• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
ZHANG Chenxi,XIONG Yuxin,FU Jiali,et al. High Spatial Resolution U-Pb dating of Low-Uranium Calcite Using LA-MC-ICP-MS[J]. Rock and Mineral Analysis,2024,4X(X):1−16. DOI: 10.15898/j.ykcs.202403160057
Citation: ZHANG Chenxi,XIONG Yuxin,FU Jiali,et al. High Spatial Resolution U-Pb dating of Low-Uranium Calcite Using LA-MC-ICP-MS[J]. Rock and Mineral Analysis,2024,4X(X):1−16. DOI: 10.15898/j.ykcs.202403160057

High Spatial Resolution U-Pb dating of Low-Uranium Calcite Using LA-MC-ICP-MS

More Information
  • Received Date: March 15, 2024
  • Revised Date: January 07, 2025
  • Accepted Date: January 15, 2025
  • Available Online: February 21, 2025
  • HIGHLIGHTS
    (1) The sensitivity of U and Pb can be enhanced up to 7.4 and 5.8 times after optimization of the mass spectrometer parameters, and the introduction of N2 and the combination of Jet+X cone were maximized the sensitivity of Pb and U, respectively.
    (2) In this study, the "down-hole" fractionation behavior was consistent when depth to diameter ratios (aspect ratio) of the ablation crater was the same, although beam spot and frequency were different.
    (3) By optimising the experimental parameters, accurate determination of U-Pb ages with high spatial resolution (44μm) for calcite reference materials with low U content (0.04-0.63μg/g) was achieved by LA-MC-ICP-MS.

    Carbonate minerals combination with the U-Pb isotope dating system can provide direct temporal constraints for geoscientific applications. LA-MC-ICP-MS with its high sensitivity and accuracy, has been successfully applied to the high spatial resolution U-Pb dating of zircon, calcite and other minerals. In this paper, the experimental parameters of LA-MC-ICP-MS are optimised in detail, and a high spatial resolution U-Pb dating method is established for low-uranium calcite minerals. The effects of cone combination, GE mode, N2 introduction and Ar carrier gas flow rate on the U and Pb signal intensity and oxide yield (UO/U) are discussed in detail. The results showed that the highest sensitivity of Pb was achieved under the conditions of Jet+X cone combination, GE on mode, 8mL/min N2 introduction and 0.9L/min Ar carrier gas flow rate, while the oxide yield (UO/U) was lower than 1%. Three low uranium (0.04-0.63μg/g), calcite U-Pb dating reference materials were used to validate the reliability of the method. Samples LD-5, PTKD-2 and TARIM yield a lower intercept age of 73.20±0.56Ma, 152.7±2.5Ma and 206.2±1.3Ma, respectively, under the condition of 44μm beamspot, which are in agreement with the calibrated results of ID-TIMS/ID-MC-ICP-MS within the error range. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202403160057.

  • [1]
    Rasbury E T, Cole J M. Directly Dating Geologic Events: U‐Pb Dating of Carbonates[J]. Reviews of Geophysics, 2009, 47(3): RG3001. doi: 10.1029/2007RG000246
    [2]
    Roberts N M W, Holdsworth R E. Timescales of Faulting Through Calcite Geochronology: A Review[J]. Journal of Structural Geology, 2022, 158: 104578. doi: 10.1016/j.jsg.2022.104578
    [3]
    肖志斌, 耿建珍, 涂家润, 等. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究[J]. 岩矿测试, 2020, 39(2): 262−273. doi: 10.15898/j.cnki.11-2131/td.201908120129

    Xiao Z B, Geng J Z, Tu J R, et al. In situ U-Pb Isotope Dating Techniques for Sandstone-Type Uranium Deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262−273. doi: 10.15898/j.cnki.11-2131/td.201908120129
    [4]
    赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753. doi: 10.15898/j.cnki.11-2131/td.202202260035

    Zhao L H, Zhan X C, Zeng L S, et al. Direct Calibration Method for LA-HR-ICP-MS Apatite U-Pb Dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744−753. doi: 10.15898/j.cnki.11-2131/td.202202260035
    [5]
    Jahn B, Cuvellier H. Pb-Pb and U-Pb Geochronology of Carbonate Rocks: An Assessment[J]. Chemical Geology, 1994, 115(1−2): 125−151. doi: 10.1016/0009-2541(94)90149-X
    [6]
    Roberts N M W, Drost K, Horstwood M S A, et al. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) U–Pb Carbonate Geochronology: Strategies, Progress, and Limitations[J]. Geochronology, 2020, 2(1): 33−61. doi: 10.5194/gchron-2-33-2020
    [7]
    赵子贤, 施炜. 方解石LA-(MC-)ICP-MS U-Pb定年技术及其在脆性构造中的应用[J]. 地球科学与环境学报, 2019, 41(5): 505−516. doi: 10.3969/j.issn.1672-6561.2019.05.001

    Zhao Z X, Shi W. LA-(MC-)ICP MS U-Pb Dating Technique of Calcite and Its Application in Brittle Structures[J]. Journal of Earth Sciences and Environment, 2019, 41(5): 505−516. doi: 10.3969/j.issn.1672-6561.2019.05.001
    [8]
    杨鹏, 袁海锋, 马奎, 等. 川中太和气区震旦系灯影组二段储层成岩流体演化及油气成藏史——来自岩石学、原位地球化学、流体包裹体及年代学的证据[J]. 地质学报, 2023, 97(7): 2332−2353. doi: 10.3969/j.issn.0001-5717.2023.07.014

    Yang P, Yuan H F, Ma K, et al. Diagenetic Fluid Evolution and Hydrocarbon Accumulation History of Second Member of the Sinian Dengying Formation in the Taihe Gas Area, Central Sichuan Basin: Evidence from Petrology, in situ Geochemistry, Fluid Inclusions and Chronology[J]. Acta Geologica Sinica, 2023, 97(7): 2332−2353. doi: 10.3969/j.issn.0001-5717.2023.07.014
    [9]
    刘恩涛, ZHAO Jian-xin, 潘松圻, 等. 盆地流体年代学研究新技术: 方解石激光原位U-Pb定年法[J]. 地球科学, 2019, 44(3): 698−712. doi: 10.3799/dqkx.2019.958

    Liu E T, Zhao J X, Pan S Q, et al. A New Technology of Basin Fluid Geochronology: In-situ U-Pb Dating of Calcite[J]. Earth Science, 2019, 44(3): 698−712. doi: 10.3799/dqkx.2019.958
    [10]
    高伊雪, 邱昆峰, 于皓丞, 等. 碳酸盐矿物激光原位U-Pb定年基本原理、分析方法与地学应用[J]. 岩石矿物学杂志, 2022, 41(4): 786−803. doi: 10.3969/j.issn.1000-6524.2022.04.008

    Gao Y X, Qiu K F, Yu H C, et al. Principle, Methods, and Geological Applications of Carbonates LA-ICP-MS U-Pb Geochronology[J]. Acta Petrologica et Mineralogica, 2022, 41(4): 786−803. doi: 10.3969/j.issn.1000-6524.2022.04.008
    [11]
    张亮亮, 朱弟成, 谢锦程, 等. 碳酸盐矿物激光原位U-Pb定年: 进展与展望[J]. 矿物岩石地球化学通报, 2022, 41(6): 1120−1134. doi: 10.19658/i.issn.1007-2802.2022.41.091

    Zhang L L, Zhu D C, Xie J C, et al. Advances and Perspectives of the in-situ Laser Ablation Carbonate Minerals U-Pb Dating[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(6): 1120−1134. doi: 10.19658/i.issn.1007-2802.2022.41.091
    [12]
    Pickering R, Kramers J D, Partridge T, et al. U-Pb Dating of Calcite-Aragonite Layers in Speleothems from Hominin Sites in South Africa by MC-ICP-MS[J]. Quaternary Geochronology, 2010, 5(5): 544−558. doi: 10.1016/j.quageo.2009.12.004
    [13]
    Rasbury E, Hanson G, Meyers W, et al. Dating of the Time of Sedimentation Using U-Pb Ages for Paleosol Calcite[J]. Geochimica et Cosmochimica Acta, 1997, 61(7): 1525−1529. doi: 10.1016/S0016-7037(97)00043-4
    [14]
    Brannon J C, Cole S C, Podosek F A, et al. Th-Pb and U-Pb Dating of Ore-Stage Calcite and Paleozoic Fluid Flow[J]. Science, 1996, 271(5248): 491−493. doi: 10.1126/science.271.5248.491
    [15]
    Yang P, Wu G, Nuriel P, et al. In situ LA-ICPMS U-Pb Dating and Geochemical Characterization of Fault-Zone Calcite in the Central Tarim Basin, Northwest China: Implications for Fluid Circulation and Fault Reactivation[J]. Chemical Geology, 2021, 568: 120125. doi: 10.1016/j.chemgeo.2021.120125
    [16]
    Roberts N M W, Walker R J. U-Pb Geochronology of Calcite-Mineralized Faults: Absolute Timing of Rift-Related Fault Events on the Northeast Atlantic Margin[J]. Geology, 2016, 44(7): 531−534. doi: 10.1130/G37868.1
    [17]
    Coogan L A, Parrish R R, Roberts N M W. Early Hydrothermal Carbon Uptake by the Upper Oceanic Crust: Insight from in situ U-Pb Dating[J]. Geology, 2016, 44(2): 147−150. doi: 10.1130/G37212.1
    [18]
    鲁雪松, 桂丽黎, 陈玮岩, 等. 激光原位碳酸盐岩U-Pb定年实验方法改进与石油地质应用[J]. 中国科学: 地球科学, 2023, 66(12): 2914−2929. doi: 10.1360/SSTe-2022-0257

    Lu X S, Gui L L, Chen W Y, et al. Improvement of in situ LA-ICP-MS U-Pb Dating Method for Carbonate Minerals and Its Application in Petroleum Geology[J]. Science China Earth Sciences, 2023, 66(12): 2914−2929. doi: 10.1360/SSTe-2022-0257
    [19]
    吴石头, 杨岳衡, Nick M. W. Roberts, 等. 高灵敏度-单接收杯LA-SF-ICP-MS原位方解石U-Pb定年[J]. 中国科学: 地球科学, 2022, 65(6): 1146−1160. doi: 10.1360/N072021-0165

    Wu S T, Yang Y H, Roberts N M W, et al. In situ Calcite U-Pb Geochronology by High-Sensitivity Single-Collector LA-SF-ICP-MS[J]. Science China Earth Sciences, 2022, 65(6): 1146−1160. doi: 10.1360/N072021-0165
    [20]
    Luo K, Zhou J X, Feng Y X, et al. In situ U-Pb Dating of Calcite from the South China Antimony Metallogenic Belt[J]. iScience, 2020, 23: 101575. doi: 10.1016/j.isci.2020.101575
    [21]
    谢博航, 吴石头, 杨岳衡, 等. LA-MC-ICP-MS方解石U-Pb定年技术[J]. 岩石学报, 2023, 39(1): 236−248. doi: 10.18654/1000-0569/2023.01.16

    Xie B H, Wu S T, Yang Y H, et al. LA-MC-ICP-MS Calcite U-Pb Dating Technique[J]. Acta Petrologica Sinica, 2023, 39(1): 236−248. doi: 10.18654/1000-0569/2023.01.16
    [22]
    Zhang L L, Zhu D C, Yang Y H, et al. U-Pb Geochronology of Carbonate by Laser Ablation MC-ICP-MS: Method Improvements and Geological Applications[J]. Atomic Spectroscopy, 2021, 42(6): 335−348. doi: 10.46770/AS.2021.803
    [23]
    程婷, Jianxin Zhao, Yuexing Feng, 等. 低铀碳酸盐矿物的LA-MC-ICPMS微区原位U-Pb定年方法[J]. 科学通报, 2020, 65(2−3): 150−154. doi: 10.1360/TB-2019-0355

    Cheng T, Zhao J X, Feng Y X, et al. LA-MC-ICPMS U-Pb Dating Method for Low-Uranium Carbonate Minerals[J]. Chinese Science Bulletin, 2020, 65(2−3): 150−154. doi: 10.1360/TB-2019-0355
    [24]
    Nuriel P, Craddock J, Kylander-Clark A R C, et al. Reactivation History of the North Anatolian Fault Zone Based on Calcite Age-Strain Analyses[J]. Geology, 2019, 47(5): 465−469. doi: 10.1130/G45727.1
    [25]
    Yokoyama T, Kimura J, Mitsuguchi T, et al. U-Pb Dating of Calcite Using LA-ICP-MS: Instrumental Setup for Non-Matrix-Matched Age Dating and Determination of Analytical Areas Using Elemental Imaging[J]. Geochemical Journal, 2018, 52(6): 531−540. doi: 10.2343/geochemj.2.0541
    [26]
    Nguyen A D, Feng Y X, Cheng T, et al. LA‐(MC)‐ICP-MS U‐Pb Geochronology-Potential Calcite Reference Materials[A].Barcelona: Goldschmidt Conference, 2019.
    [27]
    Zhang L L, Zhu D C, Xie J C, et al. TARIM Calcite: A Potential Reference Material for Laser ICPMS in situ Calcite U-Pb Dating[J]. Journal of Analytical Atomic Spectrometry, 2023, 38(11): 2302−2312. doi: 10.1039/d3ja00222e
    [28]
    Klaus P J, Ulrike W, Brigitte S, et al. Determination of Reference Values for NIST SRM610−617 Glasses Following ISO Guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397−429. doi: 10.1111/j.1751-908X.2011.00120.x
    [29]
    Roberts N M W, Rasbury E T, Parrish R R, et al. A Calcite Reference Material for LA‐ICP‐MS U‐Pb Geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807−2814. doi: 10.1002/2016GC006784
    [30]
    Paton C, Hellstrom J, Paul B, et al. Iolite: Freeware for the Visualization and Processing of Mass Spectrometric Data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508−2518. doi: 10.1039/C1JA10172B
    [31]
    Vermeesch P. IsoplotR: A Free and Open Toolbox for Geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479−1493. doi: 10.1016/j.gsf.2018.04.001
    [32]
    Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391−1399. doi: 10.1039/c2ia30078h
    [33]
    Flamigni L, Koch J, Günther D. The Effect of Carrier Gas Humidity on the Vaporization of Laser-Produced Aerosols in Inductively Coupled Plasmas[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(2): 280−286. doi: 10.1039/c3ja50314c
    [34]
    He T, Ni Q, Miao Q, et al. Effects of Cone Combinations on the Signal Enhancement by Nitrogen in LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33: 1021−1030. doi: 10.1039/C7JA00376E
    [35]
    何焘, 张晨西, 张文, 等. 高空间分辨率LA-ICP-MS测定硅酸盐玻璃标准物质中42种微量元素[J]. 岩矿测试, 2023, 42(5): 983−995. doi: 10.15898/j.ykcs.202308090134

    He T, Zhang C X, Zhang W, et al. Determination of 42 Trace Elements in Silicate Glass Reference Materials by High Spatial Resolution LA-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(5): 983−995. doi: 10.15898/j.ykcs.202308090134
    [36]
    ver Hoeve T J, Scoates J S, Wall C J, et al. Evaluating Downhole Fractionation Corrections in LA-ICP-MS U-Pb Zircon Geochronology[J]. Chemical Geology, 2018, 483: 201−217. doi: 10.1016/j.chemgeo.2017.12.014
    [37]
    罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物U-Th-Pb定年新进展[J]. 地球科学, 2022, 47(11): 4122−4144. doi: 10.3799/dqkx.2022.365

    Luo T, Hu Z C. Recent Advances in U-Th-Pb Dating of Accessory Minerals by Laser Ablation Inductively Coupled Plasma[J]. Earth Science, 2022, 47(11): 4122−4144. doi: 10.3799/dqkx.2022.365
    [38]
    Guillong M, Wotzlaw J F, Looser N, et al. Evaluating the Reliability of U-Pb Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) Carbonate Geochronology: Matrix Issues and a Potential Calcite Validation Reference Material[J]. Geochronology, 2020, 2(1): 155−167. doi: 10.5194/gchron-2-155-2020

Catalog

    Article views (6) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return