• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WEN Ligang,JIA Muxin,ZHAO Jianjun,et al. Application of a SEM-EDS-Based Automated Process Mineralogy Analyzing System on the Occurrence State of Silver in Copper Ore Flotation Tailings[J]. Rock and Mineral Analysis,2024,43(3):417−431. DOI: 10.15898/j.ykcs.202310250165
Citation: WEN Ligang,JIA Muxin,ZHAO Jianjun,et al. Application of a SEM-EDS-Based Automated Process Mineralogy Analyzing System on the Occurrence State of Silver in Copper Ore Flotation Tailings[J]. Rock and Mineral Analysis,2024,43(3):417−431. DOI: 10.15898/j.ykcs.202310250165

Application of a SEM-EDS-Based Automated Process Mineralogy Analyzing System on the Occurrence State of Silver in Copper Ore Flotation Tailings

More Information
  • Received Date: October 24, 2023
  • Revised Date: January 07, 2024
  • Accepted Date: April 14, 2024
  • Available Online: June 20, 2024
  • HIGHLIGHTS
    (1) BPMA & SEM-EDS technology was used to investigate the mineral composition of the flotation tailings, characterize the particle (and/or grain) size distribution, mineral liberation and interlocking relationships of main copper sulfide minerals in the tailings, and quickly identify the types of silver minerals and occurrence characteristics of silver.
    (2) The copper minerals in the flotation tailings are mainly chalcocite (Cu2S) and bornite (Cu5FeS4), embedded with fine disseminated grain size and poor mineral liberation degree.
    (3) The silver in the flotation tailings mainly occurs in native silver (Ag), argentite/acanthite (Ag2S), naumannite (Ag2Se), eucairite (CuAgSe), stromeyerite (AgCuS), and silver-bearing chalcocite [(Cu,Ag)2S], accounting for 95.62%, 2.07%, 1.33%, 0.15%, 0.80%, and 0.03%, respectively. The silver-bearing minerals with uneven grain size distribution and relatively high degree of liberation, can be recovered with copper sulfides using the flotation method.

    The silver occurrence state and process mineralogical characteristics are critical to its beneficiation process and recovery indicators, which can be used for assisting in process development, plant design, and improvement of silver recovery. In order to define the occurrence state of silver in copper ore flotation tailings with low-grade Ag 41.96g/g & Cu 0.44%, BGRIMM process mineralogy analyzing system (BPMA) with version 2.0 BPMA software, scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDS) were applied to investigate the copper mineralogical characteristics and silver occurrence state of the flotation tailings. The copper minerals in the tailings are mainly fine-grained and poorly liberated copper sulfide minerals; the silver mainly occurs as independent silver minerals, with high liberation and non-uniform grain size. The analytical results show that the BPMA & SEM-EDS in situ analysis method can serve as a technical reference for the study of the occurrence state and process mineralogy of rare precious metal elements. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202310250165.

    BRIEF REPORT
    Significance: The occurrence state of elements and process mineralogical characteristics are critical to the availability of mineral resources, which is conducive to optimizing the ore extraction and smelting process and improving the comprehensive utilization of mineral resources. Due to the wide variety and low content of silver minerals, as well as their fine particle size, it is difficult to identify the occurrence state of silver. The traditional manual method, that is, mineral identification and parameter statistics mainly performed manually particle by particle, has limitations in investigating the occurrence characteristics of silver, which is difficult to effectively guide mineral processing production and greatly restricts the high-efficient utilization of mineral resources. We developed an in situ automated mineralogical analysis method of silver minerals in flotation tailings by SEM-EDS-based BPMA to give analytical technical support for the efficient utilization of silver resources. Our results indicate that the method can be used to find, identify and determine low-grade and fine-grained silver minerals in flotation tailings. It provides strong technical support for the study of the occurrence state and process mineralogy of rare precious metal elements.
    Methods: The BPMA with version 2.0 BPMA software, which is a SEM-EDS-based automated mineralogy (AM) system, developed independently by BGRIMM Technology Group (China), was used to analyze the silver occurrence state and process mineralogical characteristics of low-grade flotation tailings (Ag 41.96g/g & Cu 0.44%) from a copper mine. The BPMA particle liberation analysis (BPLA) mode was applied to investigate the mineral composition, the particle (and/or grain) size distribution, and liberation and interlocking relationships of main copper sulfide minerals automatically. The BPMA specific particle liberation analysis (SPLA) mode was applied to find and identify silver-bearing minerals, and to determine their occurrence, mineral composition and size distribution of silver-bearing minerals in the tailings quickly and efficiently.
    Data and Results: The results show that the copper minerals in the tailings are mainly chalcocite (Cu2S), with 0.45%, followed by bornite (Cu5FeS4), with 0.09%, and trace chalcopyrite (CuFeS2), which is less than 0.01%; silver mainly occurs in native silver (Ag), argentite/acanthite (Ag2S), naumannite (Ag2Se), eucairite (CuAgSe), stromeyerite (AgCuS), and silver-bearing chalcocite [(Cu,Ag)2S], accounting for 95.62%, 2.07%, 1.33%, 0.15%, 0.80%, and 0.03%, respectively. The copper sulfide minerals are embedded with fine particle size (more than 90% of grains smaller than 20m) and poor mineral liberation degree (the mass of copper sulfide minerals monomer accounts for less than 20%; the mass of copper sulfide minerals with a liberation degree below 25% accounts for more than 64.60%), which is the main mineralogical factor affecting beneficiation indexes of copper. The grain size range of silver-bearing minerals in the tailings is wide, and the contents of coarse-grained (>74m), medium-grained (74−37m), fine-grained (37−10m) and micro-grained (<10m) silver-bearing minerals are 32.25%, 30.35%, 21.45%, and 15.96%, respectively. The silver-bearing minerals are highly liberated, the content of liberated silver-bearing mineral monomer is up to 88.28%, which can be recovered with copper sulfides using the flotation method. However, a small amount of silver-bearing minerals (1.30%) wrapped in gangue minerals such as quartz and calcite are difficult to recycle through flotation.
  • [1]
    李磊, 郜伟, 王明燕, 等. 银的赋存特征及其对选矿的影响[J]. 有色金属(选矿部分), 2018(5): 6−9, 48. doi: 10.3969/j.issn.1671-9492.2018.05.002

    Li L, Gao W, Wang M Y, et al. Occurrence characteristics of silver and its influence on mineral processing[J]. Nonferrous Metals (Mineral Processing Section), 2018(5): 6−9, 48. doi: 10.3969/j.issn.1671-9492.2018.05.002
    [2]
    黄晓梅, 李国斌, 胡亮, 等. 银的提取研究进展及前景展望[J]. 稀有金属, 2015, 39(3): 268−275. doi: 10.13373/j.cnki.cjrm.2015.03.011

    Huang X M, Li G B, Hu L, et al. Research progress and prospect of extracting silver[J]. Chinese Journal of Rare Metals, 2015, 39(3): 268−275. doi: 10.13373/j.cnki.cjrm.2015.03.011
    [3]
    杨睿娜, 纵瑞, 杨东潮. 豫西董家埝银矿床银的赋存状态研究[J]. 矿床地质, 2020, 39(3): 486−500. doi: 10.16111/j.0258-7106.2020.03.006

    Yang R N, Zong R, Yang D C. Research on modes of occurrence of silver in Dongjianian silver deposit, Western Henan Province[J]. Mineral Deposits, 2020, 39(3): 486−500. doi: 10.16111/j.0258-7106.2020.03.006
    [4]
    岳秋雨, 翟德高, 赵刚, 等. 江西牛形坝—柳木坑银金多金属矿床银矿物与银的赋存状态[J]. 矿物学报, 2023, 43(3): 311−324. doi: 10.16461/j.cnki.1000-4734.2023.43.023

    Yue Q Y, Zhai D G, Zhao G, et al. The compositions of silver-bearing minerals and the occurrence of silver in the Niuxingba—Liumukeng silver-gold polymetallic deposit, Jiangxi Province, China[J]. Acta Mineralogica Sinica, 2023, 43(3): 311−324. doi: 10.16461/j.cnki.1000-4734.2023.43.023
    [5]
    吴冠斌, 刘建明, 曾庆栋, 等. 内蒙古双尖子山铅锌银矿床银的赋存状态及其指示意义[J]. 地学前缘, 2014, 21(5): 105−115. doi: 10.13745/j.esf.2014.05.009

    Wu G B, Liu J M, Zeng Q D, et al. Occurrences of silver in the Shuangjianzishan Pb-Zn-Ag deposit and its implications for mineral processing[J]. Earth Science Frontiers, 2014, 21(5): 105−115. doi: 10.13745/j.esf.2014.05.009
    [6]
    康明, 岳长成. 内蒙古西山湾羊场银多金属矿床银的赋存形式及成矿机理[J]. 岩石学报, 2020, 36(11): 3363−3379. doi: 10.18654/1000-0569/2020.11.07

    Kang M, Yue C C. Metallogenic process in Xishanwanyangchang silver polymetallic deposit, Inner Mongolia, China: Constraints from occurrence of silver[J]. Acta Petrologica Sinica, 2020, 36(11): 3363−3379. doi: 10.18654/1000-0569/2020.11.07
    [7]
    王俊萍, 武慧敏, 王玲. MLA在银的赋存状态研究中的应用[J]. 矿冶, 2015, 24(1): 77−80. doi: 10.3969/j.issn.1005-7854.2015.01.019

    Wang J P, Wu H M, Wang L. Application of MLA in the study of silver occurrence status[J]. Mining and Metallurgy, 2015, 24(1): 77−80. doi: 10.3969/j.issn.1005-7854.2015.01.019
    [8]
    王明燕, 祁小军. 影响江西某铜矿中伴生金、银选矿指标的工艺矿物学因素研究[J]. 矿冶, 2015, 24(1): 81−86. doi: 10.3969/j.issn.1005-7854.2015.01.020

    Wang M Y, Qi X J. Process mineralogy factors affecting the beneficiation indexes of associated gold and silver in a copper mine in Jiangxi[J]. Mining and Metallurgy, 2015, 24(1): 81−86. doi: 10.3969/j.issn.1005-7854.2015.01.020
    [9]
    Sutherland D N, Gottlieb P. Application of automated quantitative mineralogy in mineral processing[J]. Minerals Engineering, 1991, 4(7-11): 753−762. doi: 10.1016/0892-6875(91)90063-2
    [10]
    Gottlieb P, Wilkie G, Sutherland D, et al. Using quantitative electron microscopy for process mineralogy applications[J]. Journal of the Minerals, Metals & Materials Society, 2000, 52(4): 24−25. doi: 10.1007/s11837-000-0126-9
    [11]
    Gu Y. Automated scanning electron microscope based mineral liberation analysis: An introduction to JKMRC/FEI mineral liberation analyser[J]. Journal of Minerals and Materials Characterization and Engineering, 2003, 2(1): 33−41. doi: 10.4236/jmmce.2003.21003
    [12]
    Fandrich R, Gu Y, Burrows D, et al. Modern SEM-based mineral liberation analysis[J]. International Journal of Mineral Processing, 2007, 84(1-4): 310−320. doi: 10.1016/j.minpro.2006.07.018
    [13]
    温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121−129. doi: 10.15898/j.cnki.11-2131/td.201708110129

    Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121−129. doi: 10.15898/j.cnki.11-2131/td.201708110129
    [14]
    朱丹, 桂博艺, 王芳, 等. AMICS测试技术在铌矿中的应用——以竹溪铌矿为例[J]. 有色金属(选矿部分), 2021(3): 1−7. doi: 10.3969/j.issn.1671-9492.2021.03.001

    Zhu D, Gui B Y, Wang F, et al. Application of the advanced mineral identification and characterization system (AMICS) in the Nb deposit: A case study of the Zhuxi Nb deposit[J]. Nonferrous Metals (Mineral Processing Section), 2021(3): 1−7. doi: 10.3969/j.issn.1671-9492.2021.03.001
    [15]
    方明山, 王明燕. AMICS在铜矿伴生金银综合回收中的应用[J]. 矿冶, 2018, 27(3): 104−108. doi: 10.3969/j.issn.1005-7854.2018.03.023

    Fang M S, Wang M Y. Application of AMICS in comprehensive recovery of associated gold and silver in a copper ore[J]. Mining and Metallurgy, 2018, 27(3): 104−108. doi: 10.3969/j.issn.1005-7854.2018.03.023
    [16]
    Jiao Y, Qiu K H, Zhang P C, et al. Process mineralogy of Dalucao rare earth ore and design of beneficiation process based on AMICS[J]. Rare Metals, 2020, 39(8): 959−966. doi: 10.1007/s12598-020-01446-w
    [17]
    Xu W, Shi B, Tian Y, et al. Process mineralogy characteristics and flotation application of a refractory collophanite from Guizhou, China[J]. Minerals, 2021, 11(11): 1249. doi: 10.3390/min11111249
    [18]
    Hrstka T, Gottlieb P, Skála R, et al. Automated mineralogy and petrology—Applications of TESCAN integrated mineral analyzer (TIMA)[J]. Journal of Geosciences, 2018, 63(1): 47−63. doi: 10.3190/jgeosci.250
    [19]
    陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368. doi: 10.16111/j.0258-7106.2021.02.010

    Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368. doi: 10.16111/j.0258-7106.2021.02.010
    [20]
    Keulen N, Malkki S N, Graham S. Automated quantitative mineralogy applied to metamorphic rocks[J]. Minerals, 2020, 10(1): 47. doi: 10.3390/min10010047
    [21]
    Graham S, Keulen N. Nanoscale automated quantitative mineralogy: A 200-nm quantitative mineralogy assessment of fault gouge using mineralogic[J]. Minerals, 2019, 9(11): 665. doi: 10.3390/min9110665
    [22]
    Han S J, Lӧhr S, Abbott A, et al. Earth system science applications of next-generation SEM-EDS automated mineral mapping[J]. Frontiers in Earth Science, 2022, 10: 956912. doi: 10.3389/feart.2022.956912
    [23]
    Shan P F, Cao M J, Evans N, et al. Automated quantitative mineralogy analysis reveals characteristics of Co occurrence in the Jinchang porphyry deposit, NE China[J]. Ore Geology Reviews, 2023, 158(31): 105524. doi: 10.1016/j.oregeorev.2023.105524
    [24]
    温利刚, 贾木欣, 王清, 等. 基于扫描电子显微镜的自动矿物学新技术——BPMA及其应用前景[J]. 有色金属(选矿部分), 2021(2): 13−24. doi: 10.3969/j.issn.1671-9492.2021.02.003

    Wen L G, Jia M X, Wang Q, et al. A new SEM-based automated mineralogy system: BPMA and its application prospects in mining industry[J]. Nonferrous Metals (Mineral Processing Section), 2021(2): 13−24. doi: 10.3969/j.issn.1671-9492.2021.02.003
    [25]
    徐承焱, 王培龙, 孙体昌, 等. BPMA在矿石可选性研究实验课程中的应用[J]. 实验技术与管理, 2021, 38(4): 223−230, 239. doi: 10.16791/j.cnki.sjg.2021.04.045

    Xu C Y, Wang P L, Sun T C, et al. Application of BPMA in experimental course of ore beneficiablity research[J]. Experimental Technology and Management, 2021, 38(4): 223−230, 239. doi: 10.16791/j.cnki.sjg.2021.04.045
    [26]
    Hou X Z, Yang Z F, Wang Z J. The occurrence characteristics and recovery potential of middle-heavy rare earth elements in the Bayan Obo deposit, Northern China[J]. Ore Geology Reviews, 2020, 126: 103737. doi: 10.1016/j.oregeorev.2020.103737
    [27]
    Gu Y, Schouwstra R P, Rule C. The value of automated mineralogy[J]. Minerals Engineering, 2014, 58(4): 100−103. doi: 10.1016/j.mineng.2014.01.020
    [28]
    Rollinson G. Automated Mineralogy by SEM-EDS[M].Encyclopedia of Geology (The 2nd edition, 2019: 1-8.
    [29]
    Worden R H, Utley J E P. Automated mineralogy (SEM-EDS) approach to sandstone reservoir quality and diagenesis[J]. Frontiers in Earth Science, 2022, 10: 794266. doi: 10.3389/feart.2022.794266
    [30]
    温利刚, 付强, 于志超, 等. 矿物自动定量分析系统在低品位微细粒钼矿工艺矿物学研究中的应用[J]. 有色金属(选矿部分), 2022(2): 31−38. doi: 10.3969/j.issn.1671-9492.2022.02.004

    Wen L G, Fu Q, Yu Z C, et al. Application of automated quantitative mineralogy system in the process mineralogy study of low-grade fine-grained molybdenum ore[J]. Nonferrous Metals (Mineral Processing Section), 2022(2): 31−38. doi: 10.3969/j.issn.1671-9492.2022.02.004
    [31]
    张涛, 宋文磊, 陈倩, 等. 矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用[J]. 岩矿测试, 2023, 42(4): 748−759. doi: 10.15898/j.ykcs.202210250206

    Zhang T, Song W L, Chen Q, et al. Application of automated quantitative mineral analysis system in process mineralogy of low-grade copper slag[J]. Rock and Mineral Analysis, 2023, 42(4): 748−759. doi: 10.15898/j.ykcs.202210250206
    [32]
    谢小敏, 李利, 袁秋云, 等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50−60. doi: 10.15898/j.cnki.11-2131/td.202007120103

    Xie X M, Li L, Yuan Q Y, et al. Grain size distribution of organic matter and pyrite in Alum shales characterized by TIMA and its paleo-environmental significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50−60. doi: 10.15898/j.cnki.11-2131/td.202007120103
    [33]
    张然, 叶丽娟, 党飞鹏, 等. 自动矿物分析技术在鄂尔多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2021, 40(1): 61−73. doi: 10.15898/j.cnki.11-2131/td.202005130071

    Zhang R, Ye L J, Dang F P, et al. Application of automatic mineral analysis technology to identify minerals and occurrences of elements in sandstone-type uranium deposits in the Ordos Basin[J]. Rock and Mineral Analysis, 2021, 40(1): 61−73. doi: 10.15898/j.cnki.11-2131/td.202005130071
    [34]
    Liu T T, Song W L, Kynicky J, et al. Automated quantitative characterization REE ore mineralogy from the giant Bayan Obo deposit, Inner Mongolia, China[J]. Minerals, 2022, 12(4): 426. doi: 10.3390/min12040426
    [35]
    Guhl A, Brett B, Schulz B, et al. Particle responses of stabilised fly ash to chemical treatment for resource extraction: An automated mineralogy investigation[J]. Minerals Engineering, 2019, 145(3): 106092. doi: 10.1016/j.mineng.2019.106092
    [36]
    肖仪武, 叶小璐, 冯凯, 等. “四稀”金属矿工艺矿物学研究技术现状与展望[J]. 矿冶, 2022, 31(3): 6−13. doi: 10.3969/j.issn.1005-7854.2022.03.002

    Xiao Y W, Ye X L, Feng K, et al. Current situation and prospect of “Four Rare” process mineralogy research technology[J]. Mining and Metallurgy, 2022, 31(3): 6−13. doi: 10.3969/j.issn.1005-7854.2022.03.002
    [37]
    Coetzee L L, Theron S J, Martin G J, et al. Modern gold deportments and its application to industry[J]. Minerals Engineering, 2011, 24(6): 565−575. doi: 10.1016/j.mineng.2010.09.001
    [38]
    Goodall W R, Butcher A R. The use of QEMSCAN in practical gold deportment studies[J]. Mineral Processing and Extractive Metallurgy, 2012, 121(4): 199−204. doi: 10.1179/1743285512Y.0000000021
    [39]
    冯岳川, 邓军, 于皓丞, 等. 胶东玲珑金矿田金的赋存状态及其对成矿过程的指示意义[J]. 岩石学报, 2023, 39(2): 377−392. doi: 10.18654/1000-0569/2023.02.06

    Feng Y C, Deng J, Yu H C, et al. Gold occurrence and its indicative significance to mineralization process in Linglong gold district, Jiaodong gold province[J]. Acta Petrologica Sinica, 2023, 39(2): 377−392. doi: 10.18654/1000-0569/2023.02.06
    [40]
    徐净, 侯文达, 王力圆, 等. 稀有金属花岗岩结晶分异过程中铷的富集与成矿: 来自江西甘坊岩体的矿物学证据[J]. 地质学报, 2023, 97(11): 3766−3785. doi: 10.19762/j.cnki.dizhixuebao.2023366

    Xu J, Hou W D, Wang L Y, et al. Rb mineralization during magmatic differentiation: Insight from mineralogical study on the Ganfang rare metal granite, Jiangxi Province[J]. Acta Geologica Sinica, 2023, 97(11): 3766−3785. doi: 10.19762/j.cnki.dizhixuebao.2023366
    [41]
    温利刚, 贾木欣, 付强, 等. 矿物自动定量分析系统在金的赋存状态研究中的应用[J]. 有色金属(选矿部分), 2022(4): 1−8. doi: 10.3969/j.issn.1671-9492.2022.04.001

    Wen L G, Jia M X, Fu Q, et al. Application of automated quantitative mineralogy system in the deportment study of low-grade and fine-grained gold[J]. Nonferrous Metals (Mineral Processing Section), 2022(4): 1−8. doi: 10.3969/j.issn.1671-9492.2022.04.001
    [42]
    温利刚, 付强, 贾木欣, 等. 基于工艺矿物学自动分析系统的微细粒金矿物量化表征[J]. 有色金属工程, 2022, 12(11): 76−84. doi: 10.3969/j.issn.2095-1744.2022.11.011

    Wen L G, Fu Q, Jia M X, et al. Quantitative investigation of fine-grained gold minerals by automated process mineralogy analyzing system[J]. Nonferrous Metals Engineering, 2022, 12(11): 76−84. doi: 10.3969/j.issn.2095-1744.2022.11.011
    [43]
    张一帆, 范裕, 陈静, 等. 矿精粉中关键金属元素赋存状态研究方法流程的建立: 以长江中下游成矿带富钴硫矿精粉为例[J]. 岩石学报, 2021, 37(9): 2791−2804. doi: 10.18654/1000-0569/2021.09.12

    Zhang Y F, Fan Y, Chen J, et al. Establishment of a research workflow for occurrence state of critical metal in ore concentrate powder: A case study of the cobalt-rich sulfur ore concentrate powder from the middle-lower Yangtze River valley metallogenic belt, China[J]. Acta Petrologica Sinica, 2021, 37(9): 2791−2804. doi: 10.18654/1000-0569/2021.09.12
    [44]
    张一帆, 范裕. 矿石中关键金属钴赋存状态研究方法流程的建立: 以庐枞盆地龙桥富钴矽卡岩铁矿床为例[J]. 岩石学报, 2023, 39(10): 3156−3168. doi: 10.18654/1000-0569/2023.10.18

    Zhang Y F, Fan Y. Establishment of research methodology and workflow for the occurrence state of the critical metal cobalt in ore: A case study of the Longqiao cobalt-rich skarn iron deposit in the Luzhong Basin[J]. Acta Petrologica Sinica, 2023, 39(10): 3156−3168. doi: 10.18654/1000-0569/2023.10.18
    [45]
    Schulz B, Sandmann D, Gilbricht S. SEM-based automated mineralogy and its application in geo- and material sciences[J]. Minerals, 2020, 10(11): 1004. doi: 10.3390/min10111004
    [46]
    Kwitko-Ribeiro R. New sample preparation developments to minimize mineral segregation in process mineralogy[C]//Broekmans M. Proceedings of the 10th International Congress for Applied Mineralogy (ICAM). Verlag Berlin Heidelberg: Springer, 2012: 411−417.
    [47]
    方明山, 刘方明, 肖仪武, 等. 浅谈岩矿样品制样设备的现状及发展趋势[J]. 矿冶, 2021, 30(1): 69−73. doi: 10.3969/j.issn.1005-7854.2021.01.013

    Fang M S, Liu F M, Xiao Y W, et al. Discussion on the current situation and development trend of rock and ore sample preparation equipment[J]. Mining and Metallurgy, 2021, 30(1): 69−73. doi: 10.3969/j.issn.1005-7854.2021.01.013
    [48]
    肖仪武, 叶小璐, 武若晨, 等. 选矿产品矿物自动分析的光片制备[J]. 中国无机分析化学, 2020, 10(2): 1−6. doi: 10.3969/j.issn.2095-1035.2020.02.001

    Xiao Y W, Ye X L, Wu R C, et al. Polished section sample preparation of mineral processing products for mineral automatic analysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(2): 1−6. doi: 10.3969/j.issn.2095-1035.2020.02.001
    [49]
    王明燕, 李磊, 肖仪武. 内蒙古某银矿矿石特性及其对选矿的影响[J]. 有色金属(选矿部分), 2022(4): 20−26, 32. doi: 10.3969/j.issn.1671-9492.2022.04.003

    Wang M Y, Li L, Xiao Y W. Mineralogical properties of a silver ore in Inner Mongolia and its effects on mineral processing[J]. Nonferrous Metals (Mineral Processing Section), 2022(4): 20−26, 32. doi: 10.3969/j.issn.1671-9492.2022.04.003
    [50]
    敖顺福, 王春光, 洪秋阳, 等. 云南某含银低品位铅锌矿工艺矿物学特性研究[J]. 贵金属, 2019, 40(2): 12−18. doi: 10.3969/j.issn.1004-0676.2019.02.003

    Ao S F, Wang C G, Hong Q Y, et al. Process mineralogical features and factors affecting mineral processing for a low-grade lead-zinc ore containing silver from Yunnan Province[J]. Precious Metals, 2019, 40(2): 12−18. doi: 10.3969/j.issn.1004-0676.2019.02.003
    [51]
    敖顺福. 有色金属矿中伴生金银选矿进展[J/OL]. 贵金属, 1−11[2024-01-01]. http://kns.cnki.net/kcms/detail/53.1063.TG.202309132023.002.html.

    Ao S F. Research progress on mineral processing of associated gold and silver in nonferrous metal mines[J/OL]. Precious Metals, 1−11[2024-01-01]. http://kns.cnki.net/kcms/detail/53.1063.TG.202309132023.002.html.
    [52]
    宋宝旭, 邱显扬, 冉金城, 等. 硫化矿浮选体系中辉银矿的浮选行为研究[J]. 贵金属, 2018, 39(2): 24−28. doi: 10.3969/j.issn.1004-0676.2018.02.005

    Song B X, Qiu X Y, Ran J C, et al. Behavior of argentite in the sulphide flotation system[J]. Precious Metals, 2018, 39(2): 24−28. doi: 10.3969/j.issn.1004-0676.2018.02.005
    [53]
    冉金城, 邱显扬. 铜硫分离中银的选择性导向回收[J]. 矿冶工程, 2020, 40(5): 33−38. doi: 10.3969/j.issn.0253-6099.2020.05.008

    Ran J C, Qiu X Y. Selective recovery of silver in Cu-S flotation separation[J]. Mining and Metallurgical Engineering, 2020, 40(5): 33−38. doi: 10.3969/j.issn.0253-6099.2020.05.008
    [54]
    孙晓华, 付强, 应永朋, 等. 青海某低品位铜铅锌银多金属矿工艺矿物学研究[J]. 有色金属(选矿部分), 2020(5): 5−10. doi: 10.3969/j.issn.1671-9492.2020.05.002

    Sun X H, Fu Q, Ying Y P, et al. Mineralogy of a low-grade copper-lead-zinc-silver polymetallic ore in Qinghai Province[J]. Nonferrous Metals (Mineral Processing Section), 2020(5): 5−10. doi: 10.3969/j.issn.1671-9492.2020.05.002
    [55]
    陈桥, 佟琳琳, 陈贵民, 等. 海南抱伦金矿工艺矿物学研究[J]. 东北大学学报(自然科学版), 2019, 40(9): 1268−1272. doi: 10.12068/j.issn.1005-3026.2019.09.010

    Chen Q, Tong L L, Chen G M, et al. Process mineralogy of Baolun gold mine in Hainan Province[J]. Journal of Northeastern University (Natural Science), 2019, 40(9): 1268−1272. doi: 10.12068/j.issn.1005-3026.2019.09.010
    [56]
    吉强, 李光胜, 朱幸福, 等. 基于工艺矿物学分析提高金浮选尾矿选矿回收率的研究[J]. 贵金属, 2023, 44(3): 31−34. doi: 10.3969/j.issn.1004-0676.2023.03.007

    Ji Q, Li G S, Zhu X F, et al. Study on improving floatation tailings of a gold mineral recovery based on process mineralogy analysis[J]. Precious Metals, 2023, 44(3): 31−34. doi: 10.3969/j.issn.1004-0676.2023.03.007
    [57]
    李国栋, 刘剑, 郭艳华, 等. 应用重选-浮选联合工艺综合回收窑渣中金、银的试验研究[J]. 矿山机械, 2020, 48(8): 44−48. doi: 10.16816/j.cnki.ksjx.2020.08.010

    Li G D, Liu J, Guo Y H, et al. Test research on comprehensive recovery of gold and silver from kiln slag by combined process of gravity separation and flotation[J]. Mining and Processing Equipment, 2020, 48(8): 44−48. doi: 10.16816/j.cnki.ksjx.2020.08.010
    [58]
    冯博, 朱贤文, 彭金秀, 等. 有色金属硫化矿中伴生金银资源回收研究进展[J]. 贵金属, 2016, 37(2): 70−76. doi: 10.3969/j.issn.1004-0676.2016.02.014

    Feng B, Zhu X W, Peng J X, et al. Research progress in recovering associated gold and silver from non-ferrous metal sulfide ores[J]. Precious Metals, 2016, 37(2): 70−76. doi: 10.3969/j.issn.1004-0676.2016.02.014
  • Related Articles

    [1]SUN Xiaoxu, FENG Jian, LI Chao, GAO Ye, WANG Lei, MIAO Tong, XU Yang, YAN Wei. Application of Automated Mineral Identification and Characterization System to Identify Minerals and Occurrences of Elements in Jixiangyu Rare Earth Deposit of Eastern Liaoning[J]. Rock and Mineral Analysis, 2023, 42(6): 1120-1131. DOI: 10.15898/j.ykcs.202203270061
    [2]ZHANG Tao, SONG Wenlei, CHEN Qian, YANG Jinkun, HU Yi, HUANG Jun, XU Danni, XU Yitong. Application of Automated Quantitative Mineral Analysis System in Process Mineralogy of Low-grade Copper Slag[J]. Rock and Mineral Analysis, 2023, 42(4): 748-759. DOI: 10.15898/j.ykcs.202210250206
    [3]ZHANG Ran, XIAO Zhibin, FU Chao, FU Shixing, ZHU Zhaoming. Genetic Mineralogy and Geological Significance of Gold Minerals and Gold-bearing Pyrites from the Xinli Gold Deposit in the Jiaodong Area[J]. Rock and Mineral Analysis, 2022, 41(6): 997-1006. DOI: 10.15898/j.cnki.11-2131/td.202111260189
    [4]XIE Hai-yun, LIU Yan-hao, JI Cui-cui, JIN Yan-ling, ZHANG Pei, TIAN Xiao-song, LIU Rong-xin. Mineralogical Analysis of Copper-Lead-Zinc Mixed Concentrate and Study on Separation Efficiency[J]. Rock and Mineral Analysis, 2021, 40(4): 542-549. DOI: 10.15898/j.cnki.11-2131/td.202011220152
    [5]Guang-sheng ZENG, Le-ming OU. Study on Mineralogical Characteristics of Peru Copper-Sulphur Ore Dressing Process by X-ray Diffraction and Scanning Electron Microscope[J]. Rock and Mineral Analysis, 2019, 38(2): 160-168. DOI: 10.15898/j.cnki.11-2131/td.201804130042
    [6]Rong-xin LIU, Kun ZHU, Hai-yun XIE, Peng-fei ZHANG, Chao DING, Ji-zong WU, Xiong TONG. Study on the Inlay Characteristics and Occurrences of Yunnan Porphyry Polymetallic Gold Deposits[J]. Rock and Mineral Analysis, 2018, 37(4): 404-410. DOI: 10.15898/j.cnki.11-2131/td.201710200169
    [7]Hai-yun XIE, Qun-Jie YE, Ping ZHOU, Li-kun GAO, Gu-zhang ZHUANG, Xiong TONG. Process Mineralogy Analysis of Copper-zinc Sulfide Ore from the Simao Region, Yunnan Province[J]. Rock and Mineral Analysis, 2014, 33(3): 350-357.
    [8]Yan-hua PENG, Guang-ju PENG, Li-pan JIA, Wei-ning ZHOU. Technological Mineralogy Research of Silver in the Lead-Zinc Ore Deposit in West Baoshan, Hunan Province[J]. Rock and Mineral Analysis, 2013, 32(5): 729-737.
    [9]An Analytical System of Microphotograph and Its Application in Mineral Size Analysis[J]. Rock and Mineral Analysis, 2003, (4): 269-272.
    [10]Appl ication of EPMA in Process Mineralogy[J]. Rock and Mineral Analysis, 1994, (1): 45-48.
  • Other Related Supplements

Catalog

    Article views (145) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return