XIE Bing-jing. A Review of Single-grain Optically Stimulated Luminescence Technology and Its Application in Geological Archaeology[J]. Rock and Mineral Analysis, 2020, 39(4): 493-504. DOI: 10.15898/j.cnki.11-2131/td.202002030013
Citation: XIE Bing-jing. A Review of Single-grain Optically Stimulated Luminescence Technology and Its Application in Geological Archaeology[J]. Rock and Mineral Analysis, 2020, 39(4): 493-504. DOI: 10.15898/j.cnki.11-2131/td.202002030013

A Review of Single-grain Optically Stimulated Luminescence Technology and Its Application in Geological Archaeology

More Information
  • Received Date: February 02, 2020
  • Revised Date: March 07, 2020
  • Accepted Date: April 15, 2020
  • Published Date: June 30, 2020
  • Highlights
    (1) The advantages of single-grain OSL technology were discussed and the new dating method for Quaternary archaeological sediments was proposed.
    (2) The rejection and acceptance criteria and age models of single-grain OSL technology were investigated, and the method of precise dating was advocated.
    (3) The development process, experimental process and research difficulties of single-grain OSL technology were reviewed.
    BACKGROUNDIn recent years, a series of important progressions has been made in the study of single-grain technology in optical stimulated luminescence (OSL) dating, which greatly improves the accuracy of dating and provides more space for geological and archaeological dating. A detailed single-grain dating has been carried out in globally important archaeological sites and many new archaeological discoveries have been made. The single-grain OSL technology is developed on the basis of photoluminescence monolithic technology. The single quartz or feldspar grains of the sample are independently tested, and the precise age of the sample is obtained based on the measurement results of a large number of grains, combined with error theory, statistical analysis and geological sedimentation characteristics.
    OBJECTIVESTo understand the development process, experimental process and research difficulties of single-grain OSL technology.
    METHODSEquivalent dose (De) data were obtained by single-grain OSL dating protocol. Error theory and statistical principle were used for De value analyzing.
    RESULTSSingle-grain OSL dating gets each grain's signal for a sample to determine the De value for a sample, rather than the more conventional single-aliquot approach, which each aliquot consists of several 10-1000s of grains. This method was especially beneficial in archaeological contexts where:(1)An individual grain was the smallest fundamental unit for optical dating, providing detailed information on each grain for sample of interest. (2)Individual grains may respond differently even using the same machine under the same measurement conditions, while multi-grain aliquot cannot distinguish the grains suited to SAR procedure and the grains not, resulting that aliquots can be compromised by these ill-suited grains especially when they dominate the OSL signal. (3)Concerning about post-depositional disturbances, beta microdosimetry, possibility of roof spall contamination and non-homogeneous bleaching, these contaminant grains can be recognized by the distribution pattern of single-grain De values and be removed prior to age calculation. In order to get the exact De, there were 5 rejection and acceptation criteria and 4 age models. Some geological and archaeological samples had over dispersion value (OD) up to 20% or even more than 50% for dark samples. It is important to choose the right rejection and acceptation criteria and age model. This technology can provide new method and necessary support.
    CONCLUSIONSSingle-grain OSL technology provided the possibility of precise geological archaeology, especially for samples with De dispersion due to insufficient bleaching. By carrying out single-grain OSL dating, choosing the right rejection and acceptation criteria and selecting different age models, a more reliable age can be obtained, avoiding wrong De. This method is suitable to establish a chronological framework for many geological and archaeological sites.

  • Daniels F, Boyd C A, Saunders D F.Thermoluminescence as a research tool[J].Science, 1953, 117:343-349. doi: 10.1126/science.117.3040.343
    Aitken M J, Tite M S, Reid J.Thermoluminescent dating of ancient ceramics[J].Nature, 1964, 202:1032-1033. https://www.nature.com/articles/2021032b0
    Aitken M J, Tite M S, Reid J.Thermoluminescent dating:Progress report[J].Archaeometry, 1963, 6:65-75. doi: 10.1111/j.1475-4754.1963.tb00581.x
    Shelkoplyas V N, Morozov G V.Some results of an investi-gation of Quaternary deposits by the thermo-luminescence method[R]//Materials on the Quaternary Period of the Ukraine.Kiev: 7th International Quaternary Association Congress, 1965: 83-90.
    Huntley D J, Godfrey-Smith D I, Thewalt M L W.Optical dating of sediments[J].Nature, 1985, 313:105-107. doi: 10.1038/313105a0
    Murray A S, Wintle A G.Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J].Radiation Measurements, 2000, 32:57-73. doi: 10.1016/S1350-4487(99)00253-X
    王旭龙, 卢演俦, 李晓妮.细颗粒石英光释光测年:简单多片再生法[J].地震地质, 2005, 27(4):615-623. http://d.wanfangdata.com.cn/periodical/dzdz200504010

    Wang X L, Lu Y C, Li X N.Luminescence dating of fine-grained quartz in Chinese loess-Simplified multiple aliquot regenerative-dose (Mar) protocol[J].Seismology and Geology, 2005, 27(4):615-623. http://d.wanfangdata.com.cn/periodical/dzdz200504010
    Lamothe M, Balescu S, Auclair M.Natural IRSL intensities and apparent luminescence ages of single feldspar grains extracted from partially bleached sediments[J].Radiation Measurements, 1994, 23:555-562. doi: 10.1016/1350-4487(94)90099-X
    Murray A S, Olley J M, Caitcheon G C.Measurement of equivalent doses in quartz from contemporary water-lain sediments using optically stimulated luminescence[J].Quaternary Science Reviews, 1995, 14:365-371. doi: 10.1016/0277-3791(95)00030-5
    Murray A S, Roberts R G.Determining the burial time of single grains of quartz using optically stimulated luminescence[J].Earth and Planetary Science Letters, 1997, 152:163-180. doi: 10.1016/S0012-821X(97)00150-7
    Roberts R G, Bird M, Olley J M, et al.Optical and radiocarbon dating at Jinmium rock shelter in northern Australia[J].Nature, 1998, 393:358-362. doi: 10.1038/30718
    Olley J M, De Deckker P, Roberts R G, et al.Optical dating of deep-sea sediments using single grains of quartz:A comparison with radiocarbon[J].Sedimentary Geology, 2004, 169:175-189. doi: 10.1016/j.sedgeo.2004.05.005
    Roberts R G, Galbraith R F, Olley J M, et al.Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia:Part Ⅱ.Results and implications[J].Archaeometry, 1999, 41:365-395. doi: 10.1111/j.1475-4754.1999.tb00988.x
    Singarayer J S, Bailey R M.Further investigations of the quartz optically stimulated luminescence components using linear modulation[J].Radiation Measurements, 2003, 37:451-458. doi: 10.1016/S1350-4487(03)00062-3
    Rui X, Li B, Guo Y J, et al.Variability in the thermal stability of OSL signal of single-grain quartz from the Nihewan Basin, North China[J].Quaternary Geochronology, 2019, 49:25-30. doi: 10.1016/j.quageo.2018.04.011
    Murray A S, Olley J M.Determining sedimentation rates using luminescence dating[M]//Bruns P, Hass H C.Determination of sediment accumulation rates.Switzerland: GeoResearch Forum, 1999: 121-144.
    Olley J M, Pietsch T, Roberts R G.Optical dating of Holocene sediments from a variety of geomorphic setting using single grains of quartz[J].Geomorphology, 2004, 60:337-358. doi: 10.1016/j.geomorph.2003.09.020
    Duller G A T.Single-grain optical dating of Quaternary sediments:Why aliquot size matters in luminescence dating[J].Boreas, 2008, 37:589-612. doi: 10.1111/j.1502-3885.2008.00051.x
    赵华, 卢演俦, 王成敏, 等.水成沉积物释光测年研究进展与展望[J].核技术, 2011, 34(2):82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjs201102001

    Zhao H, Lu Y C, Wang C M, et al.A review of OSL dating for water-laid deposits:Progress and prospect[J].Nuclear Techniques, 2011, 34(2):82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjs201102001
    Jacobs Z, Roberts R G.Advances in optically stimulated luminescence dating of individual grains of quartz from archeological deposits[J].Evolutionary Anthropology, 2007, 16:210-223. doi: 10.1002/evan.20150
    Bowler J M, Johnston H, Olley J M, et al.New ages for human occupation and climatic change at Lake Mungo, Australia[J].Nature, 2003, 421:837-840. doi: 10.1038/nature01383
    Morwood M J, Brown P, Jatmiko, et al.Further evidence for small-bodied hominins from the Late Pleistocene of Flores, Indonesia[J].Nature, 2005, 437:1012-1017. doi: 10.1038/nature04022
    Marean C W, Bar-Matthews M, Bernatchez J, et al.Early human use of marine resources and pigment in South Africa during the Middle Pleistocene[J].Nature, 2007, 449:905-908. doi: 10.1038/nature06204
    Brown K S, Marean C W, Jacobs Z, et al.An early and enduring advanced technology originating 71, 000 years ago in South Africa[J].Nature, 2012, 491:590-593. doi: 10.1038/nature11660
    Hu Y, Marwick B, Zhang J F, et al.Late Middle Pleistocene Levallois stone-tool technology in southwest China[J].Nature, 2019, 565:82-85. doi: 10.1038/s41586-018-0710-1
    Jacobs Z, Li B, Shunkov M V, et al.Timing of archaic hominin occupation of Denisova Cave in southern Siberia[J].Nature, 2019, 565:594-599. doi: 10.1038/s41586-018-0843-2
    Li G Q, Jin M, Chen X M, et al.Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the Middle Pleistocene based on sedimentology, chronology and proxy indexes[J].Quaternary Science Reviews, 2015, 128:69-80. doi: 10.1016/j.quascirev.2015.09.010
    Li G Q, Duan Y W, Huang X Z, et al.The luminescence dating chronology of a deep core from Bosten Lake (NW China) in arid Central Asia reveals lake evolution over the last 220ka[J].Boreas, 2017, 464:264-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/bor.12209
    Li G Q, Yang H, Stevens T, et al.Differential ice volume and orbital modulation of Quaternary moisture patterns between Central and East Asia[J].Earth and Planetary Science Letters, 2020, 530, 115901. https://www.sciencedirect.com/science/article/abs/pii/S0012821X1930593X
    Aitken M J.Thermoluminescence dating[M].London:Academic Press, 1985.
    Prescott J R, Hutton J T.Cosmic ray contributions to dose rates for luminescence and ESR dating:Large depths and long-term time variations[J].Radiation Measurements, 1994, 23:497-500. doi: 10.1016/1350-4487(94)90086-8
    Aitken M J.An introduction to optical dating:The dating of quaternary sediments by the use of photon-stimulated luminescence[M].Oxford:Oxford University Press, 1998.
    Aitken M J.Science-based dating in archaeology[M].London:Longman, 1990.
    Duller G A T.Luminescence dating:Guidelines on using luminescence dating in archaeology[M].Swindon:English Heritage, 2008.
    Adamiec G, Aitken M.Dose-rate conversion factors:Update[J].Ancient TL, 1998, 16(2):37-50. https://www.researchgate.net/publication/257948385_Dose_rate_conversion_factors
    赖忠平, 欧先交.光释光测年基本流程[J].地理科学进展, 2013, 32(5):683-693. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201305001

    Lai Z P, Ou X J.Basic procedures of optically stimulated luminescence (OSL) dating[J].Progress in Geography, 2013, 32(5):683-693. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201305001
    张克旗, 吴中海, 吕同艳, 等.光释光测年法——综述及进展[J].地质通报, 2015, 34(1):183-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201501015

    Zhang K Q, Wu Z H, Lü T Y, et al.Review and progress of OSL dating[J].Geological Bulletin of China, 2015, 34(1):183-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201501015
    Li S H.Optical dating:Insufficiently bleached sediments[J].Radiation Measurements, 1994, 23:563-567. doi: 10.1016/1350-4487(94)90100-7
    Rhodes E J, Pownall L.Zeroing of the OSL signal in quartz from young glaciofluvial sediments[J].Radiation Measurements, 1994, 23:581-585. doi: 10.1016/1350-4487(94)90103-1
    Olley J M, Caitcheon G G, Roberts R G.The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence[J].Radiation Measurements, 1999, 30:207-217. doi: 10.1016/S1350-4487(99)00040-2
    Bøtter-Jensen L, Bulur E, Duller G A T, et al.Advances in luminescence instrument systems[J].Radiation Measurements, 2000, 32:523-528. doi: 10.1016/S1350-4487(00)00039-1
    Thomsen K J, Bhtter-Jensen L, Murray A S, et al.Retrospective dosimetry using unheated quartz:A feasibility study[J].Radiation Protection Dosimetry, 2002, 101(1-4):345-348. https://www.ncbi.nlm.nih.gov/pubmed/12382764
    Jain M, BHtter-Jensen L, Murray A S, et al. Retrospective dosimetry:Dose evaluation using unheated and heated quartz from a radioactive waste storage building[J].Radiation Protection Dosimetry, 2002, 101(1-4):525-530. https://www.researchgate.net/publication/11077705_Retrospective_Dosimetry_Dose_Evaluation_using_Unheated_and_Heated_Quartz_from_a_Radioactive_Waste_Storage_Building
    Sohbati R, Murray A, Lindvold L, et al.Optimization of laboratory illumination in optical dating[J].Quaternary Geochronology, 2017, 39:105-111. doi: 10.1016/j.quageo.2017.02.010
    Wintle A G.Luminescence dating:Laboratory procedures and protocols[J].Radiation Measurements, 1997, 27:769-817. doi: 10.1016/S1350-4487(97)00220-5
    Bøtter-Jensen L, Andersen C E, Duller G A T, et al.Developments in radiation, stimulation and observation facilities in luminescence measurements[J].Radiation Measurements, 2003, 37:535-541. doi: 10.1016/S1350-4487(03)00020-9
    Wintle A G, Murray A S.The relationship between quartz thermoluminescence, phototransferred luminescence, and optically stimulated luminescence[J].Radiation Measurements, 1997, 27(4):611-624. doi: 10.1016/S1350-4487(97)00018-8
    Murray A S, Roberts R G.Measurement of the equi-valent dose in quartz using a regenerative-dose single-aliquot protocol[J].Radiation Measurements, 1998, 29:503-515. doi: 10.1016/S1350-4487(98)00044-4
    Murray A S, Wintle A G.The single aliquot regenerative dose protocol:Potential for improvements in reliability[J].Radiation Measurements, 2003, 37:377-381. doi: 10.1016/S1350-4487(03)00053-2
    Wintle A G, Murray A S.A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J].Radiation Measurements, 2006, 41:369-391. doi: 10.1016/j.radmeas.2005.11.001
    Visocekas R.Tunneling radiative recombination in labradorite:Its association with anomalous fading of thermoluminescence[J].Nuclear Tracks and Radiation Measurements, 1985, 10(4-6):521-529. doi: 10.1016/0735-245X(85)90053-5
    Visocekas R, Spooner N A, Zink A, et al.Tunnel after glow, fading and infrared-emission in thermo-luminescence of feldspars[J].Radiation Measurements, 1994, 23(2-3):377-385. doi: 10.1016/1350-4487(94)90067-1
    李国强, 赵晖, 文星, 等.钾长石矿物在全新世样品光释光测年中的应用与校正问题[J].第四纪研究, 2010, 30(1):54-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201001005

    Li G Q, Zhao H, Wen X, et al.IRSL dating and correction for Holocene samples with K-feldspar[J].Quaternary Sciences, 2010, 30(1):54-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201001005
    Thomsen K J, Murray A S, Jain M, et al.Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts[J].Radiation Measurements, 2008, 43(9-10):1474-1486. doi: 10.1016/j.radmeas.2008.06.002
    Buylaert J P, Murray A S, Thomsen K J, et al.Testing the potential of an elevated temperature IRSL signal from K-feldspar[J].Radiation Measurements, 2009, 44(5-6):560-565. doi: 10.1016/j.radmeas.2009.02.007
    Thiel C, Buylaert J P, Murray A, et al.Luminescence dating of the stratzing loess profile (Austria)-Testing the potential of an elevated temperature post-IR IRSL protocol[J].Quaternary International, 2011, 234(1-2):23-31. doi: 10.1016/j.quaint.2010.05.018
    Li B, Jacobs Z, Roberts R G, et al.Review and assess-ment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence[J].Geochronometria, 2014, 41(3):178-201. doi: 10.2478/s13386-013-0160-3
    Duller G A T.Distinguishing quartz and feldspar in single grain luminescence measurements[J].Radiation Measurements, 2003, 37:161-165. doi: 10.1016/S1350-4487(02)00170-1
    Jacobs Z, Duller G A T, Wintle A G.Optical dating of dune sand from Blombos Cave, South Africa:Ⅱ-Single grain data[J].Journal of Human Evolution, 2003, 44:613-625. doi: 10.1016/S0047-2484(03)00049-6
    Jacobs Z, Duller G A T, Wintle A G.Interpretation of single grain De distributions and calculation of De[J].Radiation Measurements, 2006, 41:264-277. doi: 10.1016/j.radmeas.2005.07.027
    Durcan J A, Duller G A T.The fast ratio:A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz[J].Radiation Measurements, 2011, 46:1065-1072. doi: 10.1016/j.radmeas.2011.07.016
    Li B, Li S H.Comparison of De estimates using the fast component and the medium component of quartz OSL[J].Radiation Measurements, 2006, 41:125-136. doi: 10.1016/j.radmeas.2005.06.037
    Ballarini M, Wallinga J, Wintle A G, et al.A modified SAR protocol for optical dating of individual grains from young quartz samples[J].Radiation Measurements, 2007, 42:360-369. doi: 10.1016/j.radmeas.2006.12.016
    Cunningham A C, Wallinga J.Selection of integration time-intervals for quartz OSL decay curves[J].Quaternary Geochronology, 2010, 5:657-666. doi: 10.1016/j.quageo.2010.08.004
    Madsen A T, Duller G A T, Donnelly J P, et al.A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating[J].Geomorphology, 2009, 109:36-45. doi: 10.1016/j.geomorph.2008.08.023
    Truscott A J, Duller G A T, Bøtter-Jensen L, et al.Reproducibility of optically stimulated luminescence measurements from single grains of Al2O3:C and annealed quartz[J].Radiation Measurements, 2000, 32:447-451. doi: 10.1016/S1350-4487(00)00080-9
    Li B.A note on estimating the error when subtracting background counts from weak OSL signals[J].Ancient TL, 2007, 25(1):9-14. https://www.aber.ac.uk/en/media/departmental/dges/ancienttl/pdf/vol25no1/li_atl25(1)_9-14.pdf
    Duller G A T.Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements[J].Ancient TL, 2007, 25(1):15-24. https://www.aber.ac.uk/en/media/departmental/dges/ancienttl/pdf/vol25no1/duller_atl25(1)_15-24.pdf
    Adamiec G, Heer A J, Bluszcz A.Statistics of count numbers from a photomultiplier tube and its implications for error estimation[J].Radiation Measurements, 2012, 47:746-751. doi: 10.1016/j.radmeas.2011.12.009
    Galbraith R F.A further note on the variance of a background-corrected OSL count[J].Ancient TL, 2014, 32(1):1-4.
    Li B, Jacobs Z, Roberts R G, et al.Variability in quartz OSL signals caused by measurement uncertainties:Problems and solutions[J].Quaternary Geochronology, 2017, 41:11-25. doi: 10.1016/j.quageo.2017.05.006
    Galbraith R F, Roberts R G, Yoshida H.Error variation in OSL palaeodose estimates from single aliquots of quartz:A factorial experiment[J].Radiation Measurements, 2005, 39:289-307. doi: 10.1016/j.radmeas.2004.03.023
    Lian O B, Roberts R G.Dating the Quaternary:Progress in luminescence dating of sediments[J].Quaternary Science Reviews, 2006, 25:2449-2468. doi: 10.1016/j.quascirev.2005.11.013
    Galbraith R F.Graphical display of estimates having differing standard errors[J].Technometrics, 1988, 30:271-281. doi: 10.1080/00401706.1988.10488400
    Galbraith R F.The radial plot:Graphical assessment of spread in ages[J].Nuclear Tracks and Radiation Measurements, 1990, 17:207-214. doi: 10.1016/1359-0189(90)90036-W
    Galbraith R F, Roberts R G, Laslett G M, et al.Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia:Part Ⅰ, experimental design and statistical models[J].Archaeometry, 1999, 41:339-364. doi: 10.1111/j.1475-4754.1999.tb00987.x
    Jacobs Z, Duller G A T, Wintle A G, et al.Extending the chronology of deposits at Blombos Cave, South Africa, back to 140ka using optical dating of single and multiple grains of quartz[J].Journal of Human Evolution, 2006, 51:255-273. doi: 10.1016/j.jhevol.2006.03.007
    Olley J M, Roberts R G, Yoshida H, et al.Single-grain optical dating of grave-infill associated with human burials at Lake Mungo, Australia[J].Quaternary Science Reviews, 2006, 25:2469-2474. doi: 10.1016/j.quascirev.2005.07.022
    Galbraith R F.The trouble with "probability density" plots of fission track ages[J].Radiation Measurements, 1998, 29:125-131. doi: 10.1016/S1350-4487(97)00247-3
    Galbraith R F, Roberts R G.Statistical aspects of equivalent dose and error calculation and display in OSL dating:An overview and some recommendations[J].Quaternary Geochronology, 2012, 11:1-27. doi: 10.1016/j.quageo.2012.04.020
    Roberts R G, Walsh G, Murray A S, et al.Luminescence dating of rock art and past environments using mud-wasp nests in northern Australia[J].Nature, 1997, 387:696-699. doi: 10.1038/42690
    Yoshida H, Roberts R G, Olley J M.Progress towards single-grain optical dating of fossil mud-wasp nests and associated rock art in northern Australia[J].Quaternary Science Reviews, 2003, 22:1273-1278. doi: 10.1016/S0277-3791(03)00076-3
    Feathers J K, Holliday V T, Meltzer D J.Optically stimulated luminescence dating of southern high plains archaeological sites[J].Journal of Archaeological Science, 2006, 33:1651-1665. doi: 10.1016/j.jas.2006.02.013
    Bateman M D, Boulter C H, Carr A S, et al.Detecting post-depositional sediment disturbance in sandy deposits using optical luminescence[J].Quaternary Geochronology, 2007, 2:57-64. doi: 10.1016/j.quageo.2006.05.004
    Rittenour T M.Luminescence dating of fluvial deposits:Applications to geomorphic, palaeoseismic and archaeological research[J].Boreas, 2008, 37:613-635. doi: 10.1111/j.1502-3885.2008.00056.x
    Jacobs Z, Roberts R G, Galbraith R F, et al.Ages for the Middle Stone Age of southern Africa:Implications for human behavior and dispersal[J].Science, 2008, 322:733-735. doi: 10.1126/science.1162219
    Arnold L J, Roberts R G, Galbraith R F, et al.A revised burial dose estimation procedure for optical dating of young and modern-age sediments[J].Quaternary Geochronology, 2009, 4:306-325. doi: 10.1016/j.quageo.2009.02.017
    Lombard M, Wadley L, Jacobs Z, et al.Still bay and serrated points from Umhlatuzana rock shelter, Kwazulu-Natal, South Africa[J].Journal of Archaeological Science, 2010, 37:1773-1784. doi: 10.1016/j.jas.2010.02.015
    Anderson A, Roberts R, Dickinson W, et al.Times of sand:Sedimentary history and archaeology at the Sigatoka Dunes, Fiji[J].Geoarchaeology, 2006, 21:131-154. doi: 10.1002/gea.20094
    Arnold L J, Roberts R G.Stochastic modelling of multi-grain equivalent dose (De) distributions:Implications for OSL dating of sediment mixtures[J].Quaternary Geochronology, 2009, 4:204-230. doi: 10.1016/j.quageo.2008.12.001
    David B, Roberts R G, Magee J, et al.Sediment mixing at Nonda rock:Investigations of stratigraphic integrity at an early archaeological site in northern Australia, and implications for the human colonisation of the continent[J].Journal of Quaternary Science, 2007, 22:449-479. doi: 10.1002/jqs.1136
    Jacobs Z, Wintle A G, Duller G A T, et al.New ages for the Post-Howiesons Poort, late and final Middle Stone Age at Sibudu, South Africa[J].Journal of Archaeological Science, 2008, 35:1790-1807. doi: 10.1016/j.jas.2007.11.028
    Feathers J, Kipnis R, Piló L, et al.How old is Luzia? Luminescence dating and stratigraphic integrity at Lapa Vermelha, Lagoa Santa, Brazil[J].Geoarchaeology, 2010, 25:395-436. https://www.researchgate.net/publication/230231210_How_Old_Is_Luzia_Luminescence_Dating_and_Stratigraphic_Integrity_at_Lapa_Vermelha_Lagoa_Santa_Brazil
    Armitage S J, Jasim S A, Marks A E, et al.The southern route "out of Africa":Evidence for an early expansion of modern humans into Arabia[J].Science, 2011, 331:453-456. doi: 10.1126/science.1199113
    Roberts R G, Galbraith R F, Yoshida H, et al.Distinguishing dose populations in sediment mixtures:A test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz[J].Radiation Measurements, 2000, 32:459-465. doi: 10.1016/S1350-4487(00)00104-9
    Galbraith R F.Statistics for fission track analysis[M].Boca Raton:Chapman & Hall/CRC Press, 2005.
    Roberts R G, Yoshida H, Galbraith R, et al.Single-aliquot and single-grain optical dating confirm thermoluminescence age estimates at Malakunanja Ⅱ rock shelter in northern Australia[J].Ancient TL, 1998, 16:19-24. https://www.researchgate.net/publication/260002910_Single-aliquot_and_single-grain_optical_dating_confirm_thermoluminescence_age_estimates_at_Malakunanja_II_rock_shelter_in_northern_Australia
    Jacobs Z.Testing and demonstrating the stratigraphic integrity of artefacts from MSA deposits at Blombos Cave, South Africa[M]//d'Errico F, Backwell L.From tools to symbols.From early hominids to modern humans[M].Johannesburg: Wits University Press, 2005: 459-474.
    Rodnight H.How many equivalent dose values are needed to obtain a reproducible distribution?[J].Ancient TL, 2008, 26:3-9. https://www.ecu.edu/cs-cas/physics/ancient-timeline/upload/ATL26-1_Rodnight.pdf
  • Cited by

    Periodical cited type(21)

    1. 郭春丽,张斌武,郑义,许箭琪,赵迁迁,闫金禹,周睿,符伟,黄可. 中国花岗岩型锂矿床:重要特征、成矿条件及形成机制. 岩石学报. 2024(02): 347-403 .
    2. 姜军胜,郭欣然,徐净,田立明,熊光强,王力圆,陈素余,黄维坤. 江西甘坊洞上稀有金属花岗岩中铷矿化特征及成因机制. 地质通报. 2024(01): 86-100 .
    3. 刘金宇,王成辉,刘善宝,秦锦华,陈振宇,刘泽,赵晨辉. 赣西北狮子岭花岗岩型锂矿床成因:来自岩石地球化学和锆石U-Pb年代学的约束. 矿床地质. 2024(01): 195-214 .
    4. 徐喆,张芳荣,张福神,王光辉,吴俊华,唐维新,楼法生,谢春华,高原,董菁,陈军,况二龙,周宾. 江西九岭南缘蚀变花岗岩型锂矿床成矿地质特征及找矿方向. 矿床地质. 2024(02): 244-264 .
    5. 吴福元,郭春丽,胡方泱,刘小驰,赵俊兴,李晓峰,秦克章. 南岭高分异花岗岩成岩与成矿. 岩石学报. 2023(01): 1-36 .
    6. 陈振宇,李建康,周振华,高永宝,李鹏. 硬岩型锂-铍-铌-钽资源工艺矿物学评价指标体系. 岩石学报. 2023(07): 1887-1907 .
    7. 刘泽,陈振宇,王成辉. 赣西北狮子岭花岗岩型锂-钽矿床的矿物学特征及成矿机制. 岩石学报. 2023(07): 2045-2062 .
    8. 徐净,侯文达,王力圆,赵太平,陈素余,田立明. 稀有金属花岗岩结晶分异过程中铷的富集与成矿:来自江西甘坊岩体的矿物学证据. 地质学报. 2023(11): 3766-3792 .
    9. 聂晓亮,王水龙,刘爽,徐林. 江西茜坑锂矿床地质地球化学特征与锂云母~(40)Ar/~(39)Ar年代学研究. 矿物学报. 2022(03): 285-294 .
    10. 邓红云,钟盛文,刘雨鑫,彭卫发,张绍军. 硫酸法从锂磷铝石中提取锂工艺研究及优化. 有色金属科学与工程. 2022(04): 35-43 .
    11. 王水龙,王大钊,刘爽,廖生万,聂晓亮,李凯旋,徐林,周宾. 江西甘坊岩体发现罕见的含铍矿物——红磷锰铍石. 岩矿测试. 2022(04): 688-690 . 本站查看
    12. 甘德清,田晓曦,刘志义,高锋. 循环冲击状态下砂岩力学及损伤特性研究. 中国矿业. 2021(03): 203-211 .
    13. 黄传冠,贺彬,夏明,周渝,胡为正. 赣南地区伟晶岩型锂矿资源禀赋特征与找矿新进展. 中国矿业. 2021(03): 212-216+223 .
    14. 李超,王登红,屈文俊,孟会明,周利敏,樊兴涛,李欣尉,赵鸿,温宏利,孙鹏程. 关键金属元素分析测试技术方法应用进展. 岩矿测试. 2020(05): 658-669 . 本站查看
    15. 张勇,潘家永,马东升. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示. 地质学报. 2020(11): 3321-3342 .
    16. 刘善宝,杨岳清,王登红,代鸿章,马圣钞,刘丽君,王成辉. 四川甲基卡矿田花岗岩型锂工业矿体的发现及意义. 地质学报. 2019(06): 1309-1320 .
    17. 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报. 2019(06): 1189-1209 .
    18. 王成辉,王登红,陈晨,刘善宝,陈振宇,孙艳,赵晨辉,曹圣华,凡秀君. 九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义. 地质学报. 2019(06): 1359-1373 .
    19. 屈文俊,王登红,朱云,樊兴涛,李超,温宏利. 稀土稀有稀散元素现代仪器测试全新方法的建立. 地质学报. 2019(06): 1514-1522 .
    20. 王登红,郑绵平,王成辉,高树学,商朋强,杨献忠,樊兴涛,孙艳. 大宗急缺矿产和战略性新兴产业矿产调查工程进展与主要成果. 中国地质调查. 2019(06): 1-11 .
    21. 夏明,贺彬. 江西省宁都县三坑地区新发现磷锂铝石富锂矿物. 世界有色金属. 2018(22): 222-223 .

    Other cited types(3)

Catalog

    Article views (3290) PDF downloads (45) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return