• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WAN Dan, CHEN Jiubin, ZHANG Ting, AN Yuchen, SHUAI Wangcai. Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review[J]. Rock and Mineral Analysis, 2022, 41(3): 341-352. DOI: 10.15898/j.cnki.11-2131/td.202110090142
Citation: WAN Dan, CHEN Jiubin, ZHANG Ting, AN Yuchen, SHUAI Wangcai. Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review[J]. Rock and Mineral Analysis, 2022, 41(3): 341-352. DOI: 10.15898/j.cnki.11-2131/td.202110090142

Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review

More Information
  • Received Date: October 08, 2021
  • Revised Date: November 28, 2021
  • Accepted Date: March 13, 2022
  • Available Online: July 28, 2022
  • Published Date: October 08, 2021
  • HIGHLIGHTS
    (1) With the development of chemical separation and MC-ICP-MS, high-precision cadmium isotope analysis has been achieved for soil samples.
    (2) Different natural and anthropogenic reservoirs have variable cadmium isotope compositions.
    (3) Typical soil processes such as weathering leaching, adsorption, precipitation/co-precipitation, and complexation lead to cadmium isotope fractionation.
    (4) Cadmium isotopes can be used to trace the source and fate of cadmium in the soil.
    BACKGROUND

    Soil cadmium pollution has become one of the main factors that endanger human health. Rapid and effective remediation of Cd pollution soil requires a fundamental understanding of Cd sources and geochemical cycling. With the advancement of Cd isotope analysis technology and the in-depth understanding of its fractionation mechanism, Cd isotopes provide new perspectives for understanding the source and fate of Cd in the soil.

    OBJECTIVES

    To systematically summarize the cadmium isotope analysis method, and emphasize the research progress, problems, and potential application of Cd isotopes as tracers in soil.

    METHODS

    Sample digestion methods, such as high-temperature digestion bombs, microwave acid digestion, ashing, and acid extraction, are reviewed here with ion-exchange separation and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS).

    RESULTS

    Based on previous studies, this review systematically summarizes the fundamental principle and methodology of Cd isotopic analysis methods. For the soil samples, the high-temperature digestion bombs method and microwave acid digestion can meet its cadmium isotope analysis requirements. With sufficient recovery and complete removal of interfering elements, standard-sample bracketing, external normalization, and double-spike techniques can be used for mass bias correction to obtain accurate and reliable Cd isotope data. In addition, the theoretical basis of soil cadmium isotope tracing was reviewed. This review summarizes the cadmium isotopic composition of multiple potential cadmium sources in soil and the direction and extent of cadmium isotope fractionation in typical processes (weathering leaching, adsorption, precipitation/co-precipitation, complexation). Combined with the latest research results, the application of cadmium isotopes in tracing soil cadmium sources and their migration and transformation processes is summarized.

    CONCLUSIONS

    In the future, we should further develop and optimize the high-precision cadmium isotope analysis method, construct the fingerprint map of soil cadmium isotope, and reveal the cadmium isotope fractionation mechanisms in the processes of multi-component and multi-interface.

  • [1]
    Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018
    [2]
    Grant C, Flaten D, Tenuta M, et al. The effect of rate and Cd concentration of repeated phosphate fertilizer applications on seed Cd concentration varies with crop type and environment[J]. Plant and Soil, 2013, 372(1): 221-233.
    [3]
    Teng Y, Wu J, Lu S, et al. Soil and soil environmental quality monitoring in China: A review[J]. Environment International, 2014, 69: 177-199. doi: 10.1016/j.envint.2014.04.014
    [4]
    Wan D, Zhang N, Chen W, et al. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil[J]. Environmental Science and Pollution Research, 2018, 25(32): 32130-32139. doi: 10.1007/s11356-018-3173-x
    [5]
    Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.
    [6]
    环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201408001.htm

    Ministry of Environmental Protection, Ministry of Land and Resources. National bulletin of soil pollution survey China[J]. Environmental Protection Industry, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201408001.htm
    [7]
    Liu X, Zhong L, Meng J, et al. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health[J]. Environmental Pollution, 2018, 239: 308-317. doi: 10.1016/j.envpol.2018.04.033
    [8]
    Wang P, Chen H, Kopittke P M, et al. Cadmium contam-ination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048. doi: 10.1016/j.envpol.2019.03.063
    [9]
    Yang S, Zhao J, Chang S X, et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis[J]. Environment International, 2019, 128: 165-174. doi: 10.1016/j.envint.2019.04.044
    [10]
    Zhao F J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446(1): 1-21.
    [11]
    郭志娟, 周亚龙, 王乔林, 等. 雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049

    Guo Z J, Zhou Y L, Wang Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiong'an New District[J]. China Environmental Science, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049
    [12]
    Huang H, Chen H P, Kopittke P M, et al. The voltaic effect as a novel mechanism controlling the remobilization of cadmium in paddy soils during drainage[J]. Environmental Science & Technology, 2021, 55(3): 1750-1758.
    [13]
    Qu C, Chen W, Hu X, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environment International, 2019, 131: 104995. doi: 10.1016/j.envint.2019.104995
    [14]
    赵其国, 骆永明. 论我国土壤保护宏观战略[J]. 中国科学院院刊, 2015, 30(4): 452-458. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201504004.htm

    Zhao Q G, Luo Y M. The macro strategy of soil protection in China[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 452-458. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201504004.htm
    [15]
    陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802001.htm

    Chen W P, Yang Y, Xie T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 2018, 55(2): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802001.htm
    [16]
    党志, 姚谦, 李晓飞, 等. 矿区土壤中重金属形态分布的地球化学机制[J]. 矿物岩石地球化学通报, 2020, 39(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001004.htm

    Dang Z, Yao Q, Li X F, et al. Geochemical constraints on heavy metal speciation and distribution in contaminated soils of mining areas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001004.htm
    [17]
    韦刚健, 黄方, 马金龙, 等. 近十年我国非传统稳定同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2022, 41(1): 1-44, 223. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202201001.htm

    Wei G J, Huang F, Ma J L, et al. Progress of non-traditional stable isotope geochemistry of the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 1-44, 223. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202201001.htm
    [18]
    Teng F Z, Dauphas N, Watkins J M. Non-traditional stable isotopes: Retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 1-26. doi: 10.2138/rmg.2017.82.1
    [19]
    Wang L, Jin Y, Weiss D J, et al. Possible application of stable isotope compositions for the identification of metal sources in soil[J]. Journal of Hazardous Materials, 2021, 407: 124812. doi: 10.1016/j.jhazmat.2020.124812
    [20]
    Wiederhold J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology, 2015, 49(5): 2606-2624.
    [21]
    Rosman K J R, de Laeter J R. Isotopic fractionation in meteoritic cadmium[J]. Nature, 1976, 261(5557): 216-218. doi: 10.1038/261216a0
    [22]
    Rosman K J R, de Laeter J R, Gorton M P. Cadmium isotope fractionation in fractions of two H3 chondrites[J]. Earth and Planetary Science Letters, 1980, 48(1): 166-170. doi: 10.1016/0012-821X(80)90179-X
    [23]
    Schediwy S, Rosman K J R, de Laeter J R. Isotope fractionation of cadmium in lunar material[J]. Earth and Planetary Science Letters, 2006, 243(3): 326-335.
    [24]
    Wombacher F, Rehkämper M, Mezger K, et al. Cadmium stable isotope cosmochemistry[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 646-667. doi: 10.1016/j.gca.2007.10.024
    [25]
    Schmitt A D, Galer S J G, Abouchami W. Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment[J]. Earth and Planetary Science Letters, 2009, 277(1): 262-272.
    [26]
    Zhong Q, Zhou Y, Tsang D C W, et al. Cadmium isotopes as tracers in environmental studies: A review[J]. Science of the Total Environment, 2020, 736: 139585. doi: 10.1016/j.scitotenv.2020.139585
    [27]
    王丹妮, 靳兰兰, 陈斌, 等. 镉同位素体系及其在地球科学和环境科学中的应用[J]. 岩矿测试, 2013, 32(2): 181-191. doi: 10.3969/j.issn.0254-5357.2013.02.002

    Wang D N, Jin L L, Chen B, et al. A review of the isotope system of cadmium and its applications in geosciences and environmental sciences[J]. Rock and Mineral Analysis, 2013, 32(2): 181-191. doi: 10.3969/j.issn.0254-5357.2013.02.002
    [28]
    李海涛, 杨鑫, 雷华基, 等. 镉稳定同位素研究进展[J]. 岩矿测试, 2021, 40(1): 1-15. doi: 10.15898/j.cnki.11-2131/td.202012090160

    Li H T, Yang X, Lei H J, et al. Research progress of cadmium stable isotopes[J]. Rock and Mineral Analysis, 2021, 40(1): 1-15. doi: 10.15898/j.cnki.11-2131/td.202012090160
    [29]
    Zhong Q, Yin M, Zhang Q, et al. Cadmium isotopic fractionation in lead-zinc smelting process and signatures in fluvial sediments[J]. Journal of Hazardous Materials, 2021, 411: 125015. doi: 10.1016/j.jhazmat.2020.125015
    [30]
    Xie X, Luo J, Guan L, et al. Cadmium isotope fractionation during leaching with nitrilotriacetic acid[J]. Chemical Geology, 2021, 584: 120523. doi: 10.1016/j.chemgeo.2021.120523
    [31]
    He H T, Xing L C, Qin S J, et al. Equilibrium Cd isotopic fractionation between Cd(OH)2(S), apatite, adsorbed Cd2+, and Cd(aq)2+: Potential application of δ114Cd in evaluating the effectiveness of Cd-contamination remediation[J]. Geochemical Journal, 2020, 54(5): 289-297. doi: 10.2343/geochemj.2.0599
    [32]
    Zhang S N, Gu Y, Zhu Z L, et al. Stable isotope fractionation of cadmium in the soil-rice-human continuum[J]. Science of the Total Environment, 2021, 761: 143262. doi: 10.1016/j.scitotenv.2020.143262
    [33]
    Borovic ˇka J, Ackerman L, Rejšek J. Cadmium isotopic composition of biogenic certified reference materials determined by thermal ionization mass spectrometry with double spike correction[J]. Talanta, 2021, 221: 121389. doi: 10.1016/j.talanta.2020.121389
    [34]
    Li D, Li M L, Liu W R, et al. Cadmium isotope ratios of standard solutions and geological reference materials measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 593-605. doi: 10.1111/ggr.12236
    [35]
    Liu M S, Zhang Q, Zhang Y, et al. High-precision Cd isotope measurements of soil and rock reference materials by MC-ICP-MS with double spike correction[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 169-182. doi: 10.1111/ggr.12291
    [36]
    Tan D, Zhu J M, Wang X, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(4): 713-727. doi: 10.1039/C9JA00397E
    [37]
    Yan X, Zhu M, Li W, et al. Cadmium isotope fractionation during adsorption and substitution with iron (oxyhydr)oxides[J]. Environmental Science & Technology, 2021, 55(17): 11601-11611.
    [38]
    Ratié G, Chrastny V, Guinoiseau D, et al. Cadmium isotope fractionation during complexation with humic acid[J]. Environmental Science & Technology, 2021, 55(11): 7430-7444.
    [39]
    Yang J, Li Y, Liu S, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 2015, 391: 74-82. doi: 10.1016/j.chemgeo.2014.10.029
    [40]
    Wasylenki L E, Swihart J W, Romaniello S J. Cadmium isotope fractionation during adsorption to Mn oxyhydroxide at low and high ionic strength[J]. Geochimica et Cosmochimica Acta, 2014, 140: 212-226. doi: 10.1016/j.gca.2014.05.007
    [41]
    Zhang Y, Wen H, Zhu C, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060
    [42]
    Xie X, Yan L, Li J, et al. Cadmium isotope fractionation during Cd-calcite coprecipitation: Insight from batch experiment[J]. Science of the Total Environment, 2021, 760: 143330. doi: 10.1016/j.scitotenv.2020.143330
    [43]
    Guinoiseau D, Galer S J G, Abouchami W. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle[J]. Earth and Planetary Science Letters, 2018, 498: 300-308. doi: 10.1016/j.epsl.2018.06.039
    [44]
    Horner T J, Rickaby R E M, Henderson G M. Isotopic fractionation of cadmium into calcite[J]. Earth and Planetary Science Letters, 2011, 312(1): 243-253.
    [45]
    Zhao Y, Li Y, Wiggenhauser M, et al. Theoretical isotope fractionation of cadmium during complexation with organic ligands[J]. Chemical Geology, 2021, 571: 120178. doi: 10.1016/j.chemgeo.2021.120178
    [46]
    Wang P, Li Z, Liu J, et al. Apportionment of sources of heavy metals to agricultural soils using isotope fingerprints and multivariate statistical analyses[J]. Environmental Pollution, 2019, 249: 208-216. doi: 10.1016/j.envpol.2019.03.034
    [47]
    刘意章, 肖唐付, 朱建明. 镉同位素及其环境示踪[J]. 地球与环境, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm

    Liu Y Z, Xiao T F, Zhu J M. Cadmium isotopes and environmetal tracing[J]. Earth and Environment, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm
    [48]
    Komárek M, Ratié G, Vaňková Z, et al. Metal isotope complexation with environmentally relevant surfaces: Opening the isotope fractionation black box[J]. Critical Reviews in Environmental Science and Technology, 2021, https://doi.org/10.1080/10643389.2021.1955601. doi: 10.1080/10643389.2021.1955601
    [49]
    苗鑫, 陈林捷, 周飞杨, 等. 高精度镉同位素分析样品消解方法对比研究[J]. 分析测试学报, 2021, 40(6): 947-953. doi: 10.3969/j.issn.1004-4957.2021.06.022

    Miao X, Chen L J, Zhou F Y, et al. Comparison of sample digestion methods for high precision cadmium isotope analysis[J]. Journal of Instrumental Analysis, 2021, 40(6): 947-953. doi: 10.3969/j.issn.1004-4957.2021.06.022
    [50]
    Fedyunina N N, Seregina I F, Bolshov M A, et al. Investi-gation of the efficiency of the sample pretreatment stage for the determination of the rare earth elements in rock samples by inductively coupled plasma mass spectrometry technique[J]. Analytica Chimica Acta, 2012, 713: 97-102. doi: 10.1016/j.aca.2011.11.035
    [51]
    Park J, Kim J Y, Lee K, et al. Comparison of acid extra-ction and total digestion methods for measuring Cd isotope ratios of environmental samples[J]. Environmental Monitoring and Assessment, 2019, 192(1): 41.
    [52]
    Wei R, Guo Q, Wen H, et al. An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(6): 2479-2487. doi: 10.1039/C4AY02435D
    [53]
    Pallavicini N, Engström E, Baxter D C, et al. Cadmium isotope ratio measurements in environmental matrices by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1570-1584. doi: 10.1039/C4JA00125G
    [54]
    Lv W X, Yin H M, Liu M S, et al. Effect of the dry ashing method on cadmium isotope measurements in soil and plant samples[J]. Geostandards and Geoanalytical Research, 2021, 45(1): 245-256. doi: 10.1111/ggr.12357
    [55]
    李津, 唐索寒, 马健雄, 等. 金属同位素质谱中分析样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166

    Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166
    [56]
    Gault-Ringold M. The marine biogeochemisty of cadmium: Studies of cadmium isotopic variations in the Southern Ocean[D]. Dunedin: University of Otago, 2011.
    [57]
    张羽旭, 温汉捷, 樊海峰, 等. Cd同位素地质样品的预处理方法研究[J]. 分析测试学报, 2010, 29(6): 633-637. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201006023.htm

    Zhang Y X, Wen H J, Fan H F, et al. Chemical pre-treatment methods for measurement of Cd isotopic ratio on geological sample[J]. Journal of Instrumental Analysis, 2010, 29(6): 633-637. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201006023.htm
    [58]
    Wombacher F, Rehkämper M, Mezger K, et al. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4639-4654. doi: 10.1016/S0016-7037(03)00389-2
    [59]
    Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, NOD-P-1, NOD-A-1) and anthropogenic samples, measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x
    [60]
    Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020
    [61]
    杜晨. 镉同位素分析及其古海洋环境指示意义[D]. 武汉: 中国地质大学(武汉), 2015.

    Du C. Cadmium isotope analytical method and its paleo-ocean environmental sugnificance[D]. Wuhan: China University of Geosciences (Wuhan), 2015.
    [62]
    段桂玲, 段瑞春, 谭娟娟, 等. 土壤样品镉同位素分析中Cd与Sn有效分离方法的改进[J]. 岩矿测试, 2016, 35(1): 10-16. doi: 10.15898/j.cnki.11-2131/td.2016.01.003

    Duan G L, Duan R C, Tan J J, et al. Improvement on effective separation between cadmium and tin in soil samples for the determination of cadmium isotopic composition[J]. Rock and Mineral Analysis, 2016, 35(1): 10-16. doi: 10.15898/j.cnki.11-2131/td.2016.01.003
    [63]
    谢胜凯, 曾远, 刘瑞萍, 等. AG-MP-1M在氢溴酸体系中分离镉的方法[J]. 核化学与放射化学, 2020, 42(4): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS202004007.htm

    Xie S K, Zeng Y, Liu R P, et al. Separation of cadmium in hydrobromic acid by anion resin AG-MP-1M[J]. Journal of Nuclear and Radiochemistry, 2020, 42(4): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS202004007.htm
    [64]
    Zhou F Y, He D, Miao X, et al. Development of an automatic column chromatography separation device for metal isotope analysis based on droplet counting[J]. Analytical Chemistry, 2021, 93(19): 7196-7203. doi: 10.1021/acs.analchem.1c00145
    [65]
    朱志勇, 朱祥坤, 杨涛. 自动分离提纯系统的研制及其在同位素分析测试中的应用[J]. 岩矿测试, 2020, 39(3): 384-390. doi: 10.15898/j.cnki.11-2131/td.201908120123

    Zhu Z Y, Zhu X K, Yang T. A fully automated chemical separation and purification system and its application to isotope analysis[J]. Rock and Mineral Analysis, 2020, 39(3): 384-390. doi: 10.15898/j.cnki.11-2131/td.201908120123
    [66]
    Böhlke J K, Laeter J R D, Bièvre P D, et al. Isotopic compositions of the elements, 2001[J]. Journal of Physical and Chemical Reference Data, 2005, 34(1): 57-67. doi: 10.1063/1.1836764
    [67]
    Abouchami W, Galer S J G, de Baar H J W, et al. Biogeo-chemical cycling of cadmium isotopes in the Southern Ocean along the zero meridian[J]. Geochimica et Cosmochimica Acta, 2014, 127: 348-367. doi: 10.1016/j.gca.2013.10.022
    [68]
    Wen H, Zhang Y, Cloquet C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025
    [69]
    Lu Z, Zhu J M, Tan D, et al. δ114/110Cd values of a suite of different reference materials[J]. Geostandards and Geoanalytical Research, 2021, 45(3): 565-581. doi: 10.1111/ggr.12380
    [70]
    Peng H, He D, Guo R, et al. High precision cadmium isotope analysis of geological reference materials by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(2): 390-398. doi: 10.1039/D0JA00424C
    [71]
    Chrastny V, adková E, Vaněk A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J]. Chemical Geology, 2015, 405: 1-9. doi: 10.1016/j.chemgeo.2015.04.002
    [72]
    Zhu C, Wen H, Zhang Y, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2056-2065. doi: 10.1007/s11430-013-4668-4
    [73]
    Shiel A E, Weis D, Orians K J. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J]. Science of the Total Environment, 2010, 408(11): 2357-2368. doi: 10.1016/j.scitotenv.2010.02.016
    [74]
    Martinková E, Chrastny V, Francová M, et al. Cadmium isotope fractionation of materials derived from various industrial processes[J]. Journal of Hazardous Materials, 2016, 302: 114-119. doi: 10.1016/j.jhazmat.2015.09.039
    [75]
    Wombacher F, Rehkämper M, Mezger K. Determination of the mass-dependence of cadmium isotope fractiona-tion during evaporation[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2349-2357. doi: 10.1016/j.gca.2003.12.013
    [76]
    Cloquet C, Carignan J, Libourel G, et al. Tracing source pollution in soils using cadmium and lead isotopes[J]. Environmental Science & Technology, 2006, 40(8): 2525-2530.
    [77]
    Imseng M, Wiggenhauser M, Keller A, et al. Fate of Cd in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J]. Environmental Science & Technology, 2018, 52(4): 1919-1928.
    [78]
    Salmanzadeh M, Hartland A, Stirling C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J]. Environmental Science & Technology, 2017, 51(13): 7369-7377.
    [79]
    Barraza F, Moore R E T, Rehkämper M, et al. Cadmium isotope fractionation in the soil -cacao systems of ecuador: A pilot field study[J]. RSC Advances, 2019, 9(58): 34011-34022. doi: 10.1039/C9RA05516A
    [80]
    Gou W, Li W, Ji J, et al. Zinc isotope fractionation during sorption onto Al oxides: Atomic level understanding from EXAFS[J]. Environmental Science & Technology, 2018, 52(16): 9087-9096.
    [81]
    李霞, 张慧鸣, 徐震, 等. 农田Cd和Hg污染的来源解析与风险评价研究[J]. 农业环境科学学报, 2016, 35(7): 1314-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201607013.htm

    Li X, Zhang H M, Xu Z, et al. Source apportionment and risk assessmet of Cd and Hg pollution in farmland[J]. Journal of Agro-Environment Science, 2016, 35(7): 1314-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201607013.htm
    [82]
    Wiggenhauser M, Bigalke M, Imseng M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J]. Science of the Total Environment, 2019, 648: 779-786. doi: 10.1016/j.scitotenv.2018.08.127
  • Cited by

    Periodical cited type(7)

    1. 赵令浩,孙冬阳,胡明月,袁继海,范晨子,詹秀春. 激光剥蚀-扇形磁场电感耦合等离子体质谱法同时测定锆石U-Pb年龄和微量元素含量. 岩矿测试. 2024(01): 47-62 . 本站查看
    2. 王奇奇,孙贺,顾海欧,侯振辉,葛粲,汪方跃,周涛发. 磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用. 岩矿测试. 2024(01): 63-75 . 本站查看
    3. 曹瑞芹,杨忠芳,余涛. 镉锌稳定同位素地球化学及其在土壤等地质体中的危害与治理研究进展. 中国地质. 2024(03): 833-864 .
    4. 程文瀚,吴萌,赵艳丽,赵俊哲. 锌同位素环境地球化学研究进展. 高校地质学报. 2024(03): 312-321 .
    5. 李卫娜,蔡虹明,袁玮,郑旺,陈玖斌. 土柱实验在土壤重金属污染研究中的应用进展与展望. 地球与环境. 2024(05): 652-661 .
    6. 帅旺财,刘文奇,马丽雅,蔡虹明,陈玖斌,袁玮. 典型有色金属冶炼场地重金属来源解析及生态健康风险评估. 地球与环境. 2024(06): 756-770 .
    7. 夏亚飞,刘宇晖,高庭,刘承帅. 基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展. 地球科学进展. 2023(04): 331-348 .

    Other cited types(1)

Catalog

    Article views (916) PDF downloads (104) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return