• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
CUI Ting, YE Xin, ZHU Xiaping, LI Junya, XU Huan. Determination of Various Forms of Iron and Manganese Oxides and the Main Controlling Factors of Absorption of Sb(Ⅲ) in Soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167-176. DOI: 10.15898/j.cnki.11-2131/td.202111250187
Citation: CUI Ting, YE Xin, ZHU Xiaping, LI Junya, XU Huan. Determination of Various Forms of Iron and Manganese Oxides and the Main Controlling Factors of Absorption of Sb(Ⅲ) in Soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167-176. DOI: 10.15898/j.cnki.11-2131/td.202111250187

Determination of Various Forms of Iron and Manganese Oxides and the Main Controlling Factors of Absorption of Sb(Ⅲ) in Soil

More Information
  • Received Date: November 24, 2021
  • Revised Date: January 03, 2022
  • Accepted Date: January 29, 2022
  • Available Online: December 13, 2022
  • HIGHLIGHTS
    (1) The saturated adsorption capacity of soil to Sb(Ⅲ) was red soil>brown soil>yellow soil>cinnamon soil>sandy soil.
    (2) The main controlling factors of Sb(Ⅲ) adsorption in soil were total iron oxide, amorphous iron, free iron, amorphous manganese, free manganese and cation exchange capacity.
    (3) The total amount of iron oxide had the greatest effect on the saturated adsorption capacity of soils to Sb(Ⅲ).
    BACKGROUND

    It is of great significance for evaluation, early warning and remediation of antimony contaminated soil to study the sorption factors affecting Sb(Ⅲ) adsorption in soil.

    OBJECTIVES

    To investigate the forms of Fe and Mn oxides and controlling factors of Sb(Ⅲ) adsorption in soil.

    METHODS

    The physicochemical properties, mechanical composition, and main chemical composition of soils from 10 different areas were determined by chemical method, inductively coupled plasma-optical emission spectrometry and atomic fluorescence spectrometry. The contents of different forms of iron and manganese and the saturated adsorption capacity of soils to Sb(Ⅲ) were determined by atomic absorption spectrometry. The correlation analysis, principal component analysis and factor analysis of soil saturated adsorption capacity to Sb(Ⅲ), soil physicochemical properties, mechanical composition, iron and manganese oxides and their forms were carried out by SPSS 21.0.

    RESULTS

    On the basis of studying the influencing factors of soil adsorption of Sb(Ⅲ), the main controlling factors were further studied. The saturated adsorption capacity of soil to Sb(Ⅲ) was between 0.63mg/g and 3.98mg/g, and was related to soil type with the order of red soil>brown soil>yellow soil>cinnamon soil>sandy soil. According to the correlation analysis results, the saturated adsorption capacity of soil to Sb(Ⅲ) was significantly positively correlated with cation exchange capacity, total iron oxide, amorphous iron content, and was positively correlated with free iron content, amorphous manganese content and free manganese content. The principal component analysis and factor analysis showed that these six factors were the main controlling factors affecting the adsorption of Sb(Ⅲ) in soil, and the influence degree was: total iron oxide>cation exchange capacity>amorphous iron content>free iron content>amorphous manganese content>free manganese content.

    CONCLUSIONS

    The adsorption capacity of soil to Sb(Ⅲ) is significantly affected by the total amount of iron and manganese oxides and their forms.

  • [1]
    Deng R J, Shao R, Ren B Z, et al. Adsorption of antimony(Ⅲ) onto Fe(Ⅲ)-treated humus sludge adsorbent: Behavior and mechanism insights[J]. Polish Journal of Environmental Studies, 2019, 28(2): 577-586.
    [2]
    He M C, Wang N N, Long X J, et al. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75: 14-39. doi: 10.1016/j.jes.2018.05.023
    [3]
    Zhu Y M, Wu Q H, Lv H Q, et al. Toxicity of different forms of antimony to rice plants: Effects on reactive oxidative species production, antioxidative systems, and uptake of essential elements[J]. Environmental Pollution, 2020, 263: 114544. doi: 10.1016/j.envpol.2020.114544
    [4]
    Mbadugha L, Cowper D, Dossanov S, et al. Geogenic and anthropogenic interactions at a former Sb mine: Environmental impacts of As and Sb[J]. Environmental Geochemistry Health, 2020, 42: 3911-3924. doi: 10.1007/s10653-020-00652-w
    [5]
    张龙, 宋波, 黄凤艳, 等. 湖南锡矿山周边土壤-农作物系统锑迁移转换特征及污染评价[J]. 环境科学, 2022, 43(3): 1558-1566. doi: 10.13227/j.hjkx.202105162

    Zhang L, Song B, Huang F Y, et al. Characteristics of antimony migration and transformation and pollution evaluation in soil-crop system around tin mine in Hunan Province[J]. Environmental Science, 2022, 43(3): 1558-1566. doi: 10.13227/j.hjkx.202105162
    [6]
    Verbeeck M, Thiry Y, Smolders E. Soil organic matter affects arsenic and antimony sorption in anaerobic soils[J]. Environmental Pollution, 2020, 257: 113566. doi: 10.1016/j.envpol.2019.113566
    [7]
    刘冬, 贺灵, 文雪琴, 等. 金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究[J]. 岩矿测试, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.20211100139

    Liu D, He L, Wen X Q, et al. Concentration and relationship about heavy metals in soils and rices and influencing of pH in Jinqu Basin[J]. Rock and Mineral Analysis, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.20211100139
    [8]
    岑如香, 张旺, 韦小了, 等. 黔产薏苡仁及其产地土壤重金属污染的特征[J]. 水土保持通报, 2021, 41(1): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202101015.htm

    Cen R X, Zhang W, Wei X L, et al. Characteristics of heavy metal pollution of coix seed and soil from its producing area in Guizhou Province[J]. Bulletin of Soil and Water Conservation, 2021, 41(1): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202101015.htm
    [9]
    代豫杰, 郭建英, 董智, 等. 不同沙生灌木下土壤颗粒及重金属空间分布特征[J]. 环境科学, 2017, 38(11): 4809-4818. doi: 10.13227/j.hjkx.201704135

    Dai Y J, Guo J Y, Dong Z, et al. Spatial distribution of soil particles and heavy metals under different psammophilicshrubs in the Ulan Buh Desert[J]. Environmental Science, 2017, 38(11): 4809-4818. doi: 10.13227/j.hjkx.201704135
    [10]
    周世伟, 朱丽娜, 贺京哲, 等. 锑/磷在膨润土和高岭土的竞争吸附[J]. 土壤, 2017, 49(3): 492-499. doi: 10.13758/j.cnki.tr.2017.03.010

    Zhou S W, Zhu L, He J Z, et al. Competition adsorption of antimony (Sb) and phosphorus (P) on bentonite and kaolinite[J]. Soils, 2017, 49(3): 492-499. doi: 10.13758/j.cnki.tr.2017.03.010
    [11]
    Verbeeck M, Warrinnier R, Gustafsson J P, et al. Soil organic matter increases antimonate mobility in soil: An Sb(OH)6 sorption and modelling study[J]. Applied Geochemistry, 2019, 104: 33-41. doi: 10.1016/j.apgeochem.2019.03.012
    [12]
    Steely S, Amarasiriwardena D, Xing B. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils[J]. Environmental Pollution, 2007, 148: 590-598. doi: 10.1016/j.envpol.2006.11.031
    [13]
    Rong Q, Zhang C L, Huang H, et al. Immobilization of As and Sb by combined applications Fe-Mn oxides with organic amendments and alleviation their uptake by brassica campestris L. [J]. Journal of Cleaner Production, 2021, 288: 125088. doi: 10.1016/j.jclepro.2020.125088
    [14]
    Lan B Y, Wang Y X, Wang X, et al. Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate[J]. Chemical Engineering Journal, 2016, 292: 389-397. doi: 10.1016/j.cej.2016.02.019
    [15]
    王鑫浩. 不同晶型MnO2吸附剂对水中铊及锑的吸附效果研究[D]. 西安: 西安工程大学, 2018: 43.

    Wang X H. Study on the adsorption effect of different crystalline MnO2 adsorbents on thallium and antimony in water[D]. Xi'an: Xi'an Polytechnic University, 2018: 43.
    [16]
    Wang H W, Tsang Y F, Wang Y N, et al. Adsorption capacities of poorly crystalline Fe minerals for antimonate and arsenate removal from water: Adsorption properties and effects of environmental and chemical conditions[J]. Clean Technologies and Environmental Policy, 2018, 20: 2169-2179. doi: 10.1007/s10098-018-1552-0
    [17]
    Shanggan Y X, Qin X P, Zhao L, et al. Effects of iron oxide on antimony(Ⅴ) adsorption in natural soils: Transmission electron microscopy and X-ray photoelectron spectroscopy measurements[J]. Journal of Soils & Sediments, 2016, 16(2): 509-517.
    [18]
    白德奎, 朱霞萍, 王艳艳, 等. 氧化锰、氧化铁、氧化铝对砷(Ⅲ)的吸附行为研究[J]. 岩矿测试, 2010, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013

    Bai D K, Zhu X P, Wang Y Y, et al. Study on adsorption behaviors of As(Ⅲ) by manganese oxide iron oxide and aluminium oxide[J]. Rock and Mineral Analysis, 2010, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013
    [19]
    Guo X J, Wu Z J, He M C, et al. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure[J]. Journal of Hazardous Materials, 2014, 276: 339-345. doi: 10.1016/j.jhazmat.2014.05.025
    [20]
    刘爱叶, 马杰, 马光胜. 氯化铵-乙醇法测定膨胀土阳离子交换量方法的优化[J]. 铁道勘察, 2011, 37(1): 43-45. doi: 10.3969/j.issn.1672-7479.2011.01.014

    Liu A Y, Ma J, Ma G S. Optimized experiment for ammonium chloride-ethanol method in measurement of bentonite cationic exchange capacity[J]. Railway Investigation and Surveying, 2011, 37(1): 43-45. doi: 10.3969/j.issn.1672-7479.2011.01.014
    [21]
    徐永昊, 聂军, 鲁艳红, 等. 减施化肥下紫云英翻压量对土壤团聚体及铁锰氧化物的影响[J]. 中国土壤与肥料, 2020(6): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202006003.htm

    Xu Y H, Nie J, Lu Y H, et al. Effects of different returning amount of Chinese milk vetch on soil aggregates and iron and manganese oxides under reduced fertilizer application[J]. Soil and Fertilizer Sciences in China, 2020(6): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202006003.htm
    [22]
    顾明华, 李志明, 陈宏, 等. 施锰对土壤锰氧化物形成及镉固定的影响[J]. 生态环境学报, 2020, 29(2): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202002018.htm

    Gu M H, Li Z M, Chen H, et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil[J]. Ecology and Environmental Sciences, 2020, 29(2): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202002018.htm
    [23]
    姜学钧. 海洋铁锰氧化物沉积物中常、微量元素的地球化学特征[D]. 青岛: 中国海洋大学, 2008: 22.

    Jiang X J. Geochemistry of major and minor elements in marine ferromanganese oxide deposits[D]. Qingdao: Ocean University of China, 2008: 22.
    [24]
    郑智慷, 曾江萍, 王家松, 等. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208-215. doi: 10.15898/j.cnki.11-2131/td.201906110084

    Zheng Z K, Zeng J P, Wang J S, et al. Determination of antimony in antimony ores by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208-215. doi: 10.15898/j.cnki.11-2131/td.201906110084
    [25]
    薛佳. 液相色谱-原子荧光光谱联用法测定土壤砷铬锑硒元素价态[J]. 岩矿测试, 2021, 40(2): 250-261. doi: 10.15898/j.cnki.11-2131/td.202003090028

    Xue J. Determination of valences of As, Cr, Sb and Se in soil using HPLC-HG-AFS[J]. Rock and Mineral Analysis, 2021, 40(2): 250-261. doi: 10.15898/j.cnki.11-2131/td.202003090028
    [26]
    谭迪. 锑砷复合污染土壤的风险评价及萃取研究[D]. 长沙: 湖南农业大学, 2019: 2.

    Tan D. Risk assessment and leaching extraction of antimony (Sb) and arsenic (As) contaminated soils[D]. Changsha: Hunan Agricultural University, 2019: 2.
    [27]
    马祥爱, 秦俊梅, 张亚尼. 锑在不同土壤中的解吸行为比较[J]. 农业环境科学学报, 2015, 34(8): 1528-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201508014.htm

    Ma X A, Qin J M, Zhang Y N. A comparison of desorption behaviors of Sb in different soils[J]. Journal of Agro-Environment Science, 2015, 34(8): 1528-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201508014.htm
    [28]
    Zhu Y M, Yang J G, Wang L Z, et al. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants[J]. Science of the Total Environment, 2020, 738: 140232.
    [29]
    姜再菊. 锑矿冶炼区周围土壤中锑的吸附释放行为研究[D]. 贵阳: 贵州大学, 2019: 7.

    Jiang Z J. Study on adsorption and release behavior of Sb in soil of antimony ore smelting mine[D]. Guiyang: Guizhou University, 2019: 7.
    [30]
    Lin X L, He F, Sun Z J, et al. Influences of soil pro-perties and long-time aging on phytotoxicity of antimony to barley root elongation[J]. Environmental Pollution, 2020, 262: 114330. http://www.sciencedirect.com/science/article/pii/S0269749120301147
    [31]
    孙雪. 不同景观部位土壤铁锰新生体的形态, 组成及形成环境研究[D]. 沈阳: 沈阳农业大学, 2018: 4-5.

    Sun X. The morphology, composition, and formation environment of soil Fe-Mn new growth in different landscape sites[D]. Shenyang: Shenyang Agricultural University, 2018: 4-5.
    [32]
    肖作义, 马耀祖, 郑春丽, 等. 季节性冻融作用对土壤吸附稀土元素镧的影响[J]. 应用化工, 2018, 47(9): 1841-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201809011.htm

    Xiao Z Y, Ma Y Z, Zheng C L, et al. The effect of seasonal freeze-thaw on the soil adsorption of rare earth elements lanthanum[J]. Applied Chemical Industry, 2018, 47(9): 1841-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201809011.htm
    [33]
    梁化学. 不同形态氧化铁对黄土性土壤表面性质及铅吸附解吸的影响[D]. 杨凌: 西北农林科技大学, 2016: 2-3.

    Liang H X. Effects of iron oxides on surface properties and adsorption-desorption of lead by several loessial soils[D]. Yangling: Northwest A&F University, 2016: 2-3.
    [34]
    Zhou S, Sato T, Otake T. Dissolved silica effects on adsorption and co-precipitation of Sb(Ⅲ) and Sb(Ⅴ) with ferrihydrite[J]. Minerals, 2018, 8(101): 1-12. http://www.onacademic.com/detail/journal_1000040539668010_66d6.html
    [35]
    Qi P F, Pichler T. Sequential and simultaneous adsorption of Sb(Ⅲ) and Sb(Ⅴ) on ferrihydrite: Implications for oxidation and competition[J]. Chemosphere, 2016, 145: 55-60.
    [36]
    高雪. 外源砷在土壤中的老化及植物有效性研究[D]. 北京: 中国农业科学院, 2016: 21.

    Gao X. A study on aging process and phytoavailability of exogenous arsenic in soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016: 21.
    [37]
    Cai Y B, Mi Y T, Zhang H, et al. Kinetic modeling of antimony(Ⅲ) oxidation and sorption in soils[J]. Journal of Hazardous Materials, 2016, 316: 102-109.
    [38]
    Long X J, Wang X, Guo X J, et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Sciences, 2020, 90: 189-204.
    [39]
    Belzile N, Chen Y W, Wang Z J. Oxidation of antimony(Ⅲ) by amorphous iron and manganese oxyhydroxides[J]. Chemical Geology, 2001, 174: 379-387.
  • Cited by

    Periodical cited type(7)

    1. 赵令浩,孙冬阳,胡明月,袁继海,范晨子,詹秀春. 激光剥蚀-扇形磁场电感耦合等离子体质谱法同时测定锆石U-Pb年龄和微量元素含量. 岩矿测试. 2024(01): 47-62 . 本站查看
    2. 王奇奇,孙贺,顾海欧,侯振辉,葛粲,汪方跃,周涛发. 磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用. 岩矿测试. 2024(01): 63-75 . 本站查看
    3. 曹瑞芹,杨忠芳,余涛. 镉锌稳定同位素地球化学及其在土壤等地质体中的危害与治理研究进展. 中国地质. 2024(03): 833-864 .
    4. 程文瀚,吴萌,赵艳丽,赵俊哲. 锌同位素环境地球化学研究进展. 高校地质学报. 2024(03): 312-321 .
    5. 李卫娜,蔡虹明,袁玮,郑旺,陈玖斌. 土柱实验在土壤重金属污染研究中的应用进展与展望. 地球与环境. 2024(05): 652-661 .
    6. 帅旺财,刘文奇,马丽雅,蔡虹明,陈玖斌,袁玮. 典型有色金属冶炼场地重金属来源解析及生态健康风险评估. 地球与环境. 2024(06): 756-770 .
    7. 夏亚飞,刘宇晖,高庭,刘承帅. 基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展. 地球科学进展. 2023(04): 331-348 .

    Other cited types(1)

Catalog

    Article views (168) PDF downloads (24) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return