• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
LIU Gaoling,JIANG Zhenzhen,LIU Gaobo,et al. Analysis and Characterization of Colloidal Particles in Yangbajing Geothermal Water, Tibet[J]. Rock and Mineral Analysis,2023,42(6):1156−1164. DOI: 10.15898/j.ykcs.202303130034
Citation: LIU Gaoling,JIANG Zhenzhen,LIU Gaobo,et al. Analysis and Characterization of Colloidal Particles in Yangbajing Geothermal Water, Tibet[J]. Rock and Mineral Analysis,2023,42(6):1156−1164. DOI: 10.15898/j.ykcs.202303130034

Analysis and Characterization of Colloidal Particles in Yangbajing Geothermal Water, Tibet

More Information
  • Received Date: March 12, 2023
  • Revised Date: May 16, 2023
  • Accepted Date: June 14, 2023
  • Available Online: August 16, 2023
  • BACKGROUND

    The hydrochemical characteristics of geothermal water include various information such as geological, structural, fracture, alteration, and environmental changes during its formation. It is particularly important to analyse various components in geothermal water accurately.  Tibet is rich in geothermal resources, and some geothermal water contains colloidal particles. It is of great significance to study the morphology, composition and structure of colloidal particles for understanding the relationship between the material sources of geothermal fluids and colloidal particles. The generation and precipitation of colloidal particles can affect the turbidity, conductivity, and partial cation content of geothermal water. It is not easy to obtain naturally formed colloidal particles in geothermal water, so there are few reports on the analysis of colloidal particles in geothermal water.

    OBJECTIVES

    To analyze colloidal particles in geothermal water accurately by multiple methods, and understand the relationship between colloidal particles and opals, and the impact of colloidal particles on the analysis of other elements in geothermal water.

    METHODS

    By comparing the changes in the main components of the water samples before and after filtration, the composition of colloidal particles was inferred. The composition and structure of colloidal particles in the filtrate were characterized by scanning electron microscopy (SEM) and other instruments. The particle size of colloidal particles in geothermal water was measured by laser particle size analyzer, the morphology of colloidal particles was characterized by transmission electron microscope (TEM) and SEM, the characteristic spectrum peak of colloidal particles was measured by Fourier transform infrared spectroscopy (FTIR), the main composition of colloidal particles was analyzed by energy dispersive spectrometer (EDS), and the content of silicon in geothermal water was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and ultraviolet-visible spectrophotometry (UV-Vis).

    RESULTS

    The colloidal particles in geothermal water are colloidal silica particles. High levels of silica in geothermal water are present in the form of soluble silicic acid and colloidal particles. The average particle size of the colloidal particles is 80.83nm, which is related to the formation of cesium silica and the enrichment of light rare earth elements. The colloidal particle can be analyzed by ICP-OES method, but cannot show color with ammonium molybdate, resulting in a significant difference in the results of using UV-Vis and ICP-OES to determine silicon in this type of water. ICP-OES is a more suitable detection method for geothermal water with high silicon dioxide content. Silicon dioxide can be directly measured whether it exists in the form of metasilicic acid or colloidal particles.

    CONCLUSIONS

    The research shows that the presence of colloidal particles increases the turbidity, but not the conductivity, of geothermal water. The results show that the high content of SiO2 in geothermal water co-exists in the form of metasilicate and colloidal particles, which can be analyzed by ICP-OES but cannot show color with ammonium molybdate. The content of SiO2 colloidal particles in geothermal water can be obtained by calculating the difference between SiO2 measured by ICP-OES and H2SiO3 measured by UV-Vis. SiO2 colloidal particles are relatively stable and not easy to precipitate. SiO2 colloidal particles will adsorb metal ions in geothermal water during the filtration process.

  • [1]
    李明礼,多吉,王祝,等. 西藏日多温泉水化学特征及其物质来源[J]. 中国岩溶, 2015, 34(3): 209−216. doi: 10.11932/karst20150302

    Li M L,Duo J,Wang Z,et al. Hydrochemical characteristics and material sources of the Riduo thermal spring in Tibet[J]. Carsologica Sinica, 2015, 34(3): 209−216. doi: 10.11932/karst20150302
    [2]
    李皓婷,郭宁,孙会肖,等. 西藏查孜温泉水化学特征分析[J]. 地质论评, 2019, 65(Z1): 3−4. doi: 10.16509/j.georeview.2019.s1.002

    Li H T,Guo N,Sun H X,et al. Analysis of hydrochemical characteristics of the Chazi thermal spring in Tibet[J]. Geological Review, 2019, 65(Z1): 3−4. doi: 10.16509/j.georeview.2019.s1.002
    [3]
    郭宁,孙会肖,李皓婷,等. 西藏觉拥温泉水化学特征分析[J]. 地质论评, 2019, 65(Z1): 21−23. doi: 10.16509/j.georeview.2019.s1.011

    Guo N,Sun H X,Li H T,et al. Hydrochemical characteristics of Jueyong hot spring in Tibet[J]. Geological Review, 2019, 65(Z1): 21−23. doi: 10.16509/j.georeview.2019.s1.011
    [4]
    章旭,郝红兵,刘康林,等. 西藏加查象牙泉水文地球化学特征及成因[J]. 水文地质工程地质, 2019, 46(4): 1−9. doi: 10.16030/j.cnki.issn.1000-3665.2019.04.01

    Zhang X,Hao H B,Liu K L,et al. Hydrogeochemical characteristics and formation of the Ivory Spring in Jiacha County of Tibet[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 1−9. doi: 10.16030/j.cnki.issn.1000-3665.2019.04.01
    [5]
    谭梦如,周训,张彧齐,等. 云南勐海县勐阿街温泉水化学和同位素特征及成因[J]. 水文地质工程地质, 2019, 46(3): 70−80. doi: 10.16030/j.cnki.issn.1000-3665.2019.03.10

    Tan M R,Zhou X,Zhang Y Q,et al. Hydrochemical and isotopic characteristics and formation of the Mengajie hot spring in Menghai County of Yunnan[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 70−80. doi: 10.16030/j.cnki.issn.1000-3665.2019.03.10
    [6]
    刘成龙,王广才,史浙明,等. 云南硫磺洞温泉水文地球化学特征和成因分析[J]. 地震研究, 2020, 43(2): 278−286. doi: 10.3969/j.issn.1000-0666.2020.02.009

    Liu C L,Wang G C,Shi Z M,et al. Hydrogeochemical characteristics and formation of the Liuhuangdong spring in Yunnan Province[J]. Journal of Seiemological Research, 2020, 43(2): 278−286. doi: 10.3969/j.issn.1000-0666.2020.02.009
    [7]
    刘明亮,何曈,吴启帆,等. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6): 2221−2231.

    Liu M L,He T,Wu Q F,et al. Hydrogeochemistry of geothermal waters from Xiongan New Area and its indicating significance[J]. Earth Science, 2020, 45(6): 2221−2231.
    [8]
    王祝,李明礼,邵蓓,等. 电感耦合等离子体发射光谱法测定西藏日多温泉地热水中11种主次量元素[J]. 岩矿测试, 2015, 34(3): 302−307. doi: 10.15898/j.cnki.11-2131/td.2015.03.007

    Wang Z,Li M L,Shao B,et al. Determination of 11 major and minor elements in geothermal water of the Riduo hotsprings from Tibet by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2015, 34(3): 302−307. doi: 10.15898/j.cnki.11-2131/td.2015.03.007
    [9]
    李清彩,赵庆令,安茂国,等. 电感耦合等离子体发射光谱法测定地热水中的硫化物[J]. 岩矿测试, 2017, 36(3): 239−245. doi: 10.15898/j.cnki.11-2131/td.201612120181

    Li Q C,Zhao Q L,An M G,et al. Determination of sulfide in geothermal water by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(3): 239−245. doi: 10.15898/j.cnki.11-2131/td.201612120181
    [10]
    陈磊磊,陶宗涛,袁锡泰,等. 电感耦合等离子体原子发射光谱法测定地热水中钾、钠、钙、镁的含量[J]. 理化检验(化学分册), 2018, 54(8): 911−915.

    Chen L L,Tao Z T,Yuan X T,et al. ICP-AES determination of potassium,sodium,calcium,and magnesium in geothermal water[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(8): 911−915.
    [11]
    姜贞贞,刘高令,王祝,等. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素[J]. 岩矿测试, 2016, 35(5): 475−480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005

    Jiang Z Z,Liu G L,Wang Z,et al. Determination of trace elements in thermomineral waters of a high altitude area by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 475−480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005
    [12]
    Jahan S,Alias Y B,Bakar A F B A,et al. Transport and retention behavior of carbonaceous colloids in natural aqueous medium:Impact of water chemistry[J]. Chemosphere, 2019, 217: 213−222. doi: 10.1016/j.chemosphere.2018.11.015
    [13]
    Xu H,Xu M,Li Y,et al. Characterization,origin,and aggregation behavior of colloids in eutrophic shallow lake[J]. Water Research, 2018, 142: 176−186. doi: 10.1016/j.watres.2018.05.059
    [14]
    Tanaka M,Takahashi K. Identification of chemical species of silica in natural hot water using fast atom-bombartment mass spectrometry[J]. Instrumentation Science & Technology, 2005, 33(1): 47−60.
    [15]
    Otsu E,Etou M,Ohashi H,et al. Quantification method of size distribution of polysilicic acid in supersaturated silicic acid solution[J]. Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry, 2013, 29(3): 333. doi: 10.2116/analsci.29.333
    [16]
    罗雯,赵元艺,任二峰,等. 西藏谷露铯硅华1H,29Si魔角旋转核磁共振研究[J]. 盐湖研究, 2012, 20(3): 43−47.

    Luo W,Zhao Y Y,Ren E F,et al. 1H and 29Si MAS NMR of the geyserite in Tibetan Gulu area,China[J]. Journal of Salt Lake Resrarch, 2012, 20(3): 43−47.
    [17]
    Elenga H I,Tan H,Shi D,et al. Elemental distribution and partitioning law between the geothermal water and associated deposits for a typical geothermal system with large-scale siliceous sinter deposits in the Tibet[J]. Geochemistry International, 2021, 59(13): 1258−1273. doi: 10.1134/S0016702921100037
    [18]
    董贺. 季铵化合物辅助Stöber法制备SiO2粒子[D]. 长春: 吉林大学, 2021: 1-121.

    Dong H. Preparation of silica particles by quaternary ammonium compounds assisted Stöber method[D]. Changchun: Jilin University, 2021: 1-121.
    [19]
    Shimada K,Tarutani T. Gel chromatographic study of the polymerization of silicic acid[J]. Journal of Chromatography A, 1979, 168(2): 401−406. doi: 10.1016/0021-9673(79)80010-2
    [20]
    Arnórsson S,Bjarnason J Ö,Giroud N,et al. Sampling and analysis of geothermal fluids[J]. Geofluids, 2006, 6(3): 203−216.
    [21]
    Verma M P,Izquierdo G,Urbino G A,et al. Inter-laboratory comparison of SiO2 analysis for geothermal water chemistry[J]. Geothermics, 2012, 44: 33−42. doi: 10.1016/j.geothermics.2012.06.003
    [22]
    严俊,胡仙超,方飚,等. 应用XRF-SEM-XRD-FTIR等分析测试技术研究丽水蓝色类欧泊(蛋白石)的矿物学与光学特征[J]. 岩矿测试, 2014, 33(6): 795−801. doi: 10.15898/j.cnki.11-2131/td.2014.06.006

    Yan J,Hu X C,Fang B,et al. Study on the mineralogical and optical characteristics of blue opal from Lishui investigated by XRF-SEM-XRD-FTIR[J]. Rock and Mineral Analysis, 2014, 33(6): 795−801. doi: 10.15898/j.cnki.11-2131/td.2014.06.006
    [23]
    张诚. 浙江丽水蓝色蛋白石的宝石矿物学特征研究[D]. 北京: 中国地质大学(北京), 2018: 1−86.

    Zhang C. Study on the gemological and mineralogical characteristics of blue opal from Lishui, Zhejiang[D]. Beijing: China University of Geosciences (Beijing), 2018: 1−86.
    [24]
    Curtis N J,Gascooke J R,Pring A. Silicon-oxygen region infrared and Raman analysis of opals:The effect of sample preparation and measurement type[J]. Minerals, 2021, 11(2): 173. doi: 10.3390/min11020173
    [25]
    王海雷. 西藏地热区微生物对铯的吸附及其对铯硅华成矿的贡献[D]. 北京: 中国地质科学院, 2006: 1−119.

    Wang H L. Accumulation of cesium by microorganisms and role of microorganisms in the formation of cesium-bearing geyserites in geothermal areas, Tibet[D]. Beijing: Chinese Academy of Geological Sciences, 2006: 1−119.
    [26]
    邹鹏飞,邱杨,王彩会. 南京汤山温泉区地热水成因模式分析[J]. 高校地质学报, 2015, 21(1): 155−162. doi: 10.16108/j.issn1006-7493.2014119

    Zou P F,Qiu Y,Wang C H. Analyses of the genesis of Tangshang hot spring area in Nanjing[J]. Geological Journal of China Universities, 2015, 21(1): 155−162. doi: 10.16108/j.issn1006-7493.2014119
    [27]
    宋小燕. 修饰蛋白石次序吸附染料及重金属特性研究[D]. 大连: 大连理工大学, 2015: 1−67.

    Song X Y. Research on adsorption performance of dye onto opal and heavy metals onto opal-dye sludge[D]. Dalian: Dalian University of Technology, 2015: 1−67.
    [28]
    Choppin G R,Pathak P,Thakur P. Polymerization and complexation behavior of silicic acid:A review[J]. Main Group Metal Chemistry, 2008, 31(1-2): 53−72.
    [29]
    牛新生,刘喜方,陈文西. 西藏多格错仁南岸钙华地球化学特征与钾盐地质意义[J]. 沉积学报, 2013, 31(6): 1031−1040. doi: 10.14027/j.cnki.cjxb.2013.06.007

    Niu X S,Liu X F,Chen W X. Travertine in south bank of Dogai Coring,Tibet:Geochemical characteristics and potash geological significance[J]. Acta Sedimfntologica Sinica, 2013, 31(6): 1031−1040. doi: 10.14027/j.cnki.cjxb.2013.06.007
    [30]
    Watanabe Y,Amitani N,Yokoyama T,et al. Synthesis of mesoporous silica from geothermal water[J]. Scientific Reports, 2021, 11(1): 1−9. doi: 10.1038/s41598-020-79139-8
  • Related Articles

    [1]GUO Lin, YU Tingting, SUN Hongbin, ZHU Yun. Determination of Beryllium and Major Elements in Beryllium Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2024, 43(2): 356-365. DOI: 10.15898/j.ykcs.202308070129
    [2]WANG Guan, DONG Jun, XU Gongdong, HU Zhizhong. Determination of Tin, Tungsten, Zinc, Copper, Iron, and Manganese in Tin Ore by Lithium Metaborate Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry Combined with Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023
    [3]QIN Xiao-li, TIAN Gui, LI Chao-chang, JIANG Zhi-lin. Determination of Thorium and Potassium Oxide in Geological Samples by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 741-746. DOI: 10.15898/j.cnki.11-2131/td.201812290142
    [4]XIONG Ying, DONG Ya-ni, PEI Ruo-hui, CUI Chang-zheng. Determination of Antimony Content in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(5): 497-502. DOI: 10.15898/j.cnki.11-2131/td.201809010131
    [5]Jian-ping HU, Ri-zhong WANG, Bao-hua DU, Di-bo SHENG, Zhi-xiang LUO. Determination of Silver, Copper, Lead and Zinc in Sulfide Ores by Flame Atomic Absorption Spectrometry and Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 388-395. DOI: 10.15898/j.cnki.11-2131/td.201706270110
    [6]Yun-jun JIANG, Xing LI, Hai-lun JIANG, Ning ZHANG, Xue HAN, Yong-xiao ZHU. Determination of Sulfur in Soil by Inductively Coupled Plasma-Optical Emission Spectrometry with Four Acids Open Dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158. DOI: 10.15898/j.cnki.11-2131/td.201704010048
    [7]Qing-cai LI, Qing-ling ZHAO, Mao-guo AN, Nin SUN, Shou-wen ZHANG. Determination of Sulfide in Geothermal Water by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2017, 36(3): 239-245. DOI: 10.15898/j.cnki.11-2131/td.201612120181
    [8]Hai-yang HE, Xue-lin DONG, Xiao-qi YU, Xiao-rong REN, Hui-mei ZENG. Determination of Phosphorus in Phosphate Ores by Inductively Coupled Plasma-Optical Emission Spectrometry Utilizing an Internal Standard Correction Method[J]. Rock and Mineral Analysis, 2017, 36(2): 117-123. DOI: 10.15898/j.cnki.11-2131/td.2017.02.004
    [9]Simultaneous Determination of Al, Ca, Fe, K, Mg, Na, Ti and S in Glass Samples by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(2): 146-148.
    [10]Determination of Total Boron in Foods by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion Sample Preparation[J]. Rock and Mineral Analysis, 2008, 27(1): 21-24.
  • Other Related Supplements

  • Cited by

    Periodical cited type(1)

    1. 许耿,肖方景,崔小梅,布多,张强英. 西藏羊八井高温地热水砷和氟浓度及来源探析. 岩矿测试. 2024(03): 487-500 . 本站查看

    Other cited types(0)

Catalog

    Article views (171) PDF downloads (32) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return