• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
CHEN Haiyan,ZHANG Yunqiang,MAO Xiangju,et al. Occurrence State of Rare Earth Elements in the Paleo-Weathering Crust of the Tieling Formation, Northern Hebei Province by X-Ray Diffraction and Electron Probe Microanalysis[J]. Rock and Mineral Analysis,2024,43(6):836−846. DOI: 10.15898/j.ykcs.202312160183
Citation: CHEN Haiyan,ZHANG Yunqiang,MAO Xiangju,et al. Occurrence State of Rare Earth Elements in the Paleo-Weathering Crust of the Tieling Formation, Northern Hebei Province by X-Ray Diffraction and Electron Probe Microanalysis[J]. Rock and Mineral Analysis,2024,43(6):836−846. DOI: 10.15898/j.ykcs.202312160183

Occurrence State of Rare Earth Elements in the Paleo-Weathering Crust of the Tieling Formation, Northern Hebei Province by X-Ray Diffraction and Electron Probe Microanalysis

More Information
  • Received Date: December 15, 2023
  • Revised Date: September 23, 2024
  • Accepted Date: October 14, 2024
  • Available Online: October 30, 2024
  • Published Date: October 30, 2024
  • HIGHLIGHTS
    (1) The rare earth elements in the paleo-weathering crust of the Tieling Formation mainly exist in the mineral phase, with extremely low content of rare elements in the aqueous phase, ionic phase, and colloidal sedimentary phase.
    (2) Light rare earth elements such as Ce, Nd, and Sm are partially present in anatase, leucoxene, and barite as structural elements, while the rest may exist as nanoscale particles on the surface of rutile and in a large amount of clay minerals.
    (3) The extremely low levels of ionic rare earth elements may be attributed to the adsorption effects of clay minerals such as illite and mixed layers of illite and montmorillonite.

    In recent years, the discovered paleo-weathering crustal rare earth ores have the advantages of stability and easy mining. However, due to the low degree of research on their element occurrence state, the study of the enrichment mechanism of the deposits is restricted. In this paper, the occurrence state of rare earth elements in the paleo-weathering crust of the Tieling Formation was systematically studied by using the techniques of stepwise chemical extraction, X-ray diffraction, heavy minerals identification, and electron probe microanalysis. Stepwise chemical extraction shows that rare earth elements in the paleo-weathering crust mainly exist in mineral phases, accounting for about 99.38% of the total content. The rare earth elements in aqueous solution, ionic phase, and colloidal deposition phase account for 0.01%, 0.22% and 0.39%, respectively; X-ray diffraction analysis shows that a small amount of rare earth elements in the ionic adsorption state in the paleo-weathering crust samples may exist on the surface of clay minerals such as illite; electron probe microanalysis results show that the anatase, leucoxene and barite in the paleo-weathering crust samples contain about 0.1% of light rare earth elements such as Ce, Nd and Sm. In summary, it is preliminarily concluded that the main rare earth elements in the paleo-weathering crust exist in mineral phases, some of them exist in anatase, leucoxene and barite as similar images, and the rest may exist on the surface of anatase and a large number of clay minerals in nano-scale fine particles. A very small amount of ionic rare earth elements may be adsorbed on the surface of clay minerals such as illite and illite-smectite mixed layer. The content of rare earth elements in the water-soluble phase and colloidal sedimentary phase is very low. The study on the occurrence state of rare earth elements in the ancient weathering crust helps to optimize development and utilization technology and provides a theory for the selection and smelting utilization of rare earth resources.

  • [1]
    张培善. 中国稀土矿床成因类型[J]. 地质科学, 1989(1): 26−32.

    Zhang P S. A study on the genetic classification of rare earth mineral deposits of China[J]. Scientia Geologica Sinica, 1989(1): 26−32.
    [2]
    王彪, 黄庆, 何良伦, 等. 黔西北麻乍地区沉积型稀土矿稀土元素赋存状态研究[J]. 矿物学报, 2023, 43: 1−14. doi: 10.16461/j.cnki.1000-4734.2023.43.087

    Wang B, Huang Q, He L L, et al. The occurrence state of rare earth elements in sedimentary rare earth deposits in Mazha area, Northwest Guizhou[J]. Acta Mineralogica Sinica, 2023, 43: 1−14. doi: 10.16461/j.cnki.1000-4734.2023.43.087
    [3]
    郑禄林, 魏怀瑞, 高军波, 等. 黔西北峨眉山玄武岩风化壳三稀矿产资源富集成矿规律[J]. 黄金, 2022, 43(9): 12−19. doi: 10.11792/hj20220903

    Zheng L L, Wei H R, Gao J B, et al. Accumulation and mineralization regularity of three rare mineral resources in weathering crust of basalt in Northwestern Guizhou[J]. Gold, 2022, 43(9): 12−19. doi: 10.11792/hj20220903
    [4]
    衮民汕, 蔡国盛, 曾道国, 等. 贵州西部二叠系峨眉山玄武岩顶部古风化壳钪-铌-稀土矿化富集层的发现与意义[J]. 矿物学报, 2021, 41(4−5): 531−547. doi: 10.16461/j.cnki.1000-4734.2021.41.089

    Gun M S, Cai G S, Zeng D G, et al. Discovery and significance of the Sc-Nb-REE-enriched zone in the paleocrust of weathering atop the Permian Emeishan basalt in the Western Guizhou, China[J]. Acta Mineralogica Sinica, 2021, 41(4−5): 531−547. doi: 10.16461/j.cnki.1000-4734.2021.41.089
    [5]
    高军波, 杨光海, 汪龙波, 等. 贵州镇远煌斑岩风化壳中稀土-铌的富集特征与赋存状态[J]. 矿物学报, 2021, 41(4−5): 548−557. doi: 10.16461/j.cnki.1000-4734.2021.41.102

    Gao J B, Yang G H, Wang L B, et al. A study on features and occurrence states of rare earth elements and niobium in the weathering crust of lamprophyre in Zhenyuan, Guizhou Province, China[J]. Acta Mineralogica Sinica, 2021, 41(4−5): 548−557. doi: 10.16461/j.cnki.1000-4734.2021.41.102
    [6]
    张保涛, 胡兆国, 梅贞华, 等. 华北地区本溪组首次发现古风化壳沉积金红石型钛矿[J]. 地质学报, 2022, 96(6): 2251−2253. doi: 10.19762/j.cnki.dizhixuebao.2022290

    Zhang B T, Hu Z G, Mei Z H, et al. First discovery of the paleoweathering crust sedimentary-type rutile phase titanium ore deposit in Benxi Group of North China[J]. Acta Geologica Sinica, 2022, 96(6): 2251−2253. doi: 10.19762/j.cnki.dizhixuebao.2022290
    [7]
    杨鑫朋, 张运强, 程洲, 等. 河北省奥陶纪马家沟组顶部古风化壳中三稀元素赋存状态及富集机制[J]. 矿床地质, 2023, 42(1): 157−169. doi: 10.16111/j.0258-7106.2023.01.010

    Yang X P, Zhang Y Q, Cheng Z, et al. Occurrence state and enrichment mechanism of rare earth, rare metal and rare dispersed elements in paleo-weathering crust of Ordovician Majiagou Formation, Hebei[J]. Mineral Deposits, 2023, 42(1): 157−169. doi: 10.16111/j.0258-7106.2023.01.010
    [8]
    文俊, 竹合林, 张金元, 等. 川南沐川地区首次发现宣威组底部古风化壳-沉积型铌、稀土矿[J]. 中国地质, 2021, 48(3): 970−971. doi: 10.12029/gc20210327

    Wen J, Zhu H L, Zhang J Y, et al. The first discovery of the paleo-weathering crust-sedimentary Nb and rare earth deposits at the bottom of Xuanwei Formation in the Muchuan area of Southern Sichuan[J]. Geology in China, 2021, 48(3): 970−971. doi: 10.12029/gc20210327
    [9]
    文俊, 刘冶成, 赵俊兴, 等. 川南沐川地区宣威组底部铌-稀土多金属富集层富集规律、沉积环境与成矿模式[J]. 地质学报, 2022, 96(2): 592−615. doi: 10.19762/j.cnki.dizhixuebao.2021281

    Wen J, Liu Y C, Zhao J X, et al. Enrichment regularity, sedimentary environment and metallogenic model of niobium-rare earth polymetallic enrichment layer at the bottom of the Xuanwei Formation in Muchuan area, South Sichuan[J]. Acta Geologica Sinica, 2022, 96(2): 592−615. doi: 10.19762/j.cnki.dizhixuebao.2021281
    [10]
    文俊, 刘冶成, 竹合林, 等. 川南沐川地区上二叠统宣威组底部 Nb-REE 超常富集特征及其地质意义[J]. 矿床地质, 2021, 40(5): 1045−1071. doi: 10.16111/j.0258-7106.2021.05.010

    Wen J, Liu Y C, Zhu H L, et al. Characteristics and geological significance of abnormal enrichment of Nb-REE in bottom of upper Permian Xuanwei Formation in Muchuan area, Southern Sichuan[J]. Mineral Deposits, 2021, 40(5): 1045−1071. doi: 10.16111/j.0258-7106.2021.05.010
    [11]
    王登红, 赵芝, 于扬, 等. 我国离子吸附型稀土矿产科学研究和调查评价新进展[J]. 地球学报, 2017, 38(3): 317−325. doi: 10.3975/cagsb.2017.03.02

    Wang D H, Zhao Z, Yu Y, et al. A review of the achievements in the survey and study of ion-absorption type REE deposits in China[J]. Acta Geoscientica Sinica, 2017, 38(3): 317−325. doi: 10.3975/cagsb.2017.03.02
    [12]
    赵芝, 王登红, 王成辉, 等. 离子吸附型稀土找矿及研究新进展[J]. 地质学报, 2019, 93(6): 1454−1465. doi: 10.19762/j.cnki.dizhixuebao.2019086

    Zhao Z, Wang D H, Wang C H, et al. Progress in prospecting and research of ion-adsorption type REE deposits[J]. Acta Geologica Sinica, 2019, 93(6): 1454−1465. doi: 10.19762/j.cnki.dizhixuebao.2019086
    [13]
    雒恺, 马金龙. 花岗岩风化过程中稀土元素迁移富集机制研究进展[J]. 地球科学进展, 2022, 37(7): 692−708. doi: 10.11867/j.issn.1001-8166.2022.7.dqkxjz202207003

    Luo K, Ma J L. Recent advances in migration and enrichment of rare earth elements during chemical weathering of granite[J]. Advances in Earth Science, 2022, 37(7): 692−708. doi: 10.11867/j.issn.1001-8166.2022.7.dqkxjz202207003
    [14]
    刘阳, 付勇, 周祖虎, 等. 黔西北上二叠统峨眉山玄武岩风化壳中铌富集机制初探[J]. 矿床地质, 2021, 40(4): 776−792. doi: 10.16111/j.0258-7106.2021.04.008

    Liu Y, Fu Y, Zhou Z H, et al. Preliminary study on the enrichment mechanism of niobium in clay layer of weathering crust of Upper Permian basalt in North Western Guizhou[J]. Mineral Deposits, 2021, 40(4): 776−792. doi: 10.16111/j.0258-7106.2021.04.008
    [15]
    张海, 郭佩佩. 贵州西部峨眉山玄武岩风化壳稀土元素迁移富集规律研究[J]. 中国稀土学报, 2021, 39(5): 786−795. doi: 10.11785/S1000-4343.20210512

    Zhang H, Guo P P. Rare earth element migration and enrichment of weathered crust of Emeishan basalt from West Guizhou Province[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(5): 786−795. doi: 10.11785/S1000-4343.20210512
    [16]
    薛洪富, 向震中, 吴林, 等. 黔西北玉龙地区Nb-REE富集层中稀土赋存形式[J]. 矿物学报, 2022, 42(4): 555−556. doi: 10.16461/j.cnki.1000-4734.2022.42.074

    Xue H F, Xiang Z Z, Wu L, et al. Occurrence of rare earth elements from the Nb-REE enrichment layer in the Yulong area, North Western Guizhou[J]. Acta Mineralogica Sinica, 2022, 42(4): 555−556. doi: 10.16461/j.cnki.1000-4734.2022.42.074
    [17]
    张迪, 陈意, 毛骞, 等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报, 2019, 35(1): 261−274. doi: 10.18654/1000-0569/2019.01.21

    Zhang D, Chen Y, Mao Q, et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica, 2019, 35(1): 261−274. doi: 10.18654/1000-0569/2019.01.21
    [18]
    万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145−155. doi: 10.15898/j.cnki.11-2131/td.202005060009

    Wan J J, Pan C R, Yan J, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uranium rare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145−155. doi: 10.15898/j.cnki.11-2131/td.202005060009
    [19]
    杨波, 杨莉, 孟文祥. 电子探针技术探究钪在白云鄂博矿床不同矿物中的赋存特征[J]. 岩矿测试, 2022, 41(2): 185−198. doi: 10.15898/j.cnki.11-2131/td.202110140150

    Yang B, Yang L, Meng W X. Application of electron probe microanalyzer in exploring the occurrence characteristics scandium in different minerals of the Bayan Obo deposit[J]. Rock and Mineral Analysis, 2022, 41(2): 185−198. doi: 10.15898/j.cnki.11-2131/td.202110140150
    [20]
    刘建栋, 王秉璋, 李五福, 等. 电子探针技术研究东昆仑大格勒角闪石岩中铌和稀土元素的含量和赋存状态[J]. 岩矿测试, 2023, 42(4): 721−736. doi: 10.15898/j.ykcs.202209160173

    Liu J D, Wang B Z, Li W F, et al. Content and occurrence state of niobium and rare earth elements in hornblendite of Dagele, East Kunlun by the electron probe technique[J]. Rock and Mineral Analysis, 2023, 42(4): 721−736. doi: 10.15898/j.ykcs.202209160173
    [21]
    张运强, 贠杰, 李广栋, 等. 冀北首次发现前寒武系古风化壳型稀土矿化层[J]. 地质与资源, 2022, 31(4): 574−575. doi: 10.13686/j.cnki.dzyzy.2022.04.015

    Zhang Y Q, Yun J, Li G D, et al. Precambrian rare earth mineralization layer of paleoweathering crust type discovered in Northern Hebei Province[J]. Geology and Resources, 2022, 31(4): 574−575. doi: 10.13686/j.cnki.dzyzy.2022.04.015
    [22]
    张运强, 陈海燕, 杨鑫朋, 等. 冀北蓟县系铁岭组古风化壳稀土元素富集规律及古环境意义[J]. 矿床地质, 2023, 42(5): 1035−1047. doi: 10.16111/j.0258-7106.2023.05.012

    Zhang Y Q, Chen H Y, Yang X P, et al. REE enrichment and palaeoenvironmental significance of paleo-weathering crust of Tieling Formation of Jixian system, Northern Hebei Province[J]. Mineral Deposits, 2023, 42(5): 1035−1047. doi: 10.16111/j.0258-7106.2023.05.012
    [23]
    Moore F, Esmaeili A. Mineralogy and geochemistry of the coals from the Karmozd and Kiasar coal mines, Mazandaran Province, Iran[J]. International Journal of Coal Geology, 2012, 96-97(4): 9−21. doi: 10.1016/j.coal.2012.02.012
    [24]
    汪春园, 王玲, 贾木欣, 等. 大洋沉积物中稀土赋存状态研究[J]. 稀土, 2020, 41(3): 17−25. doi: 10.16533/j.cnki.15-1099/tf.20200025

    Wang C Y, Wang L, Jia M X, et al. Research on the occurrence of rare earth elements in the ocean sediments[J]. Chinese Rare Earths, 2020, 41(3): 17−25. doi: 10.16533/j.cnki.15-1099/tf.20200025
    [25]
    梁晓亮, 谭伟, 马灵涯, 等. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29−41. doi: 10.13745/j.esf.sf.2021.8.8

    Liang X L, Tan W, Ma L Y, et al. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 2022, 29(1): 29−41. doi: 10.13745/j.esf.sf.2021.8.8
    [26]
    郭娜欣, 刘善宝, 陈振宇, 等. 江西崇义铁木里碱长花岗岩中铌和稀土元素的富集机制[J]. 岩石学报, 2022, 38(2): 371−392. doi: 10.18654/1000-0569/2022.02.05

    Guo N X, Liu S B, Chen Z Y, et al. Mechanism of Nb and REE enrichment in the Tiemuli alkali feldspar granite, Chongyi County, Jiangxi Province[J]. Acta Petrologica Sinica, 2022, 38(2): 371−392. doi: 10.18654/1000-0569/2022.02.05
    [27]
    张玉松, 张杰. 云南富源某红土型钛矿稀土元素地球化学特征[J]. 稀土, 2015, 36(3): 1−8. doi: 10.16533/J.CNKI.15-1099/TF.201503001

    Zhang Y S, Zhang J. REE geochemistry of lateritic type titanium ore in Fuyuan, Yunnan[J]. Chinese Rare Earths, 2015, 36(3): 1−8. doi: 10.16533/J.CNKI.15-1099/TF.201503001
    [28]
    李以科, 陈仁义, 柯昌辉, 等. 巴西与碱性岩-碳酸岩杂岩体相关的关键矿产成矿作用与规律[J]. 地质学报, 2019, 93(6): 1422−1443. doi: 10.19762/j.cnki.dizhixuebao.2019157

    Li Y K, Chen R Y, Ke C H, et al. The strategic and critical minerals associated with alkaline and alkaline-carbonatite complexes Brazil[J]. Acta Geologica Sinica, 2019, 93(6): 1422−1443. doi: 10.19762/j.cnki.dizhixuebao.2019157
    [29]
    王汝成, 徐士进, 陆建军, 等. 钙钛矿族矿物的晶体化学分类和地球化学演化[J]. 地学前缘, 2000, 7(2): 457−465. doi: 10.3321/j.issn:1005-2321.2000.02.013

    Wang R C, Xu S J, Lu J J, et al. Crystal-chemistry and geochemistry of perovskite-group minerals[J]. Earth Science Frontiers, 2000, 7(2): 457−465. doi: 10.3321/j.issn:1005-2321.2000.02.013
  • Related Articles

    [1]LIU Ze, CHEN Zhenyu, CHEN Xiaodan, XU Wentan, LIU Chunhua, ZHU Zeying, NIU Zhijian, ZHAO Chenhui, ZHAO Yunbiao. Quantitative Analysis of Be in Herderite by Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2024, 43(5): 703-712. DOI: 10.15898/j.ykcs.202311010171
    [2]LIU Jin, WANG Jian, WANG Guijun, ZHANG Xiaogang, SHANG Ling. Analysis of Mineralogical Characteristics of Leucosphenite from the Fengcheng Formation in the Junggar Basin by Electron Probe Microanalyzer and X-ray Diffractometer[J]. Rock and Mineral Analysis, 2022, 41(5): 764-773. DOI: 10.15898/j.cnki.11-2131/td.202108190101
    [3]Mei-fang YE, San LIU, Gu-wei XIE, Hui-bo ZHAO, Ning-chao ZHOU, Xiao-yan WEI, Jian-guo YANG, Hong HOU, Lei WANG, Yi WANG. Characteristics of Micas from Sericitolite of the Gongpoquan and Baishantang Deposits, Beishan Area by Scanning Electron Microscope, X-ray Diffraction and Electron Microprobe Analyses[J]. Rock and Mineral Analysis, 2016, 35(2): 166-177. DOI: 10.15898/j.cnki.11-2131/td.2016.02.009
    [4]Han WANG, Zheng-yu ZHOU, Qian ZHONG, Rui-ting LIU, Qi LIU, Ying-bo LI. Study on Petrological and Mineralogical Characteristics of Laos Stone by EPMA-XRD-SEM[J]. Rock and Mineral Analysis, 2016, 35(1): 56-61. DOI: 10.15898/j.cnki.11-2131/td.2016.01.010
    [5]Yan LAN, Tai-jin LU, Wei-ming CHEN, Yang LIU, Rong LIANG, Ying MA, Xiao-hu ZHANG. A Non-destructive Measurement Method of Gem Jadeite Content in Jadeitite Based on Specific Gravity and X-ray Powder Diffraction[J]. Rock and Mineral Analysis, 2015, 34(2): 207-212. DOI: 10.15898/j.cnki.11-2131/td.2015.02.009
    [6]Nai-cen XU, Jia-lin SHEN, Jing ZHANG. Application of X-ray Diffraction, X-ray Fluorescence Spectrometry and Electron Microprobe in the Identification of Basalt[J]. Rock and Mineral Analysis, 2015, 34(1): 75-81. DOI: 10.15898/j.cnki.11-2131/td.2015.01.010
    [7]Yi WANG, Na CHANG, Ya-fei LIU, Hui-bo ZHAO, San LIU. Study on the Mineralogical Characteristics of Cinnabar Jade by X-ray Powder Diffraction-Laser Raman Spectroscopy-Electron Probe from Xunyang, Shan'xi Province[J]. Rock and Mineral Analysis, 2014, 33(6): 802-807. DOI: 10.15898/j.cnki.11-2131/td.2014.06.007
    [8]Wei REN, Lijin WANG, Jiaping LI. Detection of Emerald from Xinjiang by Electron Probe Microanalyzer and X-ray Diffractometer[J]. Rock and Mineral Analysis, 2010, 29(2): 179-181.
    [9]Progress in Background Subtraction and Spectral Interference Correction in Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49-54.
    [10]Evaluation of the Methods for Quantitative Determination of FeO and Fe2O3 by Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2007, 26(3): 213-218.

Catalog

    Article views (72) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return