• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
XU Liyi,YU Huimin,DING Xin,et al. Vanadium Isotope Composition of Rock Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis,2025,44(1):63−74. DOI: 10.15898/j.ykcs.202405280123
Citation: XU Liyi,YU Huimin,DING Xin,et al. Vanadium Isotope Composition of Rock Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis,2025,44(1):63−74. DOI: 10.15898/j.ykcs.202405280123

Vanadium Isotope Composition of Rock Reference Materials by MC-ICP-MS

More Information
  • Received Date: May 27, 2024
  • Revised Date: June 25, 2024
  • Accepted Date: July 04, 2024
  • Available Online: August 08, 2024
  • Published Date: August 07, 2024
  • HIGHLIGHTS
    (1) The vanadium isotopes of seven reference materials were analyzed using MC-ICP-MS with high-precision and accuracy.
    (2) The igneous rock vanadium isotope reference material with the lowest δ51V value at present was reported.
    (3) The range of vanadium isotopic composition of igneous rock standards was broadened, and the data of vanadium isotope standard materials was supplemented.

    In order to ensure the accuracy and precision of data during the analysis of vanadium isotopes, and facilitate the comparison of data among laboratories internationally, considering the shortage of inventory for the commonly used reference materials from the United States Geological Survey (USGS), seven reference materials (JA-1, JB-3, JB-1b, JGb-1, GBW07105, GBW07123, and GBW07454) with unreported vanadium isotope composition were selected from the Geological Survey of Japan (GSJ) and the Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (IGGE) and their vanadium isotopes were measured using MC-ICP-MS. Among these reference materials, the gabbro reference material JGb-1 has the highest δ51V value of −1.05‰±0.08‰, and the andesite reference material JA-1 has the lowest δ51V (−0.34‰±0.06‰). The δ51V values of the other reference materials range from −0.72‰ to −0.81‰, all falling within the MORB range. The reporting of the vanadium isotopic composition of these reference materials in this article will enrich the database of vanadium isotopic research and contribute to the future study of vanadium isotopes in more fields. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202405280123.

  • [1]
    Karner J M. Application of a new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon, and Mars[J]. American Mineralogist, 2006, 91(2-3): 270−277. doi: 10.2138/am.2006.1830
    [2]
    Siebert J, Badro J, Antonangeli D, et al. Terrestrial accretion under oxidizing conditions[J]. Science, 2013, 339(6124): 1194−1197. doi: 10.1126/science.1227923
    [3]
    Wood B J, Wade J, Kilburn M R. Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(5): 1415−1426. doi: 10.1016/j.gca.2007.11.036
    [4]
    Canil D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present[J]. Earth and Planetary Science Letters, 2002, 195(1): 75−90. doi: 10.1016/S0012-821X(01)00582-9
    [5]
    Aeolus Lee C T, Leeman W P, Canil D, et al. Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions[J]. Journal of Petrology, 2005, 46(11): 2313−2336. doi: 10.1093/petrology/egi056
    [6]
    Mallmann G, O’Neill H S C. The crystal/melt partition-ing of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb)[J]. Journal of Petrology, 2009, 50(9): 1765−1794. doi: 10.1093/petrology/egp053
    [7]
    Bennett W W, Canfield D E. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments[J]. Earth-Science Reviews, 2020, 204: 103175. doi: 10.1016/j.earscirev.2020.103175
    [8]
    Algeo T J, Maynard J B. Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments[J]. Geosphere, 2008, 4(5): 872−887. doi: 10.1130/ges00174.1
    [9]
    Shore A, Fritsch A, Heim M, et al. Discovery of the vanadium isotopes[J]. Atomic Data and Nuclear Data Tables, 2010, 96(4): 351−357. doi: 10.1016/j.adt.2010.02.002
    [10]
    黄方, 吴非. 钒同位素地球化学综述[J]. 地学前缘, 2015, 22(5): 94−101. doi: 10.13745/j.esf.2015.05.007

    Huang F, Wu F. A review of vanadium isotope geochemistry[J]. Earth Science Frontiers, 2015, 22(5): 94−101. doi: 10.13745/j.esf.2015.05.007
    [11]
    Nielsen S G, Prytulak J, Halliday A N. Determination of precise and accurate 51V/50V isotope ratios by MC-ICP-MS, Part 1: Chemical separation of vanadium and mass spectrometric protocols[J]. Geostandards and Geoanalytical Research, 2011, 35(3): 293−306. doi: 10.1111/j.1751-908X.2011.00106.x
    [12]
    Prytulak J, Nielsen S G, Halliday A N. Determination of precise and accurate 51V/50V isotope ratios by multi-collector ICP-MS, Part 2: Isotopic composition of six reference materials plus the allende chondrite and verification tests[J]. Geostandards and Geoanalytical Research, 2011, 35(3): 307−318. doi: 10.1111/j.1751-908X.2011.00105.x
    [13]
    Ventura G T, Gall L, Siebert C, et al. The stable isotope composition of vanadium, nickel, and molybdenum in crude oils[J]. Applied Geochemistry, 2015, 59: 104−117. doi: 10.1016/j.apgeochem.2015.04.009
    [14]
    Nielsen S G, Owens J D, Horner T J. Analysis of high-precision vanadium isotope ratios by medium resolution MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 531−536. doi: 10.1039/c5ja00397k
    [15]
    Wu F, Qi Y H, Yu H M, et al. Vanadium isotope measurement by MC-ICP-MS[J]. Chemical Geology, 2016, 421: 17−25. doi: 10.1016/j.jpgl.2015.06.048
    [16]
    Schuth S, Horn I, Brüske A, et al. First vanadium isotope analyses of V-rich minerals by femtosecond laser ablation and solution-nebulization MC-ICP-MS[J]. Ore Geology Reviews, 2017, 81: 1271−1286. doi: 10.1016/j.oregeorev.2016.09.028
    [17]
    Schuth S, Brüske A, Hohl S V, et al. Vanadium and its isotope composition of river water and seawater: Analytical improvement and implications for vanadium isotope fractionation[J]. Chemical Geology, 2019, 528: 119261. doi: 10.1016/j.chemgeo.2019.07.036
    [18]
    Dong L H, Wei W, Yu C L, et al. Determination of vanadium isotope compositions in carbonates using an Fe coprecipitation method and MC-ICP-MS[J]. Analytical Chemistry, 2021, 93(19): 7172−7179. doi: 10.1021/acs.analchem.0c04800
    [19]
    Nielsen S G, Prytulak J, Wood B J, et al. Vanadium isotopic difference between the silicate earth and meteorites[J]. Earth and Planetary Science Letters, 2014, 389: 167−175. doi: 10.1016/j.jpgl.2013.12.030
    [20]
    Sossi P A, Moynier F, Chaussidon M, et al. Early Solar system irradiation quantified by linked vanadium and beryllium isotope variations in meteorites[J]. Nature Astronomy, 2017, 1(4): 103175. doi: 10.1038/s41550-017-0055
    [21]
    Nielsen S G, Auro M, Righter K, et al. Nucleosynthetic vanadium isotope heterogeneity of the Early Solar system recorded in chondritic meteorites[J]. Earth and Planetary Science Letters, 2019, 505: 131−140. doi: 10.1016/j.jpgl.2018.10.029
    [22]
    Hopkins S S, Prytulak J, Barling J, et al. The vanadium isotopic composition of Lunar basalts[J]. Earth and Planetary Science Letters, 2019, 511: 12−24. doi: 10.1016/j.jpgl.2019.01.008
    [23]
    Nielsen S G, Bekaert D V, Magna T, et al. The vanadium isotope composition of Mars: Implications for planetary differentiation in the Early Solar system[J]. Geochemical Perspectives Letters, 2020: 35−39.
    [24]
    Nielsen S G, Bekaert D V, Auro M. Isotopic evidence for the formation of the Moon in a canonical giant impact[J]. Nature Communications, 2021, 12(1): 1−7. doi: 10.1038/s41467-021-22155-7
    [25]
    戚玉菡, 吴非, 李春辉, 等. 地幔和大洋玄武岩的钒同位素研究[J]. 矿物岩石地球化学通报, 2019, 38(3): 643−650. doi: 10.19658/j.issn.1007-2802.2019.38.052

    Qi Y H, Wu F, Li C H, et al. Vanadium isotope compositions of the mantle and oceanic basalts[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(3): 643−650. doi: 10.19658/j.issn.1007-2802.2019.38.052
    [26]
    Prytulak J, Nielsen S G, Ionov D A, et al. The stable vanadium isotope composition of the mantle and mafic lavas[J]. Earth and Planetary Science Letters, 2013, 365: 177−189. doi: 10.1016/j.jpgl.2013.01.010
    [27]
    Wu F, Qi Y H, Perfit M R, et al. Vanadium isotope compositions of mid-ocean ridge lavas and altered oceanic crust[J]. Earth and Planetary Science Letters, 2018, 493: 128−139. doi: 10.1016/j.jpgl.2018.04.009
    [28]
    Qi Y H, Wu F, Ionov D A, et al. Vanadium isotope composition of the bulk silicate earth: Constraints from peridotites and komatiites[J]. Geochimica et Cosmochimica Acta, 2019, 259: 288−301. doi: 10.1016/j.gca.2019.06.008
    [29]
    Novella D, Maclennan J, Shorttle O, et al. A multi-proxy investigation of mantle oxygen fugacity along the Reykjanes Ridge[J]. Earth and Planetary Science Letters, 2020, 531: 115973. doi: 10.1016/j.jpgl.2019.115973
    [30]
    Chen Z W, Ding X, Kiseeva E S, et al. Vanadium isotope fractionation of alkali basalts during mantle melting[J]. Lithos, 2023, 442−443: 107082.
    [31]
    Prytulak J, Sossi P A, Halliday A N, et al. Stable vanadium isotopes as a redox proxy in magmatic systems?[J]. Geochemical Perspectives Letters, 2017, 3(1): 75−84.
    [32]
    Ding X, Helz R T, Qi Y H, et al. Vanadium isotope fractionation during differentiation of Kilauea Iki Lava Lake, Hawaii[J]. Geochimica et Cosmochimica Acta, 2020, 289: 114−129. doi: 10.1016/j.gca.2020.08.023
    [33]
    Tian S Y, Ding X, Qi Y H, et al. Dominance of felsic continental crust on Earth after 3 billion years ago is recorded by vanadium isotopes[J]. Proceedings of the National Academy of Sciences, 2023, 120(11): e2220563120. doi: 10.1073/pnas.2220563120
    [34]
    Qi Y H, Gong Y Z, Wu F, et al. Coupled variations in V-Fe abundances and isotope compositions in latosols: Implications for V mobilization during chemical weathering[J]. Geochimica et Cosmochimica Acta, 2022, 320: 26−40. doi: 10.1016/j.gca.2021.12.028
    [35]
    Heard A W, Wang Y, Ostrander C M, et al. Coupled vanadium and thallium isotope constraints on Mesoproterozoic ocean oxygenation around 1.38-1.39Ga[J]. Earth and Planetary Science Letters, 2023, 610: 118127. doi: 10.1016/j.jpgl.2023.118127
    [36]
    Fan H F, Ostrander C M, Auro M, et al. Vanadium isotope evidence for expansive ocean euxinia during the appearance of early Ediacara Biota[J]. Earth and Planetary Science Letters, 2021, 567: 117007. doi: 10.1016/j.jpgl.2021.117007
    [37]
    Li S Q, Friedrich O, Nielsen S G, et al. Reconciling biogeochemical redox proxies: Tracking variable bottom water oxygenation during OAE-2 using vanadium isotopes[J]. Earth and Planetary Science Letters, 2023, 617: 118237. doi: 10.1016/j.jpgl.2023.118237
    [38]
    Wei W, Chen X, Ling H F, et al. Vanadium isotope evidence for widespread marine oxygenation from the late Ediacaran to early Cambrian[J]. Earth and Planetary Science Letters, 2023, 602: 117942. doi: 10.1016/j.jpgl.2022.117942
    [39]
    Chételat J, Nielsen S G, Auro M, et al. Vanadium stable isotopes in Biota of Terrestrial and aquatic food chains[J]. Environmental Science and Technology, 2021, 55(8): 4813−4821. doi: 10.1021/acs.est.0c07509
    [40]
    Huang Y, Long Z, Zhou D, et al. Fingerprinting vanadium in soils based on speciation characteristics and isotope compositions[J]. Science of the Total Environment, 2021, 791: 148240. doi: 10.1016/j.scitotenv.2021.148240
    [41]
    An Y J, Li X, Zhang Z F. Barium isotopic compositions in thirty-four geological reference materials analysed by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 44(1): 183−199. doi: 10.1111/ggr.12299
    [42]
    Wu F, Owens J D, Scholz F, et al. Sedimentary vanadium isotope signatures in low oxygen marine conditions[J]. Geochimica et Cosmochimica Acta, 2020, 284: 134−155. doi: 10.1016/j.gca.2020.06.013
    [43]
    杨林, 石震, 于慧敏, 等. 多接收电感耦合等离子体质谱法测定岩石和土壤等国家标准物质的硅同位素组成[J]. 岩矿测试, 2023, 42(1): 136−145. doi: 10.15898/j.cnki.11-2131/td.202112060195

    Yang L, Shi Z, Yu H M, et al. Determination of silicon isotopic compositions of rock and soil reference materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(1): 136−145. doi: 10.15898/j.cnki.11-2131/td.202112060195
    [44]
    Zeng Z, Wu F. Rapid determination of V isotopes with MC-ICP-MS: New developments in sample purification[J]. Journal of Analytical Atomic Spectrometry, 2024, 39(1): 121−130. doi: 10.1039/d3ja00285

Catalog

    Article views (141) PDF downloads (44) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return