• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
CHENG Rong, QIAN Sheng-ping, SUN Tian-li, ZHOU Huai-yang. Non-destructive and Fast Analysis of Content and Size Distribution of Vesicles in Volcanic Rock by X-ray Computed Tomography[J]. Rock and Mineral Analysis, 2020, 39(3): 398-407. DOI: 10.15898/j.cnki.11-2131/td.201912260179
Citation: CHENG Rong, QIAN Sheng-ping, SUN Tian-li, ZHOU Huai-yang. Non-destructive and Fast Analysis of Content and Size Distribution of Vesicles in Volcanic Rock by X-ray Computed Tomography[J]. Rock and Mineral Analysis, 2020, 39(3): 398-407. DOI: 10.15898/j.cnki.11-2131/td.201912260179

Non-destructive and Fast Analysis of Content and Size Distribution of Vesicles in Volcanic Rock by X-ray Computed Tomography

More Information
  • Received Date: December 25, 2019
  • Revised Date: March 10, 2020
  • Accepted Date: April 16, 2020
  • Published Date: April 30, 2020
  • HIGHLIGHTS
    (1) Reconstruction of three-dimensional structure of vesicles in basalt by X-ray computed tomography has the advantages of high resolution and non-destructive analysis.
    (2) A Matlab program code was developed for image processing of CT slices in batches to calculate the content and size distribution of vesicles in basalt efficiently.
    (3) The improved method of transforming vesicle volume of volcanic rock into volatile mass fraction was more suitable for samples formed in high-pressure submarine environments.
    BACKGROUNDVesicular structure of volcanic rocks records the processes of the dissolution, expansion and escape of volatile gases in the ascending magma. The detailed study of characteristics of vesicles in volcanic rocks will be helpful to understand volatile content of magma and the ascent and erupting process of magma. Although a number of methods have been developed in the last decades to study the vesicle characteristics of volcanic rocks, they generally have the problems of low efficiency, less data collection, and sample destruction.
    OBJECTIVESTo quantitatively characterize the content and size distribution of vesicles in volcanic rocks.
    METHODSOn the basis of three-dimensional reconstruction of vesicular basalt by X-ray computed tomography, the content and size distribution of vesicles were calculated with three software programs (VG Studio MAX, ImageJ, Matlab), and an improved method for conversion of vesicle volume to volatile mass fraction in volcanic rock was also proposed.
    RESULTSThe vesicle content in three-dimensional space for a basalt sample from the South China Sea in water depth of 1488 meter was 12.32%, and the vesicle size showed a lognormal distribution. The majority of vesicles were 180-200μm in equivalent sphere diameter and 340-360μm in maximum diameter. The content of vesicles in the two-dimensional slices on the profile varied greatly, but the amplitude of each value around the volume fraction fluctuated little, and there was a significant positive correlation with the number density of vesicles. Based on the known vesicle content, the calculated mass fractions of CO2 and H2O in the sample were 0.233% and 0.099%, respectively.
    CONCLUSIONSThe study demonstrates that industrial CT scanning combined with image processing software can produce non-destructive rapid statistics and analysis of volcanic vesicles. The proposed method will be an efficient tool to study the genesis of volcanic rocks and their magmatic processes.

  • Fiege A, Cicuy S B.Experimental constraints on bubble formation and growth during magma ascent:A review[J].American Mineralogist, 2015, 100(11-12):2426-2442. doi: 10.2138/am-2015-5296
    Le GallN, Pichavant M.Homogeneous bubble nucleation in H2O- and H2O-CO2-bearing basaltic melts:Results of high temperature decompression experiments[J].Journal of Volcanology and Geothermal Research, 2016, 327:604-621. doi: 10.1016/j.jvolgeores.2016.10.004
    Mancini S, Forestier-Coste L, Burgisser A, et al.An expansion-coalescence model to track gas bubble populations in magmas[J].Journal of Volcanology and Geothermal Research, 2016, 313:44-58. doi: 10.1016/j.jvolgeores.2016.01.016
    Sahagian D, Proussevitch A, Ancuta L D, et al.Uplift of central Mongolia recorded in vesicular basalts[J].Journal of Geology, 2016, 124(4):435-445. doi: 10.1086/686272
    冯伟, 杨淑芬, 黄若寒, 等.青藏高原古高程重建研究现状[J].世界地质, 2019, 38(3):829-842, 866. doi: 10.3969/j.issn.1004-5589.2019.03.025

    Feng W, Yang S F, Huang R H, et al.Present situation on paleoelevation reconstruction of Tibetan Plateau[J].Global Geology, 2019, 38(3):829-842, 866. doi: 10.3969/j.issn.1004-5589.2019.03.025
    Goosmann E A, Buick R, Catling D C, et al.Vesicle paleobarometry in the Pongola Supergroup:A cautionary note and guidelines for future studies[J].South African Journal of Geology, 2020, 123(1):95-104.
    Gardner J E, Jackson B A, Gonnermann H, et al.Rapid ascent and emplacement of basaltic lava during the 2005-2006 eruption of the East Pacific Rise at ca.9 degrees 51'N as inferred from CO2 contents[J].Earth and Planetary Science Letters, 2016, 453:152-160. doi: 10.1016/j.epsl.2016.08.007
    Liedl A, Buono G, Lanzafame G, et al.A 3D imaging textural characterization of pyroclastic products from the 1538AD Monte Nuovo eruption (Campi Flegrei, Italy)[J].Lithos, 2019, 340:316-331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3bd4c2853a7eabe4cdd0da8eca98185e
    Holt S J, Carey R J, Houghton B F, et al.Eruption and fountaining dynamics of selected 1985-1986 high fountaining episodes at Kilauea volcano, Hawaii, from quantitative vesicle microtexture analysis[J].Journal of Volcanology and Geothermal Research, 2019, 369:21-34. doi: 10.1016/j.jvolgeores.2018.11.011
    Moore L R, Gazel E, Tuohy R, et al.Bubbles matter:An assessment of the contribution of vapor bubbles to melt inclusion volatile budgets[J].American Mineralogist, 2015, 100(4):806-823. doi: 10.2138/am-2015-5036
    Martel C, Iacono-Marziano G.Timescales of bubble coalescence, outgassing, and foam collapse in decompressed rhyolitic melts[J].Earth and Planetary Science Letters, 2015, 412:173-185. doi: 10.1016/j.epsl.2014.12.010
    Hajimirza S, Gonnermann H M, Gardner J E, et al.Predicting homogeneous bubble nucleation in rhyolite[J].Journal of Geophysical Research-Solid Earth, 2019, 124(3):2395-2416. doi: 10.1029/2018JB015891
    Houghton B F, Wilson C J N.A vesicularity index for pyroclastic deposits[J].Bulletin of Volcanology, 1989, 51(6):451-462. doi: 10.1007/BF01078811
    Sahagian D L, Anderson A T, Ward B.Bubble coalescence in basalt flows:Comparison of a numerical model with natural examples[J].Bulletin of Volcanology, 1989, 52(1):49-56. doi: 10.1007/BF00641386
    Whitham A G, Sparks R S J.Pumice[J].Bulletin of Volcanology, 1986, 48(4):209-223. doi: 10.1007/BF01087675
    Shea T, Houghton B F, Gurioli L, et al.Textural studies of vesicles in volcanic rocks:An integrated methodology[J].Journal of Volcanology and Geothermal Research, 2010, 190(3-4):271-289. doi: 10.1016/j.jvolgeores.2009.12.003
    Mangan M T, Cashman K V, Newman S.Vesiculation of basaltic magma during eruption[J].Geology, 1993, 21(2):157-160. doi: 10.1130/0091-7613(1993)021<0157:VOBMDE>2.3.CO;2
    Toramaru A.Measurement of bubble size distributions in vesiculated rocks with implications for quantitative estimation of eruption processes[J].Journal of Volcanology and Geothermal Research, 1990, 43(1-4):71-90. doi: 10.1016/0377-0273(90)90045-H
    Proussevitch A A, Mulukutla G K, Sahagian D L.A new 3D method of measuring bubble size distributions from vesicle fragments preserved on surfaces of volcanic ash particles[J].Geosphere, 2011, 7(1):62-69. doi: 10.1130/GES00559.1
    Cnudde V, Boone M N.High-resolution X-ray computed tomography in geosciences:A review of the current technology and applications[J].Earth-Science Reviews, 2013, 123:1-17. doi: 10.1016/j.earscirev.2013.04.003
    Marone F, Schlepütz C M, Marti S, et al.Time resolved in situ X-ray tomographic microscopy unraveling dynamic processes in geologic systems[J].Frontiers in Earth Science, 2020, 7:346. doi: 10.3389/feart.2019.00346
    Song S R, Jones K W, Lindquist W B, et al.Synchrotron X-ray computed microtomography:Studies on vesiculated basaltic rocks[J].Bulletin of Volcanology, 2001, 63(4):252-263. doi: 10.1007/s004450100141
    Pistone M, Cordonnier B, Caricchi L, et al.The viscous to brittle transition in crystal- and bubble-bearing magmas[J].Frontiers in Earth Science, 2015, 3:71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004608846
    Burgisser A, Chevalier L, Gardner J E, et al.The perco-lation threshold and permeability evolution of ascending magmas[J].Earth and Planetary Science Letters, 2017, 470:37-47. doi: 10.1016/j.epsl.2017.04.023
    Plese P, Higgins M D, Mancini L, et al.Dynamic obser-vations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas[J].Lithos, 2018, 296:532-546. https://www.sciencedirect.com/science/article/abs/pii/S0024493717304097
    Baker D R, Brun F, Mancini L, et al.The importance of pore throats in controlling the permeability of magmatic foams[J].Bulletin of Volcanology, 2019, 81(9):54. doi: 10.1007/s00445-019-1311-z
    卢树参, 许红, 陈勇, 等.微焦X射线扫描成像技术在岩石物性特征研究的现状[J].海洋地质前沿, 2016, 32(3):64-72. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201603009

    Lu S S, Xu H, Chen Y, et al.Current status of application of micro-focus X-ray scan imaging technology to reservoir properties description[J].Marine Geology Frontiers, 2016, 32(3):64-72. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201603009
    王羽, 汪丽华, 王建强, 等.利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征[J].岩矿测试, 2017, 36(6):563-573. doi: 10.15898/j.cnki.11-2131/td.201703240038

    Wang Y, Wang L H, Wang J Q, et al.Investigation of organic matter pore structures of shale in three dimensions of shale using nano-X-ray microscopy[J]. Rock and Mineral Analysis, 2017, 36(6):563-573. doi: 10.15898/j.cnki.11-2131/td.201703240038
    贾宁洪, 吕伟峰, 常天全, 等.高效无损岩心孔隙度精确测量新方法[J].石油学报, 2018, 39(7):824-828, 844. http://d.old.wanfangdata.com.cn/Periodical/syxb201807009

    Jia N H, Lü W F, Chang T Q, et al.A new method for precisely measuring core porosity with high efficiency and no destruction[J].Acta Petrolei Sinica, 2018, 39(7):824-828, 844. http://d.old.wanfangdata.com.cn/Periodical/syxb201807009
    王海涛, 杨叶, 张晋言, 等.地质多孔介质成像技术现状与进展[J].地球物理学进展, 2019, 34(1):191-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201901026

    Wang H T, Yang Y, Zhang J Y, et al.Current state and progress in imaging the microstructure of geological porous media[J].Progress in Geophysics, 2019, 34(1):191-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201901026
    王羽, 金婵, 汪丽华, 等.基于SEM图像灰度水平的页岩孔隙分割方法研究[J].岩矿测试, 2016, 35(6):595-602. doi: 10.15898/j.cnki.11-2131/td.2016.06.005

    Wang Yu, Jin C, Wang L H, et al.Pore segmentation methods based on gray scale of scanning electron microscopy images[J].Rock and Mineral Analysis, 2016, 35(6):595-602. doi: 10.15898/j.cnki.11-2131/td.2016.06.005
    戚明辉, 李君军, 曹茜.基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J].岩矿测试, 2019, 38(3):260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

    Qi M H, Li J J, Cao Q.The pore structure characterization of shale based on scanning electron microscopy and JMicroVision[J].Rock and Mineral Analysis, 2019, 38(3):260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008
    彭瑞东, 杨彦从, 鞠杨, 等.基于灰度CT图像的岩石孔隙分形维数计算[J].科学通报, 2011, 56(26):2256-2266. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201126016

    Peng R D, Yang Y C, Ju Y, et al.The calculation of the fractal dimension of the pore in the rock based on gray CT image[J].Chinese Science Bulletin, 2011, 56(26):2256-2266. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201126016
    Edmonds M, Wallace P J.Volatiles and exsolved vapor in volcanic systems[J].Elements, 2017, 13(1):29-34. doi: 10.2113/gselements.13.1.29
    Petrelli M, El Omari K, Spina L, et al.Timescales of water accumulation in magmas and implications for short warning times of explosive eruptions[J].Nature Communications, 2018, 9:770. doi: 10.1038/s41467-018-02987-6
    Moretti R, Arienzo I, Di Renzo V, et al.Volatile segregation and generation of highly vesiculated explosive magmas by volatile-melt fining processes:The case of the Campanian Ignimbrite eruption[J].Chemical Geology, 2019, 503:1-14. doi: 10.1016/j.chemgeo.2018.10.001
    Head J W, Wilson L.Deep submarine pyroclastic eruptions:Theory and predicted landforms and deposits[J].Journal of Volcanology and Geothermal Research, 2003, 121(3-4):155-193. doi: 10.1016/S0377-0273(02)00425-0
    Lemmon E W, Huber M L, Mclinden M O.NIST standard reference database 23:NIST reference fluid thermodynamic and transport properties-REFPROP[M].USA:National Institute of Standards and Technology, 2013:51-54.
    Proussevitch A A, Sahagian D L, Carlson W D.Statistical analysis of bubble and crystal size distributions:Application to Colorado Plateau basalts[J].Journal of Volcanology and Geothermal Research, 2007, 164(3):112-126. doi: 10.1016/j.jvolgeores.2007.04.006
    Ohashi M, Ichihara M, Toramaru A.Bubble deformation in magma under transient flow conditions[J].Journal of Volcanology and Geothermal Research, 2018, 364:59-75. doi: 10.1016/j.jvolgeores.2018.09.005
    Rust A C, Manga M, Cashman K V.Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations[J].Journal of Volcanology and Geothermal Research, 2003, 122(1-2):111-132. doi: 10.1016/S0377-0273(02)00487-0
    彭年, 朱晓艳, 刘永顺, 等.天池火山三期浮岩气孔形态的复杂性及其动力学成因[J].地学前缘, 2019, 26(6):271-280. http://d.old.wanfangdata.com.cn/Periodical/dxqy201906028

    Peng N, Zhu X Y, Liu Y S, et al.Complexity and dynamics of vesicle shapes of pumices formed in the three Tianchi volcano eruptions[J].Earth Science Frontiers, 2019, 26(6):271-280. http://d.old.wanfangdata.com.cn/Periodical/dxqy201906028
    Bottinga Y, Javoy M.Mid-ocean ridge basalt degassing:Bubble nucleation[J].Journal of Geophysical Research-Solid Earth and Planets, 1990, 95(B4):5125-5131. doi: 10.1029/JB095iB04p05125
    Bottinga Y, Javoy M.MORB degassing:Bubble growth and ascent[J].Chemical Geology, 1990, 81(4):255-270. doi: 10.1016/0009-2541(90)90050-H
    Capriolo M, Marzoli A, Aradi L E, et al.Deep CO2 in the End-Triassic Central Atlantic Magmatic Province[J].Nature Communications, 2020, 11:1670. doi: 10.1038/s41467-020-15325-6
    Yoshimura S.Diffusive fractionation of H2O and CO2 during magma degassing[J].Chemical Geology, 2015, 411:172-181. doi: 10.1016/j.chemgeo.2015.07.003
    Parfitt E A, Wilson L.Fundamentals of physical volcanology[M].USA:Blackwell Publishing, 2008:64-76.
    张茂亮, 刘真, 陈德峰, 等.利用三维CT扫描技术定量计算熔岩流气泡体积的研究与实现[J].岩石学报, 2014, 30(12):3709-3716. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412020

    Zhang M L, Liu Z, Chen D F, et al.Research and implementation on vesicle volume calculation of lava flows using three-dimensional computerized tomography (CT) scanning technology[J].Acta Petrologica Sinica, 2014, 30(12):3709-3716. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412020
  • Related Articles

    [1]LI Chaoqun, LI Lixiang, REN Yingjun, ZHAO Jinhua, HUANG Gang, ZHOU Shiyang, LIU Liping, JIANG Jingsi, LIANG Feng. Determination of 35 Antibiotics in Surface Water by High Performance Liquid Chromatography-Tandem Mass Spectrometry with Online Solid-Phase Extraction and Large-Volume Injection[J]. Rock and Mineral Analysis, 2024, 43(6): 945-956. DOI: 10.15898/j.ykcs.202404050076
    [2]Jing JIA, Zhi-peng YANG. Determination of 1,4-dioxane in Groundwater by Purge and Trap-Gas Chromatography/Mass Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 556-560.
    [3]haiying Zuo, lin Zhang, fei Liu. Determination of Herbicide Residues in Groundwaters Using Liquid/Liquid Extraction and Off-line Purification with Liquid Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(1): 96-101.
    [4]ZHANG Dao-lai, LIN Xue-hui, ZHOU Ming, CHEN Jun-hui, YANG Bai-juan, XIA Ning, WANG Xiao-ru. Determination of Six Phthalate Ester Contaminants in Asterias rollestoni Bell Samples by Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 159-165.
    [5]WANG Yu, LIU Cong, CHEN Shun-cong, WU Yan-wen. Preliminary Identification for Different Quality of Musks by Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 59-62.
    [6]LI Song, RAO Zhu, SONG Shu-ling, TIAN Qin, ZHAO Wei. Application of Gas Chromatography-Mass Spectrometry in Groundwater Analysis[J]. Rock and Mineral Analysis, 2010, 29(5): 518-522.
    [7]WANG Na, WANG Hai-jiao, WANG Yin-fu, LI Li-jun. Determination of 9 Organochlorine Pesticides in Water Samples by Liquid-liquid Extraction-Gas Chromatography[J]. Rock and Mineral Analysis, 2010, 29(5): 497-502.
    [8]LI Qingxia, LIU Yaxuan, CHEN Weiming, ZHANG Qin. Determination of 18 Organochlorine Pesticides in Soils by Gas Chromatography and Gas Chromatography-Mass Spectrometry with Microwave assisted Extraction[J]. Rock and Mineral Analysis, 2010, 29(2): 118-122.
    [9]Determination of Deca Brominated Diphenyl Ether in Soil Sample by Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(4): 274-278.
    [10]Establishment of the Chromatographic Fingerprint of Industrial 3, 5-Dinitrobenzoic Acid by High Performance Liquid Chromatography-Ultraviolet Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(2): 81-86.
  • Cited by

    Periodical cited type(5)

    1. 蔡宁波,王琳霖,鲍一遥,李怡普,万泽鑫,康志梅,罗胜元. 中扬子地台宜昌地区寒武系水井沱组优质页岩储层发育特征及天然气富集机理研究. 中国地质. 2025(01): 111-130 .
    2. 石阳志,季永承,何叶,周芸,陈美军,江铭. 太阳浅层页岩气田有机碳含量预测及其影响因素分析. 能源与环保. 2024(01): 183-192 .
    3. 马超,黄晓依,高胜天,刘鑫,王诚. 核磁共振技术在致密岩心孔隙量化表征中的应用. 中国科技论文. 2024(05): 540-546+574 .
    4. 赵肖飞,李王鹏,葛勋,李沛,葛小瞳,刘雅利,吴海光,吕修祥. 松辽盆地北部林甸地区青山口组一段页岩储层特征及主控因素. 东北石油大学学报. 2024(06): 31-48+143-144 .
    5. 田冲,李怡,黎丁源,张伟,钟可塑,周尚文,罗超,江文滨,李度,何亮,杨雪. 页岩储层孔隙度测定方法优选与推荐. 天然气工业. 2023(06): 57-65 .

    Other cited types(1)

Catalog

    Article views (2568) PDF downloads (31) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return