• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
NIU Ying, AN Sheng, CHEN Kai, QIN Jiujun, LIU Fei. A Review of Current Status and Analysis Methods of Antibiotic Contamination in Groundwater in China (2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39-58. DOI: 10.15898/j.cnki.11-2131/td.202210120192
Citation: NIU Ying, AN Sheng, CHEN Kai, QIN Jiujun, LIU Fei. A Review of Current Status and Analysis Methods of Antibiotic Contamination in Groundwater in China (2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39-58. DOI: 10.15898/j.cnki.11-2131/td.202210120192

A Review of Current Status and Analysis Methods of Antibiotic Contamination in Groundwater in China (2012—2021)

More Information
  • Received Date: October 11, 2022
  • Revised Date: November 28, 2022
  • Accepted Date: January 17, 2023
  • Available Online: March 06, 2023
  • HIGHLIGHTS
    (1) The concentrations of 28 antibiotics commonly detected in groundwater in China vary by more than 4 orders of magnitude.
    (2) HPLC-MS/MS can perform accurate quantitative analysis of antibiotics in groundwater.
    (3) The presence forms of antibiotics affect the recovery rate of pretreatment and the accuracy of qualitative and quantitative results.
    As a form of new emerging pollutant, antibiotics have been detected in soil, surface water, groundwater, sediment and other different environmental media. As a major country in the production and usage of antibiotics, China's production and usage are increasing year by year. However, most antibiotics used for humans or animals cannot be fully absorbed and metabolized and will enter the environment in the form of prototypes or metabolites through waste and wastewater accumulating in soil and leaching into groundwater. Antibiotics entering the environment may affect microbial ecology, produce resistance genes, and even threaten human health. Compared with surface water, polluted groundwater is hidden, lagging and difficult to recover. The pollution of antibiotics in groundwater, as the main source of drinking water, has attracted much attention.So far, the research on antibiotics in China is still mainly on surface water and soil, and there are few observations on antibiotics in groundwater. In order to systematically grasp the current pollution situation of antibiotics in groundwater in China, relevant literature on antibiotics in groundwater from 2012 to 2021 is reviewed in this paper. Twenty-eight antibiotics detected more than 100 times in environmental media in China were selected as target antibiotics, and the detected concentrations were summarized and analyzed. It was found that the concentrations of 28 antibiotics commonly detected in groundwater varied by more than 4 orders of magnitude, from 0.1ng/L to more than 1000ng/L. The most frequently detected antibiotics were norfloxacin, ofloxacin, sulfamethoxazole, sulfadiazine, enrofloxacin, and erythromycin. Through comparative analysis of the detection of antibiotics in various places, it can be seen that the concentration of antibiotics in groundwater is controlled by the properties of antibiotics, the location of pollution sources, hydrogeological structure and the amount of usage and emissions. From the perspective of spatial distribution, sulfonamide antibiotics are the most detected in northeast China, quinolones are the most detected in North and East China, quinolones and tetracyclines are the most detected in southwest China, and the research on antibiotics in groundwater in northwest China is relatively low. So far, restrained by the detection limits and detection types of the analysis methods, a comprehensive investigation and evaluation of antibiotics in groundwater is not possible.Due to the wide variety of antibiotics, their different structures lead to different physical andchemical properties. They exist in trace concentrations in the complex environment media, which also affects the accuracy of their qualitative and quantitative analysis. Therefore, the establishment of a sensitive and specific multi-component simultaneous analysis method has been a key issue for antibiotics research. The analysis methods of antibiotics are summarized, which are divided into qualitative analysis methods and quantitative analysis methods. The principle, advantages, disadvantages and application range of several antibiotic analytical methods are presented. These methods include microbial inhibition method (MIT), thin layer chromatography (TLC), gas chromatogram-mass spectrometry (GC-MS), high-performance liquid chromatogram-nuclear magnetic resonance (HPLC-NMR) and liquid chromatogram-mass spectrometry (LC-MS). Liquid chromatogram-mass spectrometry (LC-MS) is the most commonly used method for antibiotic analysis because of its high sensitivity, low detection limit and simultaneous determination of multiple antibiotics. With the rapid development of antibiotic analysis methods, some antibiotics in groundwater can be accurately quantified by using HPLC-MS/MS and other technologies. However, the number of antibiotics that can be analyzed and identified at one time is still limited. The research group of authors has established the qualitative spectrum library of common drugs by UPLC-MS/MS. In the future, the types of antibiotics that can be qualitatively identified in the spectrum library can be expanded by adding the mass spectrum information of antibiotics. Under specific conditions, the spectrum library can be used to carry out semi-qualitative identification of antibiotics in groundwater. At present, the commonly used quantitative detection methods include enzyme-linked immunoassay, capillary electrophoresis, and liquid chromatography-mass spectrometry. Compared with the other two methods, liquid chromatography-mass spectrometry has the advantages of high sensitivity, good selectivity and accurate quantitative ability. It is commonly used for the detection of trace antibiotics in reported water samples.Antibiotics exist in the environment at trace levels and the matrix of environmental samples is complex, so the pretreatment process, including antibiotic separation, purification and concentration, often becomes the key step of determination. For example, the samples to be tested should be adjusted to an appropriate pH to enhance the enrichment of target antibiotics on HLB columns, and Na2EDTA should be added to inhibit its complexation with calcium and magnesium and other metal ions in groundwater. The accuracy of antibiotic determination will be improved, and the detection limit will be lowered for water samples by solid phase extraction and the subsequent concentration process. In addition to the detection limit and recovery rate of antibiotics affected by the analytical instrument, the presence states of antibiotics in water samples will also affect the accuracy and precision.Antibiotics may exist in the ionized state, complex state, adsorption state and other forms in groundwater. At different pH values, antibiotics may exist in neutral, cationic, anionic, orzwitterionic forms. When it coexists with metal ions, complexation reaction will occur under certain conditions to form antibiotic-metal complex which will reduce the peak area to a certain extent or cause tailing phenomenon on the reverse analytical column. The formation of the complex may also change the environmental behavior (migration, transformation, toxicity, etc.) and ecological effects of antibiotics. In addition, the analysis of antibiotics in different adsorption states can be used to evaluate the differences in microbial killing effects of different adsorption forms, especially the differences in ARG production and spreading. This will be helpful for accurately evaluating the potential effects on the environment or human beings and effectively controlling the risks of antibiotics in environmental media. Therefore, the existing form analysis of antibiotics is of great significance for the further accurate determination of antibiotics and the evaluation of environmental effects.Up to now, limited by the detection limits and detected types of antibiotics in analytical methods, there has not been a comprehensive national-scale investigation and evaluation of antibiotics in groundwater in China. Only by clarifying the concentration level and spatial distribution of antibiotic pollution in China's groundwater can it help to understand the contents of relevant laws and regulations on new emerging pollutants and support the establishment of a regulatory framework for natural resources and the environment. In conclusion, optimizing qualitative and quantitative detection methods, analyzing different existing forms of antibiotics, comprehensively investigating antibiotics in groundwater, and scientifically evaluating the relationship between antibiotic forms and ecotoxicological effects are the main contents of antibiotics research in groundwater in the future.

  • [1]
    Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
    [2]
    苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201304011.htm

    Su J Q, Huang F Y, Zhu Y G. Antibiotic resistance genes in the environment[J]. Biodiversity Science, 2013, 21(4): 481-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201304011.htm
    [3]
    Qiao M, Ying G G, Singer A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110: 160-172. doi: 10.1016/j.envint.2017.10.016
    [4]
    Wang J, Zhou A, Zhang Y, et al. Research on the adsorption and migration of sulfa antibiotics in underground environment[J]. Environmental Earth Sciences, 2016, 75(18): 1252. doi: 10.1007/s12665-016-6056-9
    [5]
    Polianciuc S I, Gurzau A E, Kiss B, et al. Antibiotics in the environment: Causes and consequences[J]. Medicine and Pharmacy Reports, 2020, 93(3): 231-240.
    [6]
    Zeng Y B, Chang F Q, Liu Q, et al. Recent advances and perspectives on the sources and detection of antibiotics in aquatic environments[J]. Journal of Analytical Methods in Chemistry, 2022, doi. org/10.1155/2022/5091181.
    [7]
    毛娜, 孙志洪, 张丽. HPLC-MS/MS法测定养殖场土壤中6种常见抗生素微量残留[J]. 化学试剂, 2021, 43(7): 945-950. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ202107014.htm

    Mao N, Sun Z H, Zhang L. Determination of 6 antibiotics residues in farm soil by HPLC-MS/MS[J]. Chemical Reagents, 2021, 43(7): 945-950. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ202107014.htm
    [8]
    史晓, 卜庆伟, 吴东奎, 等. 地表水中10种抗生素SPE-HPLC-MS/MS检测方法的建立[J]. 环境化学, 2020, 39(4): 1075-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202004024.htm

    Shi X, Bu Q W, Wu D K, et al. Simultaneous determination of 10 antibiotic residues in surface water by SPE-HPLC-MS/MS in surface water[J]. Environmental Chemistry, 2020, 39(4): 1075-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202004024.htm
    [9]
    Xue Q, Qi Y J, Liu F. Ultra-high performance liquid chromatography-electrospray tandem mass spectrometry for the analysis of antibiotic residues in environmental waters[J]. Environmental Science and Pollution Research, 2015, 22(21): 16857-16867. doi: 10.1007/s11356-015-4900-1
    [10]
    剧泽佳, 付雨, 赵鑫宇, 等. 喹诺酮类抗生素在城市典型水环境中的分配系数及其主要环境影响因子[J]. 环境科学, 2022, 43(9): 4543-4555. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202209014.htm

    Ju Z J, Fu Y, Zhao X Y, et al. Distribution coefficient of QNs in urban typical water and its main environmental influencing factors[J]. Environmental Science, 2022, 43(9): 4543-4555. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202209014.htm
    [11]
    张泽宇, 王鑫, 李丽君, 等. 薄膜梯度扩散(DGT)-UPLC-MS/MS法测量地下水中26种抗生素[J]. 地质与资源, 2022, 31(2): 235-242. doi: 10.13686/j.cnki.dzyzy.2022.02.015

    Zhang Z Y, Wang X, Li L J, et al. Determination of 26 antibiotics in groundwater by diffusive gradients in thin films technique combined with UPLC-MS/MS[J]. Geology and Resources, 2022, 31(2): 235-242. doi: 10.13686/j.cnki.dzyzy.2022.02.015
    [12]
    于婉柔. 南水北调中线干渠抗生素污染分布特征及环境行为研究[D]. 北京: 北京交通大学, 2021.

    Yu W R. Study on the occurrence and environmental behavior of antibiotics in the mid route of the South-to-North Water Transfer Project[D]. Beijing: Beijing Jiaotong University, 2021.
    [13]
    Oberoi A S, Jia Y Y, Zhang H Q, et al. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review[J]. Environmental Science & Technology, 2019, 53(13): 7234-7264.
    [14]
    祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展[J]. 岩矿测试, 2014, 33(1): 1-11. doi: 10.3969/j.issn.0254-5357.2014.01.002

    Qi Y J, Liu F. Analysis of antibiotics in groundwater: A review[J]. Rock and Mineral Analysis, 2014, 33(1): 1-11. doi: 10.3969/j.issn.0254-5357.2014.01.002
    [15]
    杜鹃. 黄渤海部分区域近岸海域中抗生素的分布、分配及释放动力学[D]. 大连: 大连理工大学, 2021.

    Du J. Occurrence, distribution and desorption kinetics of antibiotics in regional coastal area of the Yellow Sea and the Bohai Sea[D]. Dalian: Dalian University of Technology, 2021.
    [16]
    耿嘉璐. 抗性基因和药物的多介质环境分布特征与生态风险评价[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Geng J L. Multi-mediat distribution characteristics and ecological risk assessment of antibiotic resistance genes and pharmaceuticals[D]. Harbin: Harbin Institute of Technology, 2020.
    [17]
    Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23): 7445-7450.
    [18]
    李金梅, 梁威, 张洪勋, 等. 典型淡水环境中抗生素抗性基因的分布及其溯源[J]. 安全与环境学报, 2021, 21(5): 2329-2336. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202105061.htm

    Li J M, Liang W, Zhang H X, et al. Distribution and origin of antibiotic resistance genes in typical freshwater environments[J]. Chinese Journal of Safety and Environment, 2021, 21(5): 2329-2336. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202105061.htm
    [19]
    高盼盼, 罗义, 周启星, 等. 水产养殖环境中抗生素抗性基因(ARGs)的研究及进展[J]. 生态毒理学报, 2009, 4(6): 770-779. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL200906002.htm

    Gao P P, Luo Y, Zhou Q X, et al. Research advancement of antibiotics resistance genes(ARGs) in aquaculture environment[J]. Asian Journal of Ecotoxicology, 2009, 4(6): 770-779. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL200906002.htm
    [20]
    朱永官, 欧阳纬莹, 吴楠, 等. 抗生素耐药性的来源与控制对策[J]. 中国科学院院刊, 2015, 30(4): 509-516. doi: 10.16418/j.issn.1000-3045.2015.04.010

    Zhu Y G, Ouyang W Y, Wu N, et al. Antibiotic resistance: Sources and mitigation[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 509-516. doi: 10.16418/j.issn.1000-3045.2015.04.010
    [21]
    张焕军, 王席席, 李轶. 水体中抗生素污染现状及其对氮转化过程的影响研究进展[J]. 环境化学, 2022, 41(4): 1168-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202204007.htm

    Zhang H J, Wang X X, Li Y. Progress in current pollution status of antibiotics and their influences on the nitrogen transformation in water[J]. Environmental Chemistry, 2022, 41(4): 1168-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202204007.htm
    [22]
    郭子宁, 王旭升, 向师正, 等. 再生水入渗区典型抗生素分布特征与地下水微生物群落影响因素研究[J]. 岩矿测试, 2022, 41(3): 451-462. doi: 10.15898/j.cnki.11-2131/td.202111040163

    Guo Z N, Wang X S, Xiang S Z, et al. Distribution characteristics of typical antibiotics in reclaimed water infiltration area and influencing factors of groundwater microbial community[J]. Rock and Mineral Analysis, 2022, 41(3): 451-462. doi: 10.15898/j.cnki.11-2131/td.202111040163
    [23]
    王阳. 不同吸附态的左氧氟沙星对大肠杆菌的毒理学研究[D]. 北京: 中国地质大学(北京), 2014.

    Wang Y. The toxicological study of different adsorbed levofloxacin on escherichia coli[D]. Beijing: China University of Geosciences (Beijing), 2014.
    [24]
    陈淋鹏, 黄福杨, 张冲, 等. 诺氟沙星对地下水中反硝化过程的影响: 反硝化酶活性的证据[J]. 环境科学学报, 2020, 40(7): 2496-2501. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202007020.htm

    Chen L P, Huang F Y, Zhang C, et al. Effect of norfloxacin on denitrification process in groundwater: Evidence for denitrifying enzyme activity[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2496-2501. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202007020.htm
    [25]
    杨蕾. 地下水中抗生素类污染风险因子筛选及典型抗生素检测方法研究[D]. 北京: 中国地质大学(北京), 2014.

    Yang L. Screening of risk factors for antibiotics contamination in groundwater and study on typical antibiotics detection methods[D]. Beijing: China University of Geosciences (Beijing), 2014.
    [26]
    Li S, Shi W Z, Liu W, et al. A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016)[J]. Science of the Total Environment, 2018, 615: 906-917. doi: 10.1016/j.scitotenv.2017.09.328
    [27]
    Ben Y J, Hu M, Zhang X Y, et al. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water[J]. Water Research, 2020, 175: 2022, 41(4): 1168-1181.
    [28]
    Hanna N, Sun P, Sun Q, et al. Presence of antibiotic residues in various environmental compartments of Shandong Province in eastern China: Its potential for resistance development and ecological and human risk[J]. Environment International, 2018, 114: 131-142. doi: 10.1016/j.envint.2018.02.003
    [29]
    Huang Z, Pan X D, Huang B F, et al. Determination of 15 beta-lactam antibiotics in pork muscle by matrix solid-phase dispersion extraction (MSPD) and ultra-high pressure liquid chromatography tandem mass spectrometry[J]. Food Control, 2016, 66: 145-150. doi: 10.1016/j.foodcont.2016.01.037
    [30]
    Sommer F, Anderson J M, Bharti R, et al. The resilience of the intestinal microbiota influences health and disease[J]. Nature Reviews Microbiology, 2017, 15(10): 630-638. doi: 10.1038/nrmicro.2017.58
    [31]
    Li J, Cao J, Zhu Y G, et al. Global survey of antibiotic resistance genes in air[J]. Environmental Science & Technology, 2018, 52(19): 10975-10984.
    [32]
    2020年中国兽用抗菌药使用情况报告[N]. 中国畜牧兽医报, 2020.

    Report on the use of veterinary antimicrobials in China in 2020[N]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2020.
    [33]
    胡敏. 南方某城市饮用水中抗生素残留分布及风险评价研究[D]. 兰州: 兰州理工大学, 2019.

    Hu M. Study on the distribution characteristics of antibiotic residues and risk assessment in drinking water in a southern city[D]. Lanzhou: Lanzhou University of Technology, 2019.
    [34]
    雷雨洋, 李方方, 欧阳洁, 等. 浙江地区抗生素残留的环境分布特征及来源分析[J]. 化学进展, 2021, 33(8): 1414-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ202108013.htm

    Lei Y Y, Li F F, Ouyang J, et al. Environmental distribution characteristics and source analysis of antibiotics in Zhejiang area[J]. Progress in Chemistry, 2021, 33(8): 1414-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ202108013.htm
    [35]
    童蕾, 姚林林, 刘慧, 等. 抗生素在地下水系统中的环境行为及生态效应研究进展[J]. 生态毒理学报, 2016, 11(2): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201602005.htm

    Tong L, Yao L L, Liu H, et al. Review on the environmental behavior and ecological effect of antibiotics in groundwater system[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201602005.htm
    [36]
    Li X H, Liu C, Chen Y X, et al. Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of North China[J]. Environmental Science and Pollution Research, 2018, 25(12): 11565-11575. doi: 10.1007/s11356-018-1339-1
    [37]
    姚学文. 抗生素在猪场粪污处理工艺与周边环境的分布及微生物降解特性[D]. 重庆: 重庆大学, 2020.

    Yao X W. Study on distribution of antibiotics in swine wastewater and manure treatment process and surrounding environment and its microbial degradation characteristics[D]. Chongqing: Chongqing University, 2020.
    [38]
    Zhou L J, Ying G G, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. Science of the Total Environment, 2013, 444: 183-195. doi: 10.1016/j.scitotenv.2012.11.087
    [39]
    张腾云. 基于UPLC-MS-MS的海水中23种抗生素残留分析方法及其应用研究[D]. 海口: 海南大学, 2019.

    Zhang T Y. UPLC-MS-MS-based simultaneous determination of 23 antibiotics in seawater samples and its application[D]. Haikou: Hainan University, 2019.
    [40]
    余和春. 地表水回灌过程中典型磺胺类抗生素迁移特性及去除研究[D]. 北京: 中国地质大学(北京), 2018.

    Yu H C. Transport characteristics and removal of typical sulfonamide antibiotics during recharge of surface water[D]. Beijing: China University of Geosciences (Beijing), 2018.
    [41]
    Li Z, Li M, Liu X, et al. Identification of priority organic compounds in groundwater recharge of China[J]. Science of the Total Environment, 2014, 493: 481-486. doi: 10.1016/j.scitotenv.2014.06.005
    [42]
    Carvalho I T, Santos L. Antibiotics in the aquatic environ-ments: A review of the European scenario[J]. Environment International, 2016, 94: 736-757. doi: 10.1016/j.envint.2016.06.025
    [43]
    张智博. 长三角一体化示范区典型药物的环境归趋及氧化降解机理研究[D]. 上海: 上海师范大学, 2022.

    Zhang Z B. Study on environmental tropism and oxidative degradation mechanism of typical drugs in Yangtze River Delta Integrated Demonstration Zone[D]. Shanghai: Shanghai Normal University, 2022.
    [44]
    高源. 我国典型流域抗生素分布与风险评估的文献计量学研究[D]. 北京: 首都经济贸易大学, 2020.

    Gao Y. Bibliometric study on antibiotics in typical river basins in China: Distribution and risk assessments[D]. Beijing: Capital University of Economics and Business, 2020.
    [45]
    韦正峥, 向月皎, 郭云, 等. 国内外新污染物环境管理政策分析与建议[J]. 环境科学研究, 2022, 35(2): 443-451. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202202015.htm

    Wei Z Z, Xiang Y J, Guo Y, et al. Analysis and suggestions of environmental management policies of new pollutants at home and abroad[J]. Research of Environmental Science, 2022, 35(2): 443-451. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202202015.htm
    [46]
    卫承芳, 李佳乐, 孙占学, 等. 水-土壤环境中抗生素污染现状及吸附行为研究进展[J]. 生态毒理学报, 2022, 17(3): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL202203033.htm

    Wei C F, Li J L, Sun Z X, et al. Research progress of antibiotic pollution and adsorption behavior in water-soil environment[J]. Asian Journal of Ecotoxicology, 2022, 17(3): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL202203033.htm
    [47]
    黄福杨. 中国不同环境介质中典型抗生素识别及优先控制清单研究[D]. 北京: 中国地质大学(北京), 2021.

    Huang F Y. Research on the identification of typical antibiotics and list of priority-controlled antibiotics in various environmental compartments in China[D]. Beijing: China University of Geosciences (Beijing), 2021.
    [48]
    陈卫平, 彭程伟, 杨阳, 等. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学, 2017, 38(12): 5074-5080. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201712022.htm

    Chen W P, Peng C W, Yang Y, et al. Distribution characteristics and risk analysis of antibiotic in the groundwater in Beijing[J]. Environmental Science, 2017, 38(12): 5074-5080. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201712022.htm
    [49]
    Fu C, Xu B, Chen H, et al. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong'an New Area, China, and their relationship with antibiotic resistance genes[J]. Science of the Total Environment, 2022, 807: 151011. doi: 10.1016/j.scitotenv.2021.151011
    [50]
    Wang J L, Zhang C, Xiong L, et al. Changes of antibiotic occurrence and hydrochemistry in groundwater under the influence of the South-to-North Water Diversion (the Hutuo River, China)[J]. Science of the Total Environment, 2022, 832: 154779. doi: 10.1016/j.scitotenv.2022.154779
    [51]
    马健生, 王卓, 张泽宇, 等. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 2021, 40(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202101040001

    Ma J S, Wang Z, Zhang Z Y, et al. Distribution character-istics of 29 antibiotics in groundwater in Harbin[J]. Rock and Mineral Analysis, 2021, 40(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202101040001
    [52]
    李佳乐, 王萌, 胡发旺, 等. 江西锦江流域抗生素污染特征与生态风险评价[J]. 环境科学, 2022, 43(8): 4064-4073. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202208017.htm

    Li J L, Wang M, Hu F W, et al. Antibiotic pollution characteristics and ecological risk assessment in Jinjiang River Basin, Jiangxi Province[J]. Environmental Science, 2022, 43(8): 4064-4073. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202208017.htm
    [53]
    Gu D M, Feng Q Y, Guo C S, et al. Occurrence and risk assessment of antibiotics in manure, soil, wastewater, groundwater from livestock and poultry farms in Xuzhou, China[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(4): 590-596.
    [54]
    Yao L, Wang Y, Tong L, et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China[J]. Ecotoxicology and Environmental Safety, 2017, 135: 236-242.
    [55]
    Qin L T, Pang X R, Zeng H H, et al. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China[J]. Science of the Total Environment, 2020, 708: 134552.
    [56]
    戴刚, 徐浩, 杨琼, 等. 毕节垃圾场周边水源中抗生素污染特征[J]. 环境科学与技术, 2015, 38(S2): 263-268. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2015S2052.htm

    Dai G, Xu H, Yang Q, et al. Pollution characteristics of antibiotics in water source of the surrounding of health garbage's landfill, Bijie[J]. Environmental Science & Technology, 2015, 38(S2): 263-268. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2015S2052.htm
    [57]
    Zou S, Huang F, Chen L, et al. The occurrence and distribution of antibiotics in the karst river system in Kaiyang, southwest China[J]. Water Science and Technology-Water Supply, 2018, 18(6): 2044-2052.
    [58]
    Lin Y C, Lai W W P, Tung H H, et al. Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan[J]. Environmental Monitoring and Assessment, 2015, 187(5): 256.
    [59]
    郎杭. 地下水中典型药物定性识别及抗生素定量的方法研究与应用[D]. 北京: 中国地质大学(北京), 2020.

    Lang H. The research and application of typical pharmaceutical identification and antibiotics detection in groundwater[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [60]
    南琼, 唐景春, 胡羽成, 等. 不同环境介质中抗生素检测方法研究进展[J]. 化学研究与应用, 2017, 29(11): 1609-1621. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYJ201711001.htm

    Nan Q, Tang J C, Hu Y C, et al. Advances in detection of antibiotics in different environmental matrix[J]. Chemical Research and Application, 2017, 29(11): 1609-1621. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYJ201711001.htm
    [61]
    陈宏霞. 基于MOF荧光探针对四环素类抗生素特异识别[D]. 北京: 华北电力大学(北京), 2021.

    Chen H X. Fluorescence detector based on MOF conditions for specific recognition of tetracycline antibiotics[D]. Beijing: North China Electric Power University (Beijing), 2021.
    [62]
    王珂. 两种微生物抑制法检测抗生素残留优化与改良的研究[D]. 石河子: 石河子大学, 2020.

    Wang K. Research on optimization and improvement of two kinds of microbial inhibition methods to detect antibiotic residues[D]. Shihezi: Shihezi University, 2020.
    [63]
    吕长淮. 薄层色谱法在药物分析中的应用进展[J]. 中国药房, 2006(22): 1748-1749. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYA200622029.htm

    Lyu C H. Application progress of thin-layer chroma-tography in drug analysis[J]. Chinese Pharmacy, 2006(22): 1748-1749. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYA200622029.htm
    [64]
    王婷. 基于化学计量学法的禽肉中典型抗生素残留的SERS快速鉴别研究[D]. 南昌: 江西农业大学, 2021.

    Wang T. Study on SERS rapid identification of typical antibiotic residues in poultry meat based on stoichiometry[D]. Nanchang: Jiangxi Agricultural University, 2021.
    [65]
    刘明仁. 气相色谱-质谱联用技术在环境有机污染物检测中的应用[D]. 济南: 济南大学, 2010.

    Liu M R. Application of gas chromatography-mass spectrometry in the determination of environmental organic pollutants[D]. Jinan: Jinan University, 2010.
    [66]
    潘瑞花, 陈建华, 张剑锋. HPLC-NMR在化学品检测中的应用前景[J]. 化学分析计量, 2007(6): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ200706030.htm

    Pan R H, Chen J H, Zhang J F. Application prospect of HPLC-NMR in chemical detections[J]. Chemical Analysis and Metrology, 2007(6): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ200706030.htm
    [67]
    孙余娟. 核磁共振技术检测乳制品中兽药残留的研究[D]. 天津: 天津理工大学, 2021.

    Sun Y J. Detection of veterinary drug residues in dairy products by nuclear magnetic resonance[D]. Tianjin: Tianjin University of Technology, 2021.
    [68]
    任娇阳. 北京市潮白河流域抗生素污染分布与风险评估[D]. 北京: 北京交通大学, 2021.

    Ren J Y. Distribution and risk assessment of antibiotic contamination in Chaobai River Basin, Beijing[D]. Beijing: Beijing Jiaotong University, 2021.
    [69]
    Ahmed S, Ning J, Peng D, et al. Current advances in immunoassays for the detection of antibiotics residues: A review[J]. Food and Agricultural Immunology, 2020, 31(1): 268-290.
    [70]
    耿建暖. 酶联免疫法及其在食品中的应用研究进展[J]. 黑龙江畜牧兽医, 2021(19): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX202119008.htm

    Geng J N. Research progress of enzyme-linked immunosorbent assay and its application in food processing[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(19): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX202119008.htm
    [71]
    范素素, 方烨渟, 蔡萌, 等. 水环境中磺胺类抗生素固相萃取-液质联用检测方法的建立及效果评估[J]. 环境工程学报, 2022, 16(8): 2764-2774. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202208031.htm

    Fan S S, Fang Y T, Cai M, et al. Establishment of solid phase extraction-liquid mass spectrometry method for detection of sulfa antibiotics in water environment and its effect evaluation[J]. Chinese Journal of Environmental Engineering, 2022, 16(8): 2764-2774. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202208031.htm
    [72]
    马建国. 水中抗生素高通量免疫检测技术研究及应用[D]. 济南: 山东大学, 2019.

    Ma J G. Research and application of high-throughput immunoassay technology for antibiotics in water[D]. Jinan: Shandong University, 2019.
    [73]
    王莉. 毛细管电泳对环境水体中典型抗生素的高灵敏度分析方法研究[D]. 上海: 东华大学, 2018.

    Wang L. Study of high sensitivity analysis method of typical antibiotics in waters by capillary electrophoresis[D]. Shanghai: Donghua University, 2018.
    [74]
    袁越. 钙镁离子对四环素在水-腐殖酸间分配的影响[D]. 北京: 中国地质大学(北京), 2020.

    Yuan Y. Effects of calcium and magnesium ions on the partition of tetracycline between water and humic acid[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [75]
    Beccaria M, Cabooter D. Simultaneous determination of antibiotics in seawater samples using solid phase extraction-liquid chromatography coupled with tandem mass spectrometry[J]. Analyst, 2020, 145(4): 1129-1157.
    [76]
    孙晓杰, 李兆新, 董晓, 等. 固相萃取-液相色谱-串联质谱法同时检测海水中抗生素多残留[J]. 分析科学学报, 2016, 32(5): 639-643. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201605009.htm

    Sun X J, Li Z X, Dong X, et al. Determination of antibiotic residues in seawater by solid-phase extraction-liquid chromatography-tandem mass spectrometry[J]. Journal of Analytical Sciences, 2016, 32(5): 639-643. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201605009.htm
    [77]
    陈永艳, 吕佳, 邢方潇, 等. 饮用水检测中抗生素类标准物质稳定性研究[J]. 中国抗生素杂志, 2019, 44(6): 758-763. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKSS201906020.htm

    Chen Y Y, Lyu J, Xing F X, et al. Study on the stability of antibiotic standard substances in drinking water[J]. Chinese Journal of Antibiotics, 2019, 44(6): 758-763. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKSS201906020.htm
    [78]
    营娇龙, 秦晓鹏, 郎杭, 等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试, 2022, 41(3): 394-403. doi: 10.15898/j.cnki.11-2131/td.202111060168

    Ying J L, Qin X P, Lang H, et al. Determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394-403. doi: 10.15898/j.cnki.11-2131/td.202111060168
    [79]
    杨聪, 童蕾, 马乃进, 等. 洪湖水体和沉积物中抗生素的分布特征及其影响因素研究[J]. 安全与环境工程, 2022, 29(5): 78-90. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202205011.htm

    Yang C, Tong L, Ma N J, et al. Distribution characteristics and influencing factors of antibiotics in water and sediments of Honghu Lake[J]. Safety and Environmental Engineering, 2022, 29(5): 78-90. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202205011.htm
    [80]
    赵军杰, 程林丽, 陈亚南, 等. 动物源食品中抗生素残留检测方法进展[J]. 饲料工业, 2022, 43(20): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-FEED202220009.htm

    Zhao J J, Cheng L L, Chen Y N, et al. Research status of antibiotic residues detection in animal-derived foods[J]. Feed Industry, 2022, 43(20): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-FEED202220009.htm
    [81]
    邓冬冬. 地下水中五种农药液相色谱串联三重四极杆质谱方法的建立与应用[D]. 北京: 中国地质大学(北京), 2019.

    Deng D D. Establishment and application of LC-MS/MS method for five pesticides in groundwater[D]. Beijing: China University of Geosciences (Beijing), 2019.
    [82]
    张涛. 三重四极杆质谱仪开发平台的设计、实现与应用[D]. 天津: 天津大学, 2020.

    Zhang T. Design, implementation and application of development platform for triple quadrupole mass spectrometer[D]. Tianjin: Tianjin University, 2020.
    [83]
    Junza A, Amatya R, Barron D, et al. Comparative study of the LC-MS/MS and UPLC-MS/MS for the multi-residue analysis of quinolones, penicillins and cephalosporins in cow milk, and validation according to the regulation 2002/657/EC[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2011, 879(25): 2601-2610.
    [84]
    宋焕杰, 谢卫民, 王俊, 等. SPE-UPLC-MS/MS同时测定水环境中4大类15种抗生素[J]. 分析试验室, 2022, 41(1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202201010.htm

    Song H J, Xie W M, Wang J, et al. Simultaneous determination of 15 antibiotics in 4 categories in water environment by SPE-UPLC-MS/MS[J]. Chinese Journal of Analytical Laboratory, 2022, 41(1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202201010.htm
    [85]
    祁彦洁. 水中抗生素的检测方法与非生物衰减行为研究[D]. 北京: 中国地质大学(北京), 2014.

    Qi Y J. Determination and abiotic attenuation of antibiotics in water[D]. Beijing: China University of Geosciences (Beijing), 2014.
    [86]
    Holton E, Kasprzyk-Hordern B. Multiresidue antibiotic-metabolite quantification method using ultra-performance liquid chromatography coupled with tandem mass spectrometry for environmental and public exposure estimation[J]. Analytical and Bioanalytical Chemistry, 2021, 413(23): 5901-5920.
    [87]
    Seifrtova M, Novakova L, Lino C, et al. An overview of analytical methodologies for the determination of antibiotics in environmental waters[J]. Analytica Chimica Acta, 2009, 649(2): 158-179.
    [88]
    Gros M, Rodriguez-Mozaz S, Barcelo D. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1292: 173-188.
    [89]
    Boy-Roura M, Mas-Pla J, Petrovic M, et al. Towards the understanding of antibiotic occurrence and transport in groundwater: Findings from the Baix Fluvia alluvial aquifer (NE Catalonia, Spain)[J]. Science of the Total Environment, 2018, 612: 1387-1406.
    [90]
    秦晓鹏, 刘菲, 王广才, 等. 抗生素在土壤/沉积物中吸附行为的研究进展[J]. 水文地质工程地质, 2015, 42(3): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503026.htm

    Qin X P, Liu F, Wang G C, et al. Adsorption of antibiotics in soils/sediments: A review[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503026.htm
    [91]
    仲小飞, 秦晓鹏, 杜平, 等. 高效液相色谱法同时测定水体中氧氟沙星及其手性异构体[J]. 色谱, 2018, 36(11): 1167-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201811012.htm

    Zhong X F, Qin X P, Du P, et al. Simultaneous determination of ofloxacin enantiomers in water by high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2018, 36(11): 1167-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201811012.htm
    [92]
    陈小燕, 牛玉玲, 朱敏, 等. 固相萃取-高效液相色谱法测定牛奶中四环素类抗生素[J]. 中国抗生素杂志, 2017, 42(2): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKSS201702009.htm

    Chen X Y, Niu Y L, Zhu M, et al. Determination of tetra-cycline antibiotics in milk by solid phase extraction combined with high performance liquid chromatography[J]. Chinese Journal of Antibiotics, 2017, 42(2): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKSS201702009.htm
    [93]
    付浩. 水中典型喹诺酮类抗生素的活性炭吸附特性研究[D]. 北京: 清华大学, 2017.

    Fu H. Activated carbon adsorption of quinolone antibiotics in water[D]. Beijing: Tsinghua University, 2017.
    [94]
    Chang P H, Li Z, Yu T L, et al. Sorptive removal of tetracycline from water by palygorskite[J]. Journal of Hazardous Materials, 2009, 165(1-3): 148-155.
    [95]
    Pei Z, Yang S, Li L, et al. Effects of copper and alumi-num on the adsorption of sulfathiazole and tylosin on peat and soil[J]. Environmental Pollution, 2014, 184: 579-585.
    [96]
    张洪丹. 水环境中不同粒径的典型黏土矿物吸附罗红霉素的特征分析[D]. 天津: 河北工业大学, 2016.

    Zhang H D. Analysis of characteristics on the adsorption relationship between different size typical clay minerals and roxithromycin in the water[D]. Tianjin: Hebei University of Technology, 2016.
    [97]
    侯卓. 头孢类抗生素的固相萃取-高效毛细管电泳方法建立与研究[D]. 上海: 上海交通大学, 2018.

    Hou Z. Establishment and research of solid-phase extraction-capillary electrophoresis method for cephalo-sporins[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [98]
    Wu Q, Li Z, Hong H, et al. Adsorption and intercalation of ciprofloxacin on montmorillonite[J]. Applied Clay Science, 2010, 50(2): 204-211.
    [99]
    欧阳卓智. 复合污染下金属离子对抗生素氧化及光降解的影响机制[D]. 广州: 华南理工大学, 2020.

    Ouyang Z Z. The mechanism of metal ions affecting the oxidation and photolysis of antibiotics under combined pollution[D]. Guangzhou: South China University of Technology, 2020.
    [100]
    Zhang Y, Boyd S A, Teppen B J, et al. Role of tetracycline speciation in the bioavailability to escherichia coli for uptake and expression of antibiotic resistance[J]. Environmental Science & Technology, 2014, 48(9): 4893-4900.
    [101]
    王娅南, 彭洁, 谢双, 等. 固相萃取-高效液相色谱-串联质谱法测定地表水中40种抗生素[J]. 环境化学, 2020, 39(1): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202001021.htm

    Wang Y N, Peng J, Xie S, et al. Determination of 40 antibiotics in surface water by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2020, 39(1): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202001021.htm
    [102]
    徐舟影, 孟发科, 吕意超, 等. 抗生素与重金属复合污染废水处理的研究进展[J]. 环境科学研究, 2021, 34(11): 2686-2695. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202111017.htm

    Xu Z Y, Meng F K, Lyu Y C, et al. Research progress in treatment of antibiotics and heavy metals compound polluted wastewater[J]. Research of Environmental Science, 2021, 34(11): 2686-2695. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202111017.htm
    [103]
    黄翔峰, 熊永娇, 彭开铭, 等. 金属离子络合对抗生素去除特性的影响研究进展[J]. 环境化学, 2016, 35(1): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201601017.htm

    Huang X F, Xiong Y J, Peng K M, et al. The progress of antibiotics removal performance under the complexion effect of metal ions[J]. Environmental Chemistry, 2016, 35(1): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201601017.htm
    [104]
    Zhang Y, Cai X, Lang X, et al. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture[J]. Environmental Pollution, 2012, 166: 48-56.
    [105]
    张雨. 抗生素-金属复合物水生毒理及选择性吸附去除[D]. 大连: 大连理工大学, 2013.

    Zhang Y. Aquatic toxicity and selective adsorption removal of antibiotic and metal complex[D]. Dalian: Dalian University of Technology, 2013.
    [106]
    Pulicharla R, Hegde K, Brar S K, et al. Tetracyclines metal complexation: Significance and fate of mutual existence in the environment[J]. Environmental Pollution, 2017, 221: 1-14.
    [107]
    汤贝贝. 铜-四环素络合对植物根系吸附和转移四环素的影响研究[D]. 南京: 南京理工大学, 2018.

    Tang B B. The adsorption and transport of tetracycline by roots of macrophyte under the influence of copper complexation[D]. Nanjing: Nanjing University of Science and Technology, 2018.
    [108]
    马江雄, 周欣, 赵超, 等. 水体中痕量四环素类抗生素分析方法研究进展[J]. 化学通报, 2022, 85(11): 1336-1345. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB202211008.htm

    Ma J X, Zhou X, Zhao C, et al. Advances in analytical methods for trace tetracycline antibiotics in water[J]. Chemistry, 2022, 85(11): 1336-1345. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB202211008.htm
    [109]
    周志洪, 黄卓尔, 吴清柱, 等. 在线固相萃取-液相色谱-串联质谱法测定环境水体中抗生素[J]. 分析试验室, 2016, 35(9): 1092-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201609024.htm

    Zhou Z H, Huang Z E, Wu Q Z, et al. Determination of antibiotics in surface water with liquid qhromatography-tandem mass spectrometry after online solid phase extraction[J]. Chinese Journal of Analytical Laboratory, 2016, 35(9): 1092-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201609024.htm
    [110]
    李硕. 微塑料-抗生素在地下水中的迁移行为及降解机制研究[D]. 长春: 吉林大学, 2021.

    Li S. Migration behavior and degradation mechanism of microplasties-antibiotics in groundwater[D]. Changchun: Jilin University, 2021.
    [111]
    王婷. 针铁矿和赤铁矿对氧四环素的吸附研究[D]. 北京: 中国地质大学(北京), 2020.

    Wang T. Study on adsorption of oxytetracycline onto goethite and hematite[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [112]
    秦晓鹏. 左氧氟沙星在针铁矿上的吸附: 磷酸盐和腐殖酸的影响[D]. 北京: 中国地质大学(北京), 2014.

    Qin X P. Adsorption of levofloxacin to goethite: Effects of phosphate and humic acid[D]. Beijing: China University of Geosciences (Beijing), 2014.
    [113]
    Xu H Z, Qu X L, Li H, et al. Sorption of tetracycline to varying-sized montmorillonite fractions[J]. Journal of Environmental Quality, 2014, 43(6): 2079-2085.
    [114]
    Wang C J, Li Z, Jiang W T, et al. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite[J]. Journal of Hazardous Materials, 2010, 183(1-3): 309-314.
    [115]
    韦世平. 恩诺沙星在水体-蒙脱石体系中的光解和吸附过程及Cu(Ⅱ)的影响机制[D]. 南宁: 广西大学, 2022.

    Wei S P. Photolysis and adsorption of enrofloxacin in water-montmorillonite system and the mechanism of Cu(Ⅱ) effect[D]. Nanning: Guangxi University, 2022.
    [116]
    Guo X, Yang C, Dang Z, et al. Sorption thermodynamics and kinetics properties of tylosin and sulfamethazine on goethite[J]. Chemical Engineering Journal, 2013, 223: 59-67.
    [117]
    盛峰. 青霉素在天然水体及土壤矿物上的转化机理及毒性研究[D]. 南京: 南京大学, 2019.

    Sheng F. Transformation and the associated toxicity of penicillin antibiotics in natural water and soil mineral environments[D]. Nanjing: Nanjing University, 2019.
    [118]
    王一飞. 微塑料对氟喹诺酮类抗生素的吸附作用[D]. 杭州: 浙江师范大学, 2021.

    Wang Y F. Adsorption of fluoroquinolones by microplastics[D]. Hangzhou: Zhejiang Normal University, 2021.
    [119]
    Kim I, Kim H D, Jeong T Y, et al. Sorption and toxicity reduction of pharmaceutically active compounds and endocrine disrupting chemicals in the presence of colloidal humic acid[J]. Water Science and Technology, 2016, 74(4): 904-913.
    [120]
    李艳丹. 典型氟喹诺酮类抗生素在高岭土上吸附特征的实验研究[D]. 北京: 中国地质大学(北京), 2017.

    Li Y D. Sorption behavior of typical fluoroquinolone antibiotics on kaolinite: Batch experiments[D]. Beijing: China University of Geosciences (Beijing), 2017.
    [121]
    蔡学巍. 水体中溶解性有机质与典型药物的相互作用及其对典型药物光降解的影响研究[D]. 兰州: 兰州大学, 2021.

    Cai X W. The study on the interaction of dissolved organic matter with typical pharmaceuticals and its effects on the photodegradation of typical pharma-ceuticals in aqueous environment[D]. Lanzhou: Lanzhou University, 2021.
    [122]
    杨波, 张永丽, 郭洪光. 腐植酸与环丙沙星结合机制的多维光谱学解析研究[J]. 化学学报, 2021, 79(12): 1494-1501. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB202112008.htm

    Yang B, Zhang Y L, Guo H G. Multi-spectroscopic investigation on mechanism of binding interaction between humic acid and ciprofloxacin enhanced publishing[J]. Acta Chemica Sinica, 2021, 79(12): 1494-1501. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB202112008.htm
    [123]
    Huang F, An Z, Moran M J, et al. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009-2019)[J]. Journal of Hazardous Materials, 2020, 399: 122813.
  • Cited by

    Periodical cited type(31)

    1. 梁亚丽,吴领军,杨珍,孙银生,阿丽莉,贺攀红. 四酸消解-电感耦合等离子体质谱法测定砂岩型铀矿中铀钍及稀土元素. 冶金分析. 2025(01): 68-75 .
    2. 刘维一,熊正烨,郭竞渊,廖小婷,余果. 雷州半岛东部近岸水体溴质量浓度空间分布及其影响因素. 激光与光电子学进展. 2024(05): 89-97 .
    3. 李晓敬,胡艳巧,张金明,冉卓,赵良成,金倩. 微波消解-电感耦合等离子体质谱法测定石墨矿中16种稀土元素. 冶金分析. 2024(08): 18-26 .
    4. 黄平安,王夏青,唐湘玲,王玉堂,李玮,罗增,吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展. 物探与化探. 2023(03): 726-738 .
    5. 李小莉,王毅民,邓赛文,王祎亚,李松,白金峰. 中国X射线荧光光谱分析的地学应用60年. 光谱学与光谱分析. 2023(10): 2989-2998 .
    6. 董龙腾,王生进,刘才云. 电感耦合等离子体质谱标准物质换算法测定地质样品中15种稀土元素. 化学分析计量. 2022(02): 53-57 .
    7. 王晨希. X射线荧光光谱法测定农田底泥中8种元素. 化学分析计量. 2022(02): 40-44 .
    8. 刘闫,姚明星,张丽萍,樊蕾,张宏丽,王甜甜. 电感耦合等离子体质谱法测定锆钛矿中16种稀土元素分量及其总量. 冶金分析. 2022(03): 19-25 .
    9. 胡瑶瑶,王浩铮,侯玉杨,宋皓然. 基于电子探针面扫描定量化的石英闪长岩微区成分分析. 岩矿测试. 2022(02): 260-271 . 本站查看
    10. 秦燕华,刘巍,刘姜瑾,练文柳,罗嘉,韩星,任建新. 基于EDXRF光谱法的滤棒中痕量砷和铅的快速检测. 烟草科技. 2022(07): 40-46 .
    11. 周凯红,张立锋,李佳. 电感耦合等离子体质谱法测定白云鄂博矿石中15种稀土元素总量及其分量. 冶金分析. 2022(08): 87-95 .
    12. 曾江萍,王家松,朱悦,张楠,王娜,吴良英,魏双. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素. 岩矿测试. 2022(05): 789-797 . 本站查看
    13. 王娜,王家松,曾江萍,李强,吴磊,陈枫. 重铬酸钾和高锰酸钾电位落差法测定砂岩型铀矿氧化还原电位的探讨. 岩矿测试. 2022(05): 806-814 . 本站查看
    14. 玉永珊. 稀土元素分析测试方法在地质学上的应用. 世界有色金属. 2022(15): 166-168 .
    15. 张玉芹,彭艳,韦时宏,朱健. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中稀土元素. 实验室研究与探索. 2021(03): 29-32 .
    16. 李艳. 熔融制样X射线荧光光谱法测定矿石中五氧化二钒的含量. 福建分析测试. 2021(01): 54-58 .
    17. 刘春,高励珍,张翼明,刘晓杰. 电感耦合等离子体发射光谱法测定镨钕钆合金中稀土杂质量. 金属功能材料. 2021(04): 59-63 .
    18. 苗煦,王礼胜. 湖南临武黑色石英岩质玉矿物组成特征及成因初探. 岩矿测试. 2021(04): 522-531 . 本站查看
    19. 曾江萍,王家松,王娜,郑智慷,王力强,张楠. 敞开酸溶—电感耦合等离子体质谱法测定锑矿石中的稀土元素. 华北地质. 2021(04): 80-84 .
    20. 尹昌慧,袁永海,杨锋. 阳离子交换树脂富集-电感耦合等离子体质谱法测定铜精矿中14种稀土元素. 理化检验(化学分册). 2020(05): 532-535 .
    21. 王毅民,邓赛文,王祎亚,李松. X射线荧光光谱在矿石分析中的应用评介——总论. 冶金分析. 2020(10): 32-49 .
    22. 张绵绵,高晓哲. 塑胶跑道面层中铅、镉、铬、汞的测定X射线荧光光谱法. 中国石油和化工标准与质量. 2020(16): 71-72+76 .
    23. 王祎亚,高新华,王毅民,邓赛文,李松. 地质材料稀土元素的X射线荧光分析文献评介. 光谱学与光谱分析. 2020(11): 3341-3352 .
    24. 袁静,刘建坤,郑荣华,沈加林. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析. 岩矿测试. 2020(06): 816-827 . 本站查看
    25. 李迎春,张磊,周伟,尚文郁. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析. 岩矿测试. 2020(06): 828-838 . 本站查看
    26. 赵毅华. 熔融制样-X射线荧光光谱法测定镜铁矿中主次成分. 分析测试技术与仪器. 2019(01): 33-38 .
    27. 阿丽莉,张盼盼,贺攀红,杨珍,梁亚丽,杨有泽. X射线荧光光谱法测定地质样品中的硫和氟. 中国无机分析化学. 2019(02): 50-53 .
    28. 王啸,李田义,姜菲. ICP-MS测定高硅矿物中铌、钽及稀土. 稀土. 2019(03): 109-114 .
    29. 阿丽莉,贺攀红,张盼盼. 粉末压片-X射线荧光光谱法测定地质样品中镧铈镨钕钐. 冶金分析. 2019(09): 39-45 .
    30. 田衎,郭伟臣,杨永,岳亚萍,张覃,赵亚娴. 波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素. 冶金分析. 2019(10): 30-36 .
    31. 董学林,何海洋,储溱,仇秀梅,唐兴敏. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试. 2019(06): 620-630 . 本站查看

    Other cited types(3)

Catalog

    Article views (288) PDF downloads (54) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return