• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
FENG Linxiu, LI Zhenghui, CAO Qiuxiang, TIAN Shihong, HUANG Wenxia, WANG Tian. A Review on the Development of Boron Isotope Analytical Techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 16-38. DOI: 10.15898/j.cnki.11-2131/td.202209140170
Citation: FENG Linxiu, LI Zhenghui, CAO Qiuxiang, TIAN Shihong, HUANG Wenxia, WANG Tian. A Review on the Development of Boron Isotope Analytical Techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 16-38. DOI: 10.15898/j.cnki.11-2131/td.202209140170

A Review on the Development of Boron Isotope Analytical Techniques

More Information
  • Received Date: September 13, 2022
  • Revised Date: November 08, 2022
  • Accepted Date: January 17, 2023
  • Available Online: February 27, 2023
  • HIGHLIGHTS
    (1) Two digestion methods have been applied for silicate sample dissolution regarding boron (B), including acid dissolution, and alkali fusion. Acid dissolution has low blank levels but could cause B isotope fractionation. Alkali fusion has higher blank levels that can be corrected but require expensive crucibles.
    (2) Two principal methods currently used to purify B are ion exchange and microsublimation. The ion exchange method is efficient and produces accurate results but could have matrix effects. The microsublimation method is difficult to set up and could cause B isotope fractionation if done incorrectly, but it has no matrix effect.
    (3) MC-ICP-MS is the most versatile and precise method for B isotopic analysis, which has the challenges of matrix effect, memory effect, and mass bias.
    Boron (B) is a light and fluid-mobile element. It has two stable isotopes: 10B and 11B. The two isotopes fractionate significantly in nature due their relatively large mass difference. Therefore, B isotopes are one of the non-traditional stable isotope tracers, which have been used in the research areas of chemistry, environmental, bioscience, earth and planetary sciences. In the last twenty years, the analytical methods of B isotopes have been continuously improved and many important advances have been made. However, there are still some challenges to obtaining high-quality B isotope data. The techniques of B isotope analysis are quite different among laboratories, which arise principally from three stages: sample digestion, purification, mass spectrometry.Because B is volatile and isotopic fractionation may be induced by different coordination in different pH environments, sample digestion, and purification have a great impact on the high-precision measurement of B isotopes. Four digestion methods have been applied for extracting B from samples, including pyro-hydrolysis, acid dissolution, alkali fusion, and ashing. Pyro-hydrolysis requiring large volumes of water is time-consuming. Acid dissolution is one of the most popular techniques due to the small volumes of reagents needed and hence lower levels of contamination. Samples are dissolved with different acids such as hydrochloric, nitric, hydrofluoric, and perchloric. Painstaking attention is required with hydrofluoric acid since BF3 is highly volatile and easily lost in nature. Suitable amounts of mannitol are added during acid dissolution to form a stable boron-mannitol complex to prevent the loss of B and avoid B isotope fractionation.Alternatively, alkali fusion is a dissolution method for solid rock samples. High purity fluxing agent is needed, such as K2CO3, Na2CO3, NaOH, NaOH, and Na2O2. As all the B would be present as borate in the resulting alkaline solution, alkali fusion eliminates the risk of B isotope fractionation due to evaporation. The advantage of this method is that it is rapid and relatively large numbers of samples can be processed. The ashing is mainly used to digest plant samples. Ashing was chosen for plant sample decomposition because ashing removes the organics and avoids the use of reagents carrying a B blank or generating isobaric interferences.Once a sample is dissolved, it is necessary to purify B before analysis. There are two principal methods currently in use, which are ion exchange and microsublimation. The ion exchange techniques can be divided into those involved in using B-specific resin Amberlite IRA 743 and those using cation (AG50W-X8/AG50W-X12) or anion (Bio-Rad AG MP-1) cation exchange resins. Microsublimation is an effective and simple method to purify B. It is used to purify B from organic-enriched solutions. Microsublimation appears advantageous in terms of matrix removal efficiency and low procedural blank, however the technical challenges involved are also great.There are two main types of B isotope analytical methods: in-situ and solution methods. Solution methods analyse B ratios using thermal ionization mass spectrometry (TIMS) method or multiple collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The in-situ method, uses secondary ion mass spectrometry (SIMS) method or laser ablation multiple collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) to measure samples with high B concentration. The accurate and precise determination of the B isotope composition is still a difficult task. For solution methods, the difficulty arises principally from the near ubiquitous level of B contamination in most standard clean laboratories, the light mass of the element, the occurrence of only two stable isotopes, and the large mass difference between them. For in-situ approaches, the difficulty arises principally from a lack of reference materials, surface contamination, limited precision in low-concentration samples, and limitations in reproducibility in high-concentration samples. On the whole, MC-ICP-MS is the dominant method for B isotopic analysis, which is still has the challenges of matrix effect, memory effect, and mass bias.The relevant techniques inherent to the three stages of B isotope analysis are summarized and the advantages and disadvantages of the different techniques are discussed. The aim of the work contained in this paper is to further promote the progress and development of domestic and foreign scholars in the research of B isotope geochemistry.

  • [1]
    Cantanzaro E J, Champion C E, Garner E L, et al. Boric acid: Isotopic and assay standard reference materials[M]. US: National Bureau Standards Special Publication, 1970, 260(17): 701.
    [2]
    Marschall H R, Foster G L. Boron isotopes in the Earth and planetary sciences-A short history and introduction[M]//Marschall H, Foster G. Boron Isotopes: The Fifth Element. Springer Press, 2018: 1-11.
    [3]
    Xiao J, Xiao Y K, Jin Z D, et al. Boron isotope variations and its geochemical application in nature[J]. Australian Journal of Earth Sciences, 2013, 60(4): 431-447. doi: 10.1080/08120099.2013.813585
    [4]
    Gaillardet J, Lemarchand D. Boron in the weathering en-vironment[M]//Marschall H, Foster G. Boron Isotopes: The Fifth Element. Springer Press, 2018: 163-188.
    [5]
    李银川, 董戈, 高昉, 等. 硼同位素分馏的实验理论认识和矿床地球化学研究进展[J]. 地学前缘, 2020, 27(3): 14-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003003.htm

    Li Y C, Dong G, Gao F, et al. Experimental and theoretical understanding of boron isotope fractionation and advances in ore deposit geochemistry study[J]. Earth Science Frontiers, 2020, 27(3): 14-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003003.htm
    [6]
    DeHoog J C M, Savov I P. Boron isotopes as a tracer of subduction zone processes[M]//Marschall H, Foster G. Boron isotopes: The fifth elelment. Springer Press, 2018: 217-247.
    [7]
    蒋少涌, 于际民, 凌洪飞, 等. 壳-幔演化和板块俯冲作用过程中的硼同位素示踪[J]. 地学前缘, 2000, 7(2): 391-399. doi: 10.3321/j.issn:1005-2321.2000.02.008

    Jiang S Y, Yu J M, Ling H F, et al. Boron isotope as a tracer in the study of crust-mantle evolution and subduction processes[J]. Earth Science Frontiers, 2000, 7(2): 391-399. doi: 10.3321/j.issn:1005-2321.2000.02.008
    [8]
    Lemarchand D, Cividini D, Turpault M P, et al. Boron isotopes in different grain size fractions: Exploring past and present water-rock interactions from two soil profiles (Strengbach, Vosges Mountains)[J]. Geochimica et Cosmochimica Acta, 2012, 98: 78-93. doi: 10.1016/j.gca.2012.09.009
    [9]
    Mao H R, Liu C Q, Zhao Z Q. Source and evolution of dissolved boron in rivers: Insights from boron isotope signatures of end-members and model of boron isotopes during weathering processes[J]. Earth-Science Reviews, 2019, 190: 439-459. doi: 10.1016/j.earscirev.2019.01.016
    [10]
    毛海若. 中国东部花岗岩风化过程中的硼同位素地球化学研究[D]. 贵阳: 中国科学院地球化学研究所, 2018.

    Mao H R. Boron isotope geochemistry during weathering of granite in eastern China[D]. Guiyang: Institute of Geochemistry Chinese Academy of Sciences, 2018.
    [11]
    Lei F, Wei H Z, Yi S W, et al. Variations of the East Asian monsoon over the past 800kyr constrained by the boron isotope composition of paleo-rainwater inferred from loess-paleosol deposits in NE China[J]. Earth and Planetary Science Letters, 2021, 561: 116826. doi: 10.1016/j.epsl.2021.116826
    [12]
    Wei H Z, Lei F, Jiang S Y, et al. Implication of boron isotope geochemistry for the pedogenic environments in loess and paleosol sequences of central China[J]. Quaternary Research, 2015, 83(1): 243-255. doi: 10.1016/j.yqres.2014.09.004
    [13]
    雷昉, 鹿化煜, 魏海珍, 等. 黄土高原南部黄土-古土壤酸溶相硼同位素组成(δ11B)及其对季风降水变化的指示[J]. 中国科学: 地球科学, 2014, 44(7): 1508-1518. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201407014.htm

    Lei F, Lu H Y, Wei H Z, et al. Variation of monsoon precipitation revealed by boron isotopic composition of the acid soluble in loess-paleosol sediments from southern Chinese Loess Plateau[J]. Scientia Sinica Terrae, 2014, 44(7): 1508-1518. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201407014.htm
    [14]
    Ryan J G, Leeman W P, Morris J D, et al. The boron systematics of intraplate lavas: Implications for crust and mantle evolution[J]. Geochimica et Cosmochimica Acta, 1996, 60(3): 415-422. doi: 10.1016/0016-7037(95)00402-5
    [15]
    Palmer M R. Boron cycling in subduction zones[J]. Elements: An International Magazine of Mineralogy, Geochemistry and Petrology, 2017, 13(4): 237-242.
    [16]
    Liu H Q, Xu Y G, Wei G J, et al. B isotopes of Carboni-ferous-Permian volcanic rocks in the Tuha Basin mirror a transition from subduction to intraplate setting in central Asian Orogenic Belt[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(11): 7946-7964. doi: 10.1002/2016JB013288
    [17]
    Gou G N, Wang Q, Wyman D A, et al. In situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet: Evidence for melting of continental crust and sediment recycling[J]. Solid Earth Sciences, 2017, 2(2): 43-54. doi: 10.1016/j.sesci.2017.03.003
    [18]
    Guo S, Zhao K D, John T, et al. Metasomatic flow of metacarbonate-derived fluids carrying isotopically heavy boron in continental subduction zones: Insights from tourmaline-bearing ultra-high pressure eclogites and veins (Dabie terrane, eastern China)[J]. Geochimica et Cosmochimica Acta, 2019, 253: 159-200. doi: 10.1016/j.gca.2019.03.013
    [19]
    Tomanikova L, Savov I P, Harvey J, et al. A limited role for metasomatized subarc mantle in the generation of boron isotope signatures of arc volcanic rocks[J]. Geology, 2019, 47(6): 517-521. doi: 10.1130/G46092.1
    [20]
    Zhang Y Y, Yuan C, Sun M, et al. Recycled oceanic crust in the form of pyroxenite contributing to the Cenozoic continental basalts in central Asia: New perspectives from olivine chemistry and whole-rock B-Mo isotopes[J]. Contributions to Mineralogy and Petrology, 2019, 174(10): 1-22.
    [21]
    Zhang Y Y, Yuan C, Sun M, et al. Molybdenum and boron isotopic evidence for carbon-recycling via carbonate dissolution in subduction zones[J]. Geochimica et Cosmochimica Acta, 2020, 278: 340-352. doi: 10.1016/j.gca.2019.12.013
    [22]
    Fan J J, Wang Q, Li J, et al. Boron and molybdenum isotopic fractionation during crustal anatexis: Constraints from the Conadong leucogranites in the Himalayan Block, South Tibet[J]. Geochimica et Cosmochimica Acta, 2021, 297: 120-142. doi: 10.1016/j.gca.2021.01.005
    [23]
    林秋婷, 陈晨, 刘海洋. 硼的地球化学性质及其在俯冲带的循环与成矿初探[J]. 岩石学报, 2020, 36(1): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001002.htm

    Lin Q T, Chen C, Liu H Y. Boron prospecting based on boron cycling in subduction zone[J]. Acta Petrologica Sinica, 2020, 36(1): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001002.htm
    [24]
    郭顺. 俯冲-碰撞带硼循环[J]. 矿物岩石地球化学通报, 2021, 40(5): 1049-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105007.htm

    Guo S. Boron cycling in subduction-collision zones[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5): 1049-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105007.htm
    [25]
    Li Y C, Wei H Z, Palmer M R, et al. Equilibrium boron isotope fractionation during serpentinization and applications in understanding subduction zone processes[J]. Chemical Geology, 2022, 609: 121047. doi: 10.1016/j.chemgeo.2022.121047
    [26]
    Wei G J, McCulloch M T, Mortimer G, et al. Evidence for ocean acidification in the Great Barrier Reef of Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(8): 2332-2346. doi: 10.1016/j.gca.2009.02.009
    [27]
    Wei G J, Wang Z B, Ke T, et al. Decadal variability in seawater pH in the West Pacific: Evidence from coral δ11B records[J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7166-7181. doi: 10.1002/2015JC011066
    [28]
    刘卫国, 彭子成, 肖应凯, 等. 南海珊瑚礁硼同位素组成及环境意义[J]. 地球化学, 1999, 28(6): 534-541. doi: 10.3321/j.issn:0379-1726.1999.06.003

    Liu W G, Peng Z C, Xiao Y K, et al. Boron isotopic composition of corals from South China Sea and their environmental significance[J]. Geochimica, 1999, 28(6): 534-541. doi: 10.3321/j.issn:0379-1726.1999.06.003
    [29]
    肖应凯, Swihard G H, 肖云, 等. 海水蒸发时蒸气相硼的浓度及硼同位素分馏研究[J]. 盐湖研究, 2001, 9(4): 15-23. doi: 10.3969/j.issn.1008-858X.2001.04.003

    Xiao Y K, Swihard G H, Xiao Y, et al. A preliminary study of theboron concentration in vapor and the iostopic fracnation of boron during evapooration of seawater[J]. Journal of Salt Lake Research, 2001, 9(4): 15-23. doi: 10.3969/j.issn.1008-858X.2001.04.003
    [30]
    马云麒, 肖应凯, 贺茂勇, 等. 中国古生代腕足和珊瑚的硼同位素特征[J]. 中国科学: 地球科学, 2011, 41(7): 984-999. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201107012.htm

    Ma Y Q, Xiao Y K, He M Y, et al. Boron isotopic composition of paleozoic brachiopod and coeval coral calcites in Yunnan-Guizhou Plateau, China[J]. Scientia Sinica Terrae, 2011, 41(7): 984-999. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201107012.htm
    [31]
    柯婷, 韦刚健, 刘颖, 等. 南海北部珊瑚高分辨率硼同位素组成及其对珊瑚礁海水pH变化的指示意义[J]. 地球化学, 2015, 44(1): 1-8. doi: 10.3969/j.issn.1007-2802.2015.01.001

    Ke T, Wei G J, Liu Y, et al. High resolution boron isotopic compositions of a coral from the northern South China Sea and their implications for reconstruction of seawater pH[J]. Geochimica, 2015, 44(1): 1-8. doi: 10.3969/j.issn.1007-2802.2015.01.001
    [32]
    Wei H Z, Zhao Y, Liu X, et al. Evolution of paleo-climate and seawater pH from theLate Permian to postindustrial periods recorded by boron isotopes and B/Ca in biogenic carbonates[J]. Earth-Science Reviews, 2021, 215: 103546. doi: 10.1016/j.earscirev.2021.103546
    [33]
    Wang Y J, Wei H Z, Jiang S Y, et al. Mechanism of boron incorporation into calcites and associated isotope fractionation in a steady-state carbonate-seawater system[J]. Applied Geochemistry, 2018, 98: 221-236. doi: 10.1016/j.apgeochem.2018.09.013
    [34]
    Wei H Z, Jiang S Y, Xiao Y K, et al. Boron isotopic fractionation and trace element incorporation in various species of modern corals in Sanya Bay, South China Sea[J]. Journal of Earth Science, 2014, 25(3): 431-444. doi: 10.1007/s12583-014-0438-2
    [35]
    Palmer M R, Slack J F. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites[J]. Contributions to Mineralogy and Petrology, 1989, 103(4): 434-451. doi: 10.1007/BF01041751
    [36]
    Su Z K, Zhao X F, Li X C, et al. Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems: The worldclass Dahongshan Fe-Cu deposit in SW China[J]. Chemical Geology, 2016, 441: 265-279. doi: 10.1016/j.chemgeo.2016.08.030
    [37]
    Codeço M S, Weis P, Trumbull R B, et al. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal[J]. Chemical Geology, 2017, 468: 1-16. doi: 10.1016/j.chemgeo.2017.07.011
    [38]
    Zheng Z, Deng X H, Chen H J, et al. Fluid sources and metallogenesis in the Baiganhu W-Sn deposit, East Kunlun, NW China: Insights from chemical and boron isotopic compositions of tourmaline[J]. Ore Geology Reviews, 2016, 72: 1129-1142. doi: 10.1016/j.oregeorev.2015.09.006
    [39]
    Yang S Y, Jiang S Y, Palmer M R. Chemical and boron isotopic compositions of tourmaline from the Nyalam leucogranites, South Tibetan Himalaya: Implication for their formation from B-rich melt to hydrothermal fluids[J]. Chemical Geology, 2015, 419: 102-113. doi: 10.1016/j.chemgeo.2015.10.026
    [40]
    张天睿, 汤书婷, 颜妍, 等. 地下水样品中硼同位素组成的测定[J]. 世界核地质科学, 2020, 37(2): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202002006.htm

    Zhang T R, Tang S T, Yan Y, et al. Determination of boron isotopic composition in groundwater samples[J]. World Nuclear Geoscience, 2020, 37(2): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202002006.htm
    [41]
    Wei H Z, Jiang S Y, Tan H B, et al. Boron isotope geochemistry of salt sediments from the Dongtai Salt Lake in Qaidam Basin: Boron budget and sources[J]. Chemical Geology, 2014, 380: 74-83. doi: 10.1016/j.chemgeo.2014.04.026
    [42]
    Li Y C, Wei H Z, Palmer M R, et al. Boron coordination and B/Si ordering controls over equilibrium boron isotope fractionation among minerals, melts, and fluids[J]. Chemical Geology, 2021, 561: 120030. doi: 10.1016/j.chemgeo.2020.120030
    [43]
    Zhao Y, Wei H Z, Liu X, et al. Isotope evidence for multiple sources of B and Cl in Middle Miocene (Badenian) evaporites, Carpathian Mountains[J]. Applied Geochemistry, 2021, 124: 104819. doi: 10.1016/j.apgeochem.2020.104819
    [44]
    Li Y C, Chen H W, Wei H Z, et al. Exploration of driving mechanisms of equilibrium boron isotope fractionation in tourmaline group minerals and fluid: A density functional theory study[J]. Chemical Geology, 2020, 536: 119466. doi: 10.1016/j.chemgeo.2020.119466
    [45]
    Wu H P, Jiang S Y, Wei H Z, et al. An experimental study of organic matters that cause isobaric ions interference for boron isotopic measurement by thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2012, 328: 67-77.
    [46]
    Aggarwal S K, You C F. A review on the determination of isotope ratios of boron with mass spectrometry[J]. Mass Spectrometry Reviews, 2017, 36(4): 499-519. doi: 10.1002/mas.21490
    [47]
    Marschall H, Foster G. Boron isotopes[M]. Springer, 2018: 13-33.
    [48]
    吕苑苑, 赵平, 高剑峰, 等. 硼同位素分析方法研究进展[J]. 地质科学, 2009(3): 1052-1061. doi: 10.3321/j.issn:0563-5020.2009.03.021

    Lyu Y Y, Zhao P, Gao J F, et al. Research progress of boron isotope analysis methods[J]. Chinese Journal of Geology, 2009(3): 1052-1061. doi: 10.3321/j.issn:0563-5020.2009.03.021
    [49]
    Marschall H R, Monteleone B D. Boron isotope analysis of silicate glass with very low boron concentrations by secondary ion mass spectrometry[J]. Geostandards and Geoanalytical Research, 2015, 39(1): 31-46. doi: 10.1111/j.1751-908X.2014.00289.x
    [50]
    Fietzke J, Heinemann A, Taubner I, et al. Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(12): 1953-1957. doi: 10.1039/c0ja00036a
    [51]
    Foster G L, Ni Y, Haley B, et al. Accurate and precise isotopic measurement of sub-nanogram sized samples of foraminiferal hosted boron by total evaporation NTIMS[J]. Chemical Geology, 2006, 230(1-2): 161-174. doi: 10.1016/j.chemgeo.2005.12.006
    [52]
    Ni Y, Foster G L, Elliott T. The accuracy of δ11B measurements of foraminifers[J]. Chemical Geology, 2010, 274(3-4): 187-195. doi: 10.1016/j.chemgeo.2010.04.008
    [53]
    Misra S, Owen R, Kerr J, et al. Determination of δ11B by HR-ICP-MS from mass limited samples: Application to natural carbonates and water samples[J]. Geochimica et Cosmochimica Acta, 2014, 140: 531-552. doi: 10.1016/j.gca.2014.05.047
    [54]
    Hemming N G, Hönisch B. Boron isotopes in marine carbonate sediments and the pH of the ocean[J]. Developments in Marine Geology, 2007, 1: 717-734.
    [55]
    Kasemann S A, Schmidt D N, Bijma J, et al. In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH[J]. Chemical Geology, 2009, 260(1-2): 138-147. doi: 10.1016/j.chemgeo.2008.12.015
    [56]
    Foster G L, Hönisch B, Paris G, et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS[J]. Chemical Geology, 2013, 358: 1-14. doi: 10.1016/j.chemgeo.2013.08.027
    [57]
    He M Y, Xiao Y K, Zhang D J, et al. Accurate and precise determination of boron isotopic ratios at low concentration by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions[J]. Analytical Chemistry, 2013, 85(13): 6248-6253. doi: 10.1021/ac400066r
    [58]
    Trotter J, Montagna P, McCulloch M, et al. Quantifying the pH 'vital effect' in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy[J]. Earth and Planetary Science Letters, 2011, 303(3-4): 163-173. doi: 10.1016/j.epsl.2011.01.030
    [59]
    Hemming N G, Hanson G N. A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry[J]. Chemical Geology, 1994, 114(1-2): 147-156. doi: 10.1016/0009-2541(94)90048-5
    [60]
    Spivack A J, Edmond J M. Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation[J]. Analytical Chemistry, 1986, 58(1): 31-35. doi: 10.1021/ac00292a010
    [61]
    Palmer M R. Boron-isotope systematics of Halmahera arc (Indonesia) lavas: Evidence for involvement of the subducted slab[J]. Geology, 1991, 19(3): 215-217. doi: 10.1130/0091-7613(1991)019<0215:BISOHA>2.3.CO;2
    [62]
    Aggarwal J K, Palmer M R. Boron isotope analysis: A review[J]. Analyst, 1995, 120(5): 1301-1307. doi: 10.1039/an9952001301
    [63]
    Nakamura E, Ishikawa T, Birck J L, et al. Precise boron isotopic analysis of natural rock samples using a boron-mannitol complex[J]. Chemical Geology, 1992, 94(3): 193-204. doi: 10.1016/S0009-2541(10)80004-X
    [64]
    肖应凯, 廖步勇, 王中良, 等. 长江口咸淡水混合过程中溶解态硼的含量及同位素组成特征[J]. 矿物岩石地球化学通报, 2003, 22(4): 324-327. doi: 10.3969/j.issn.1007-2802.2003.04.008

    Xiao Y K, Liao B Y, Wang Z L, et al. The content and isotopic composition of dissolved boron during the mixing of salt and fresh water in the Yangtze Estuary[J]. Bulletin of Mineralogy, Petrollgy and Geochemistry, 2003, 22(4): 324-327. doi: 10.3969/j.issn.1007-2802.2003.04.008
    [65]
    Wei H Z, Xiao Y K, Sun A, et al. Effective elimination of isobaric ions interference and precise thermal ionization mass spectrometer analysis for boron isotope[J]. International Journal of Mass Spectrometry, 2004, 235(2): 187-195. doi: 10.1016/j.ijms.2004.04.010
    [66]
    马学海, 马云麒, 宋建国, 等. 三步离子交换法用于高精度测定硝酸盐卤水样品中硼同位素[J]. 分析化学, 2020, 48(6): 780-785. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202006013.htm

    Ma X H, Ma Y Q, Song J G, et al. Three-step ion exchange method for high-precision determination of boron isotopes in nitrate brine samples[J]. Chinese Journal of Analytical Chemistry, 2020, 48(6): 780-785. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202006013.htm
    [67]
    Musashi M, Oi T, Ossaka T, et al. Extraction of boron from GSJ rock reference samples and determination of their boron isotopic ratios[J]. Analytica Chimica Acta, 1990, 231: 147-150. doi: 10.1016/S0003-2670(00)86411-9
    [68]
    Tonarini S, Pennisi M, Leeman W P. Precise boron isotopic analysis of complex silicate (rock) samples using alkali carbonate fusion and ion-exchange separation[J]. Chemical Geology, 1997, 142(1-2): 129-137. doi: 10.1016/S0009-2541(97)00087-9
    [69]
    Roux P, Turpault M P, Kirchen G, et al. Boron dissolved and particulate atmospheric inputs to a forest ecosystem (northeastern France)[J]. Environmental Science and Technology, 2017, 51(24): 14038-14046. doi: 10.1021/acs.est.7b03226
    [70]
    Chetelat B, Liu C Q, Gaillardet J, et al. Boron isotopes geochemistry of the Changjiang Basin Rivers[J]. Geochimica et Cosmochimica Acta, 2009, 73(20): 6084-6097. doi: 10.1016/j.gca.2009.07.026
    [71]
    Cai Y, Rasbury E T, Wooton K M, et al. Rapid boron isotope and concentration measurements of silicate geological reference materials dissolved through sodium peroxide sintering[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2153-2163. doi: 10.1039/D1JA00195G
    [72]
    Wei H Z, Jiang S Y, Hemming N G, et al. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry[J]. Talanta, 2014, 123: 151-160. doi: 10.1016/j.talanta.2014.02.009
    [73]
    Buisson M, Louvat P, Thaler C, et al. High precision MC-ICP-MS measurements of 11B/10B ratios from ng amounts of boron in carbonate samples using microsublimation and direct injection (μ-dDIHEN)[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2116-2131. doi: 10.1039/D1JA00109D
    [74]
    Makishima A, Nakamura E, Nakano T. Determination of boron in silicate samples by direct aspiration of sample HF solutions into ICPMS[J]. Analytical Chemistry, 1997, 69(18): 3754-3759. doi: 10.1021/ac970383s
    [75]
    Wei G J, Wei J X, Liu Y, et al. Measurement on high-precision boron isotope of silicate materials by a single column purification method and MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(4): 606-612. doi: 10.1039/c3ja30333k
    [76]
    Krolikowska-Ciaglo S, Deyhle A, Hauff F, et al. Boron isotope geochemistry and U-Pb systematics of altered MORB from the Australian Antarctic Discordance (ODP Leg 187)[J]. Chemical Geology, 2007, 242(3-4): 455-469. doi: 10.1016/j.chemgeo.2007.05.004
    [77]
    Pi J, You C F, Chung C H. Micro-sublimation separation of boron in rock samples for isotopic measurement by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(5): 861-867. doi: 10.1039/C3JA50344E
    [78]
    晏雄, 蒋少涌, 魏海珍, 等. 硼硅酸盐矿物硼的化学分离纯化与同位素测定方法[J]. 分析化学, 2012, 40(11): 1654-1660. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201211007.htm

    Yan X, Jiang S Y, Wei H Z, et al. Chemical separation, purification and isotopic determination of borosilicate mineral boron[J]. Chinese Journal of Analytical Chemistry, 2012, 40(11): 1654-1660. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201211007.htm
    [79]
    Bhushan K S, Goswami P G, Venkatesh K, et al. Fusion method for sample preparation for isotopic composition determination of boron in refractory materials by thermal ionizationmass spectrometry with validation using dissolved and purified sample[J]. International Journal of Mass Spectrometry, 2021, 467: 116624. doi: 10.1016/j.ijms.2021.116624
    [80]
    王刚, 肖应凯. 盐湖卤水硼同位素测定中硼的二次离子交换分离[J]. 分析化学, 2000, 28(8): 936-940. doi: 10.3321/j.issn:0253-3820.2000.08.003

    Wang G, Xiao Y K. Secondary ion exchange separation of boron in the determination of boron isotope in salt lake brine[J]. Chinese Journal of Analytical Chemistry, 2000, 28(8): 936-940. doi: 10.3321/j.issn:0253-3820.2000.08.003
    [81]
    Xiao J, Vogl J, Rosner M, et al. A validated analytical procedure for boron isotope analysis in plants by MC-ICP-MS[J]. Talanta, 2019, 196: 389-394. doi: 10.1016/j.talanta.2018.12.087
    [82]
    Xu Q C, Dong Y L, Zhu H Y, et al. Separation and analysis of boron isotope in high plant by thermal ionization mass spectrometry[J]. International Journal of Analytical Chemistry, 2015: 36424.
    [83]
    Vogl J, Rosner M. Production and certification of a unique set of isotope and delta reference materials for boron isotope determination in geochemical, environmental and industrial materials[J]. Geostandards and Geoanalytical Research, 2012, 36(2): 161-175. doi: 10.1111/j.1751-908X.2011.00136.x
    [84]
    Rosner M, Pritzkow W, Vogl J, et al. Development and validation of a method to determine the boron isotopic composition of crop plants[J]. Analytical Chemistry, 2011, 83(7): 2562-2568. doi: 10.1021/ac102836h
    [85]
    刘善江, 赵丽萍. 植株中全硼测定方法的研究[J]. 华北农学报, 2007, 22(2): 169-170. doi: 10.3321/j.issn:1000-7091.2007.02.041

    Liu S J, Zhao L P. Study on determination of total boron in plants[J]. Acta Agriculturae Boreali-Sinica, 2007, 22(2): 169-170. doi: 10.3321/j.issn:1000-7091.2007.02.041
    [86]
    Vanderpool R A, Johnson P E. Boron isotope ratios in commercial produce and boron-10 foliar and hydroponic enriched plants[J]. Journal of Agricultural and Food Chemistry, 1992, 40(3): 462-466. doi: 10.1021/jf00015a020
    [87]
    Roux P, Lemarchand D, Hughes H J, et al. A rapid method for determining boron concentration (ID-ICP-MS) and δ11B (MC-ICP-MS) in vegetation samples after microwave digestion and cation exchange chemical purification[J]. Geostandards and Geoanalytical Research, 2015, 39(4): 453-466. doi: 10.1111/j.1751-908X.2014.00328.x
    [88]
    宋伟娇, 代世峰, 赵蕾, 等. 微波消解-电感耦合等离子体质谱法测定煤中的硼[J]. 岩矿测试, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007

    Song W J, Dai S F, Zhao L, et al. Microwave digestion-inductively coupled plasma mass spectrometry for the determination of boron in coal[J]. Rock and Mineral Analysis, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007
    [89]
    Beary E S, Xiao Y K. Rapid and high-precision determination of boron isotope ratios in boron carbide by thermal ionisation mass spectrometric measurement of the dicaesium metaborate cation[J]. Analyst, 1990, 115(7): 911-913. doi: 10.1039/an9901500911
    [90]
    Ishikawa T, Nakamura E. Suppression of boron volatili-zation from a hydrofluoric acid solution using a boron-mannitol complex[J]. Analytical Chemistry, 2001, 62(23): 2612-2616.
    [91]
    Wang J H, Yin A, Harrison T M, et al. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone[J]. Earth and Planetary Science Letters, 2001, 188(1-2): 123-133. doi: 10.1016/S0012-821X(01)00315-6
    [92]
    Xiao Y K, Liao B Y, Liu W G, et al. Ion exchange extraction of boron from aqueous fluids by Amberlite IRA 743 resin[J]. Chinese Journal of Chemistry, 2003, 21(8): 1073-1079.
    [93]
    肖应凯, 王蕴慧, 曹海霞. 离子交换法分离硼——用于盐湖水中硼同位素丰度比值的质谱法测定[J]. 分析化学, 1983, 11(8): 604-607. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198308010.htm

    Xiao Y K, Wang Y H, Cao H X. Separation of boron by ion exchange-mass spectrometry determination of boron isotope abundance ratios in salt lake water[J]. Chinese Journal of Analytical Chemistry, 1983, 11(8): 604-607. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198308010.htm
    [94]
    Wang Q Z, Xiao Y K, Wang Y H, et al. Boron separation by the two-step ion-exchange for the isotopic measurement of boron[J]. Chinese Journal of Chemistry, 2002, 20(1): 45-50.
    [95]
    李子夏, 逯海. 一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成[J]. 岩矿测试, 2020, 39(3): 417-424. doi: 10.15898/j.cnki.11-2131/td.201909290141

    Li Z X, Lu H. One-step ion-exchange separation and measurement of boron isotope ratios in high calcium biological samples with by MC-ICP-MS[J]. Rock and Mineral Analysis, 2020, 39(3): 417-424. doi: 10.15898/j.cnki.11-2131/td.201909290141
    [96]
    Kiss E. Ion-exchange separation and spectrophotometric determination of boron in geological materials[J]. Analytica Chimica Acta, 1988, 211: 243-256. doi: 10.1016/S0003-2670(00)83684-3
    [97]
    Leeman W P, Vocke Jr R D, Beary E S, et al. Precise boron isotopic analysis of aqueous samples: Ion exchange extraction and mass spectrometry[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3901-3907. doi: 10.1016/0016-7037(91)90085-J
    [98]
    Lemarchand D, Gaillardet J, Göpel C, et al. An optimized procedure for boron separation and mass spectrometry analysis for river samples[J]. Chemical Geology, 2002, 182(2-4): 323-334. doi: 10.1016/S0009-2541(01)00329-1
    [99]
    Yoshimura K, Miyazaki Y, Ota F, et al. Complexation of boric acid with the N-methyl-D-glucamine group in solution and in crosslinked polymer[J]. Journal of the Chemical Society, 1998, 94(5): 683-689.
    [100]
    王刚, 肖应凯, 王蕴慧, 等. 岩石中硼的提取分离及同位素组成的测定[J]. 岩矿测试, 2000, 19(3): 169-172. doi: 10.3969/j.issn.0254-5357.2000.03.002

    Wang G, Xiao Y K, Wang Y H, et al. Extraction and separation of boron in rocks and determination of isotopic composition[J]. Rock and Mineral Analysis, 2000, 19(3): 169-172. doi: 10.3969/j.issn.0254-5357.2000.03.002
    [101]
    Vengosh A, Chivas A R, McCulloch M T. Direct deter-mination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry[J]. Chemical Geology, 1989, 79(4): 333-343.
    [102]
    He M Y, Deng L, Lu H, et al. Elimination of the boron memory effect for rapid and accurate boron isotope analysis by MC-ICP-MS using NaF[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 1026-1032. doi: 10.1039/C9JA00007K
    [103]
    吕苑苑, 许荣华, 赵平, 等. 利用MC-ICP-MS对水样中硼同位素比值的测定[J]. 地球化学, 2008, 37(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801001.htm

    Lyu Y Y, Xu R H, Zhao P. Determination of boron isotope ratios in aqueous samples by multiple collector ICP-MS[J]. Geochimica, 2008, 37(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801001.htm
    [104]
    Foster G L. Seawater pH, pCO2 and[CO32-] variations in the Caribbean Sea over the last 130kyr: A boron isotope and B/Ca study of planktic foraminifera[J]. Earth and Planetary Science Letters, 2008, 271(1-4): 254-266. doi: 10.1016/j.epsl.2008.04.015
    [105]
    McCulloch M T, Holcomb M, Rankenburg K, et al. Rapid, high-precision measurements of boron isotopic compositions in marine carbonates[J]. Rapid Communications in Mass Spectrometry, 2014, 28(24): 2704-2712. doi: 10.1002/rcm.7065
    [106]
    Liu Y H, Huang K F, Lee D C. Precise and accurate boron and lithium isotopic determinations for small sample-size geological materials by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(5): 846-855. doi: 10.1039/C7JA00400A
    [107]
    张艳灵, 肖应凯, 马云麒, 等. 三步离子交换方法用于黏土沉积物酸溶相中硼同位素测定[J]. 分析化学, 2016, 44(5): 809-815. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201605025.htm

    Zhang Y L, Xiao Y K, Ma Y Q, et al. Three-step ion exchange method for boron isotope determination in acid solution phase of clay sediments[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 809-815. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201605025.htm
    [108]
    杨剑, 马云麒, 李兴意, 等. 乙二胺四乙酸二钠用于沉积物酸溶相中高精度硼同位素测定方法研究[J]. 分析化学, 2019, 47(9): 1433-1439. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201909022.htm

    Yang J, Ma Y Q, Li X Y, et al. Study on high-precision determination of boron isotope in acid solution phase of sediment by disodium EDTA[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1433-1439. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201909022.htm
    [109]
    魏静娴. Ⅰ. 硅酸盐高精度B同位素测定方法的建立及其应用Ⅱ. 南海海山玄武岩的年代学和地球化学研究[D]. 北京: 中国科学院大学, 2015.

    Wei J X. Ⅰ. High-precision measurement of boron isotope of silicate materials and its application. Ⅱ. Geochronological and geochemical studies on Cenozoic basalts from South China Sea Seamounts[D]. Beijing: University of Chinese Academy of Sciences, 2015.
    [110]
    Gaillardet J, Lemarchand D, Göpel C, et al. Evaporation and sublimation of boric acid: Application for boron purification from organic rich solutions[J]. Geostandards Newsletter, 2001, 25(1): 67-75. doi: 10.1111/j.1751-908X.2001.tb00788.x
    [111]
    Birck J L, Barman M R, Capmas F. Re-Os isotopic measurements at the femtomole level in natural samples[J]. Geostandards Newsletter, 1997, 21(1): 19-27. doi: 10.1111/j.1751-908X.1997.tb00528.x
    [112]
    Wang B S, You C F, Huang K F, et al. Direct separation of boron from Na-and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS[J]. Talanta, 2010, 82(4): 1378-1384. doi: 10.1016/j.talanta.2010.07.010
    [113]
    Raitzsch M, Bijma J, Benthien A, et al. Boron isotope-based seasonal paleo-pH reconstruction for the southeast Atlantic-A multispecies approach using habitat preference of planktonic foraminifera[J]. Earth and Planetary Science Letters, 2018, 487: 138-150. doi: 10.1016/j.epsl.2018.02.002
    [114]
    Liu M C, Nittler L R, Alexander C M O D, et al. Lithium-beryllium-boron isotopic compositions in meteoritic hibonite: Implications for origin of 10Be and early Solar system irradiation[J]. The Astrophysical Journal Letters, 2010, 719(1): L99. doi: 10.1088/2041-8205/719/1/L99
    [115]
    Wang T H, You C F, Chung C H, et al. Macro-sublimation: Purification of boron in low-concentration geological samples for isotopic determination by MC-ICPMS[J]. Microchemical Journal, 2020, 152: 104424. doi: 10.1016/j.microc.2019.104424
    [116]
    Liu Y W, Aciego S M, Wanamaker Jr A D, et al. A high-throughput system for boron microsublimation and isotope analysis by total evaporation thermal ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2013, 27(15): 1705-1714. doi: 10.1002/rcm.6619
    [117]
    He M Y, Xiao Y, Ma Y Q, et al. Effective elimination of organic matter interference in boron isotopic analysis by thermal ionization mass spectrometry of coral/foraminifera: Micro-sublimation technology combined with ion exchange[J]. Rapid Communications in Mass Spectrometry, 2011, 25(6): 743-749. doi: 10.1002/rcm.4906
    [118]
    van Hoecke K, Devulder V, Claeys P, et al. Comparison of microsublimation and ion exchange chromatography for boron isolation preceding its isotopic analysis via multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(10): 1819-1826. doi: 10.1039/C4JA00111G
    [119]
    肖军, 贺茂勇, 邓丽, 等. 一种简便、快速、高效文分离富集硼的装置和方法:

    CN201910887796. X[P]. 2019-11-29. Xiao J, He M Y, Deng L, et al. A simple, fast and efficient device and method for separating and enriching boron: CN201910887796. X[P]. 2019-11-29.
    [120]
    Ramakumar K, Parab A, Khodade P, et al. Determination of isotopic composition of boron[J]. Journal of Radioanalytical and Nuclear Chemistry, 1985, 94(1): 53-61. doi: 10.1007/BF02199553
    [121]
    Swihart G H. Instrumental techniques for boron isotope analysis[M]//Boron. Elsevier Press, 2018: 845-864.
    [122]
    Xiao Y K, Beary E S, Fassett J D. An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1988, 85(2): 203-213. doi: 10.1016/0168-1176(88)83016-7
    [123]
    Nakano T, Nakamura E. Static multicollection of Cs2BO2+ ions for precise boron isotope analysis with positive thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 1998, 176(1-2): 13-21. doi: 10.1016/S1387-3806(98)14014-9
    [124]
    Deyhle A. Improvements of boron isotope analysis by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions[J]. International Journal of Mass Spectrometry, 2001, 206(1-2): 79-89. doi: 10.1016/S1387-3806(00)00387-0
    [125]
    Zeininger H, Heumann K G. Boron isotope ratio measure-ment by negative thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Physics, 1983, 48: 377-380. doi: 10.1016/0020-7381(83)87106-X
    [126]
    Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 537-543. doi: 10.1016/0016-7037(92)90151-8
    [127]
    Kasemann S, Meixner A, Rocholl A, et al. Boron and oxygen isotope composition of certified reference materials NIST SRM610/612 and reference materials JB-2 and JR-2[J]. Geostandards Newsletter, 2001, 25(2-3): 405-416. doi: 10.1111/j.1751-908X.2001.tb00615.x
    [128]
    You C F. Thermal ionization mass spectrometry tech-niques for boron isotopic analysis: A review[J]. Handbook of Stable Isotope Analytical Techniques, 2004, 1: 142-152.
    [129]
    Clarkson M O, Kasemann S A, Wood R A, et al. Ocean acidification and the Permo-Triassic mass extinction[J]. Science, 2015, 348(6231): 229-232. doi: 10.1126/science.aaa0193
    [130]
    Farmer J R, Hönisch B, Uchikawa J. Single laboratory comparison of MC-ICP-MS and N-TIMS boron isotope analyses in marine carbonates[J]. Chemical Geology, 2016, 447: 173-182. doi: 10.1016/j.chemgeo.2016.11.008
    [131]
    Barth S. Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization masss pectrometry[J]. Chemical Geology, 1997, 143(3-4): 255-261. doi: 10.1016/S0009-2541(97)00107-1
    [132]
    李世珍, 肖应凯, 魏海珍, 等. 硼同位素的负热电离质谱测定及其进展[J]. 盐湖研究, 2003, 11(4): 13-19. doi: 10.3969/j.issn.1008-858X.2003.04.002

    Li S Z, Xiao Y K, Wei H Z, et al. Negative thermal ionization mass spectrometry determination of boron isotopes and its progress[J]. Journal of Salt Lake Research, 2003, 11(4): 13-19. doi: 10.3969/j.issn.1008-858X.2003.04.002
    [133]
    Tonarini S, Pennisi M, Gonfiantini R. Boron isotope determinations in waters and other geological materials: Analytical techniques and inter-calibration of measurements[J]. Isotopes in Environmental and Health Studies, 2009, 45(2): 169-183. doi: 10.1080/10256010902931210
    [134]
    逯海, 王军, 任同祥, 等. 全蒸发-热电离同位素质谱法测量结果精密度和准确性探讨[J]. 中国矿物岩石地球化学通报, 2011, 30(增刊), 504. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201104001461.htm

    Lu H, Wang J, Ren T X, et al. Discussion on the precision and accuracy of measurement results by total evaporation-thermal ionization isotope mass spectrometry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(Supplement), 504. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201104001461.htm
    [135]
    Guerrot C, Millot R, Robert M, et al. Accurate and high-precision determination of boron isotopic ratios at low concentration by MC-ICP-MS (Neptune)[J]. Geostandards and Geoanalytical Research, 2011, 35(2): 275-284. doi: 10.1111/j.1751-908X.2010.00073.x
    [136]
    Feldmann I, Tittes W, Jakubowski N, et al. Performance characteristics of inductively coupled plasma mass spectrometry with high mass resolution[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(9): 1007-1014. doi: 10.1039/ja9940901007
    [137]
    Montaser A. Inductively coupled plasma mass spectro-metry[M]. John Wiley and Sons, 1998.
    [138]
    Chen X F, Zhang L, Wei G J, et al. Matrix effects and mass bias caused by inorganic acids on boron isotope determination by multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(12): 2410-2417. doi: 10.1039/C6JA00328A
    [139]
    Smit M A, Scherstén A, Naeraa T, et al. Formation of Archean continental crust constrained by boron isotopes[J]. Geochemical Perspectives Letters, 2019, 12: 23-26.
    [140]
    Wei H Z, Jiang S Y, Yang T L, et al. Effect of metasilicate matrices on boron purification by Amberlite IRA 743 boron specific resin and isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(11): 2104-2107. doi: 10.1039/C4JA00153B
    [141]
    Mueller E, Kucharkowski R, Michel V, et al. Simul-taneous determination of the constituents in Al-Ge-Si alloys by inductively coupled plasma atomic emission spectrometry[J]. Fresenius' Journal of Analytical Chemistry, 1996, 355(3): 267-268.
    [142]
    Al-Ammar A S, Gupta R K, Barnes R M. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(6): 629-635. doi: 10.1016/S0584-8547(00)00197-X
    [143]
    Evans S, Meisel T. Low blank determination of boron in geochemical materials[J]. Analytica Chimica Acta, 1994, 298(2): 267-270. doi: 10.1016/0003-2670(94)00269-X
    [144]
    Probst T U, Berryman N G, Lemmen P, et al. Comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry with quantitative neutron capture radiography for the determination of boron in biological samples from cancer therapy[J]. Journal of Analytical Atomic Spectrometry, 1997, 12(10): 1115-1122. doi: 10.1039/a700445a
    [145]
    Louvat P, Bouchez J, Paris G. MC-ICP-MS isotope measurements with direct injection nebulisation (d-DIHEN): Optimisation and application to boron in seawater and carbonate samples[J]. Geostandards and Geoanalytical Research, 2011, 35(1): 75-88. doi: 10.1111/j.1751-908X.2010.00057.x
    [146]
    Louvat P, Moureau J, Paris G, et al. A fully automated direct injection nebulizer (d-DIHEN) for MC-ICP-MS isotope analysis: Application to boron isotope ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1698-1707. doi: 10.1039/C4JA00098F
    [147]
    Zhang S, Henehan M J, Hull P M, et al. Investigating controls on boron isotope ratios in shallow marine carbonates[J]. Earth and Planetary Science Letters, 2017, 458: 380-393. doi: 10.1016/j.epsl.2016.10.059
    [148]
    Zhu G H, Ma J L, Wei G J, et al. Boron mass fractions and δ11B values of eighteen international geological reference materials[J]. Geostandards and Geoanalytical Research, 2021, 45(3): 583-598. doi: 10.1111/ggr.12397
    [149]
    Albarède F, Albalat E, Télouk P. Instrumental isotope fractionation in multiple-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(8): 1736-1742. doi: 10.1039/C5JA00188A
    [150]
    Rehkämper M, Schönbächler M, Stirling C H. Multiple collector ICP-MS: Introduction to instrumentation, measurement techniques and analytical capabilities[J]. Geostandards Newsletter, 2001, 25(1): 23-40. doi: 10.1111/j.1751-908X.2001.tb00785.x
    [151]
    张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2012: 385.

    Zhang H F, Gao S. Geochemistry[M]. Beijing: Geological Publishing House, 2012: 385.
    [152]
    Chaussidon M, Robert F, Mangin D, et al. Analytical procedures for the measurement of boron isotope compositions by ion microprobe in meteorites and mantle rocks[J]. Geostandards Newsletter, 1997, 21(1): 7-17. doi: 10.1111/j.1751-908X.1997.tb00527.x
    [153]
    Blamart D, Rollion-Bard C, Meibom A, et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia Pertusa: Implications for biomineralization and paleo-pH[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(12): 1-11.
    [154]
    Rollion-Bard C, Chaussidon M, France-Lanord C. pH control on oxygen isotopic composition of symbiotic corals[J]. Earth and Planetary Science Letters, 2003, 215(1-2): 275-288. doi: 10.1016/S0012-821X(03)00391-1
    [155]
    Schmitt A K, Kasemann S, Meixner A, et al. Boron in central Andean ignimbrites: Implications for crustal boron cycles in an active continental margin[J]. Chemical Geology, 2002, 183(1-4): 333-347. doi: 10.1016/S0009-2541(01)00382-5
    [156]
    Büttner S H, Kasemann S A. Deformation-controlled cation diffusion in tourmaline: A microanalytical study on trace elements and boron isotopes[J]. American Mineralogist, 2007, 92(11-12): 1862-1874. doi: 10.2138/am.2007.2567
    [157]
    Drivenes K, Larsen R B, Müller A, et al. Late-magmatic immiscibility during batholith formation: Assessment of B isotopes and trace elements in tourmaline from the Land's End granite, SW England[J]. Contributions to Mineralogy and Petrology, 2015, 169(6): 1-27.
    [158]
    Fitzsimons I C W, Harte B, Clark R M. SIMS stable isotope measurement: Counting statistics and analytical precision[J]. Mineralogical Magazine, 2000, 64(1): 59-83. doi: 10.1180/002646100549139
    [159]
    Liu Y, Liu W G, Peng Z C, et al. Instability of seawater pH in the South China Sea during the mid-late Holocene: Evidence from boron isotopic composition of corals[J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1264-1272. doi: 10.1016/j.gca.2008.11.034
    [160]
    Marschall H R, Ludwig T. The low-boron contest: Minimising surface contamination and analysing boron concentrations at the ng/g-level by secondary ion mass spectrometry[J]. Mineralogy and Petrology, 2004, 81(3): 265-278.
    [161]
    Jochum K P, Stoll B, Herwig K, et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2): 1-44.
    [162]
    Rosner M, Wiedenbeck M, Ludwig T. Composition-induced variations in SIMS instrumental mass fractionation during boron isotope ratio measurements of silicate glasses[J]. Geostandards and Geoanalytical Research, 2008, 32(1): 27-38. doi: 10.1111/j.1751-908X.2008.00875.x
    [163]
    Gurenko A A, Kamenetsky V S. Boron isotopic compo-sition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin[J]. Earth and Planetary Science Letters, 2011, 312(1-2): 201-212. doi: 10.1016/j.epsl.2011.09.033
    [164]
    Ludwig T, Marschall H R, von Strandmann P A, et al. A secondary ion mass spectrometry (SIMS) re-evaluation of B and Li isotopic compositions of Cu-bearing elbaite from three global localities[J]. Mineralogical Magazine, 2011, 75(4): 2485-2494. doi: 10.1180/minmag.2011.075.4.2485
    [165]
    Nakano T, Nakamura E. Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite[J]. Physics of the Earth and Planetary Interiors, 2001, 127(1-4): 233-252. doi: 10.1016/S0031-9201(01)00230-8
    [166]
    McGregor J R, Grew E S, De Hoog J C M, et al. Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: Evidence for a non-marine evaporite source[J]. Geochimica et Cosmochimica Acta, 2013, 123: 261-283. doi: 10.1016/j.gca.2013.05.030
    [167]
    蒋少涌, 陈唯, 赵葵东, 等. 基于LA-(MC)-ICP-MS的矿物微区原位同位素分析技术及其应用[J]. 质谱学报, 2021, 42(5): 623-640. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB202105007.htm

    Jiang S Y, Chen W, Zhao K D, et al. In situ microisotope analysis technology of minerals based on LA-(MC)-ICP-MS and its application[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 623-640. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB202105007.htm
    [168]
    Lécuyer C, Grandjean P, Reynard B, et al. 11B/10B analy-sis of geological materials by ICP-MS Plasma 54: Application to the boron fractionation between brachiopod calcite and seawater[J]. Chemical Geology, 2002, 186(1-2): 45-55. doi: 10.1016/S0009-2541(01)00425-9
    [169]
    Le Roux P J, Shirey S B, Benton L, et al. In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (δ11B) at the nanogram level[J]. Chemical Geology, 2004, 203(1-2): 123-138. doi: 10.1016/j.chemgeo.2003.09.006
    [170]
    侯可军, 李延河, 肖应凯, 等. LA-MC-ICP-MS硼同位素微区原位测试技术[J]. 科学通报, 2010, 55(22): 2207-2213. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201022007.htm

    Hou K J, Li Y H, Xiao Y K, et al. In situ boron isotope measurements of natural geological materials by LA-MC-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(29): 3305-3311. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201022007.htm
    [171]
    Zhao K D, Zhang L H, Palmer M R, et al. Chemical and boron isotopic compositions of tourmaline at the Dachang Sn-polymetallic ore district in South China: Constraints on the origin and evolution of hydrothermal fluids[J]. Mineralium Deposita, 2021, 56(8): 1589-1608. doi: 10.1007/s00126-021-01045-4
    [172]
    da Costa I R, Mourão C, Récio C, et al. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (central Portugal): Genetic implications of crystal-chemical and isotopic features[J]. Contributions to Mineralogy and Petrology, 2014, 167(4): 1-23.
    [173]
    徐洁, 张贵宾, 李楠, 等. LA-MC-ICPMS电气石及白云母原位硼同位素测试方法及应用[J]. 岩石矿物学杂志, 2020, 39(3): 323-334. doi: 10.3969/j.issn.1000-6524.2020.03.008

    Xu J, Zhang G B, Li N, et al. LA-MC-ICPMS test method and application of in situ boron isotope of tourmaline and muscovite[J]. Acta Petrologica et Mineralogica, 2020, 39(3): 323-334. doi: 10.3969/j.issn.1000-6524.2020.03.008
    [174]
    Halama R, Konrad-Schmolke M, De Hoog J. Boron isotope record of peak metamorphic ultrahigh-pressure and retrograde fluid-rock interaction in white mica (Lago di Cignana, western Alps)[J]. Contributions to Mineralogy and Petrology, 2020, 175(3): 1-19.
    [175]
    Codeço M S, Weis P, Trumbull R B, et al. Boron isotope muscovite-tourmaline geothermometry indicates fluid cooling during magmatic-hydrothermal W-Sn ore formation[J]. Economic Geology, 2019, 114(1): 153-163. doi: 10.5382/econgeo.2019.4625
    [176]
    Liao X H, Hu Z C, Zhang W, et al. Isotopic analysis by laser ablation solution sampling MC-ICP-MS an example of boron[J]. Analytical Chemistry, 2021, 94(2): 1286-1293.
    [177]
    Thil F, Blamart D, Assailly C, et al. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: New improvements and application to a modern Porites coral[J]. Rapid Communications in Mass Spectrometry, 2016, 30(3): 359-371. doi: 10.1002/rcm.7448
  • Cited by

    Periodical cited type(20)

    1. 范博文,黄秀,高光晔,袁姗姗,邢志. 电感耦合等离子体发射光谱(ICP-OES)发展与应用. 中国无机分析化学. 2025(03): 363-381 .
    2. 门倩妮,李荣华,甘黎明,冯博鑫. 碱溶液提取-电感耦合等离子体原子发射光谱法测定土壤中六价铬的含量. 理化检验-化学分册. 2024(01): 101-104 .
    3. 邓太秀,阿丽莉,王娟. 碱液浸取-ICP-OES法快速测定土壤中Cr(Ⅵ). 化学工程师. 2024(07): 19-22 .
    4. 张宁,刘璐,孙凯茜,王磊,邹佳洁,李龙飞,朱永晓,孟建卫. 基体分离-利用电感耦合等离子体质谱仪He碰撞模式测定土壤中六价铬. 中国土壤与肥料. 2024(07): 249-252 .
    5. 田文娟,郭丽,杜维,郑丹. 柱后衍生-离子色谱法测定固废中的六价铬方法优化. 广州化工. 2024(20): 110-114 .
    6. 杨柳晨,王小钊,邢丹. 铬盐污染土壤六价铬标准物质不确定度评估. 福建分析测试. 2024(06): 53-59 .
    7. 李小辉,胡新颖,胡家祯,孙慧莹,袁润蕾,于亚辉,王曼曼. 碱溶液消解-电感耦合等离子体质谱法测定土壤中6价铬. 现代化工. 2024(12): 240-243 .
    8. 金梅,陈琨,李海英,申慧滢. 碱液提取-原子吸收法测定土壤中六价铬的前处理方法探讨. 环保科技. 2024(06): 36-39 .
    9. 罗伶燕,沈益斌,郝军,梁家乐. 微波碱消解-火焰原子吸收光谱法测定土壤中六价铬. 广州化工. 2023(01): 161-163 .
    10. 门倩妮,王鹏,孙建伟,冯博鑫,姚薇. 物理化学还原法处理-电感耦合等离子体发射光谱(ICP-OES)法测定污染土壤中的六价铬. 中国无机分析化学. 2023(06): 536-542 .
    11. 王娟,毛盟,吴培源,贺攀红,阿丽莉. 土壤中六价铬含量的测定方法比对. 化学工程师. 2023(07): 31-34 .
    12. 褚琳琳,王筱洁,吴月,张德怀,金晓霞. 碱溶液提取-离子交换-火焰原子吸收光谱法测定土壤中六价铬的含量. 理化检验-化学分册. 2023(08): 966-969 .
    13. 兰绿灯,李佳玉,谭清月,贾海峰,孙猛,王峰. 内标校正-电感耦合等离子体原子发射光谱法测定土壤与固体废物中铬(Ⅵ). 冶金分析. 2023(10): 54-59 .
    14. 王婷,朱红霞,周敬峰,姜丽,金淑聪,胡佳欣. 柱后衍生离子色谱法测定土壤和沉积物中的六价铬. 中国环境监测. 2023(05): 236-242 .
    15. 杨建博,孟建卫,邱红绪,刘显,李晓敬,姚然. 恒温振荡浸提-火焰原子吸收光谱法测定土壤中铬(Ⅵ). 冶金分析. 2022(04): 45-52 .
    16. 褚琳琳,王静云,金晓霞,汪碧芬,孔翠羽. 碱溶液提取-离子交换-电感耦合等离子体质谱法测定土壤中六价铬. 岩矿测试. 2022(05): 826-835 . 本站查看
    17. 马培华. 固体废物的资源化和综合利用技术研究. 低碳世界. 2021(04): 29-30 .
    18. 徐冬梅,陈晋,张付海. 土壤、沉积物和固废中六价铬的碱消解法高效检测. 安徽工程大学学报. 2021(04): 17-22 .
    19. 徐冬梅. 微波碱提取-电感耦合等离子体光谱法测定底泥和土壤中的六价铬. 治淮. 2021(09): 12-14 .
    20. 黄晶. 碱溶液提取-连续光源原子吸收测定土壤和沉积物中的六价铬. 福建分析测试. 2021(05): 34-37 .

    Other cited types(1)

Catalog

    Article views (274) PDF downloads (49) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return