et al. Phosphate minerals from the Yashan F- and P-rich granite in Yichun, Jiangxi Province: Genetic implications[J]. Geological Review, 2001, 47(5): 542−550. doi: 10.16509/j.georeview.2001.05.018
|
[27] |
高云, 李文钟, 李斌. 状态分析的电子探针研究[J]. 云南大学学报(自然科学版), 1995(S1): 51−56. doi: CNKI:SUN:YNDZ.0.1995-S1-012
Gao Y, Li W Z, Li B. Study of electron microprobe on state analysis[J]. Journal of Yunnan University (Natural Sciences Edition), 1995(S1): 51−56. doi: CNKI:SUN:YNDZ.0.1995-S1-012
|
[28] |
Raudsepp M. Recent advances in the electron-probe micro-analysis of minerals for the light elements[J]. Canadian Mineralogist, 1995, 33(2): 203−218.
|
[29] |
Rao C, Hatert F, Wang R C, et al. Minjiangite, BaBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, Southeastern China[J]. Mineralogical Magazine, 2015, 79(5): 1195−1202. doi: 10.1180/minmag.2015.079.5.13
|
[30] |
Rao C, Wang R, Hatert F, et al. Strontiohurlbutite, SrBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, Southeastern China[J]. American Mineralogist, 2014, 99(2−3): 494−499. doi: 10.2138/am.2014.4547
|