• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Tan-ping, WU Yi, ZENG Li-qun, LOU Xiao-ming, LI Ai-yang. Determination of Heavy Metal Elements in Leaching Solution of Electrolytic Manganese Dioxide Waste Residue by Inductively Coupled Plasma-Tandem Mass Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 682-689. DOI: 10.15898/j.cnki.11-2131/td.201911230162
Citation: LI Tan-ping, WU Yi, ZENG Li-qun, LOU Xiao-ming, LI Ai-yang. Determination of Heavy Metal Elements in Leaching Solution of Electrolytic Manganese Dioxide Waste Residue by Inductively Coupled Plasma-Tandem Mass Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 682-689. DOI: 10.15898/j.cnki.11-2131/td.201911230162

Determination of Heavy Metal Elements in Leaching Solution of Electrolytic Manganese Dioxide Waste Residue by Inductively Coupled Plasma-Tandem Mass Spectrometry

More Information
  • Received Date: November 22, 2019
  • Revised Date: January 09, 2020
  • Accepted Date: July 02, 2020
  • Published Date: August 31, 2020
  • HIGHLIGHTS
    (1) An analytical method was proposed to determine the elements of Cr, Ni, As, Cd, Hg, and Pb in leaching solution of electrolytic manganese dioxide waste residue.
    (2) The mass spectral interferences in the MS/MS mode were eliminated by oxygen shift reaction.
    (3) The detection limits of the analyses achieved ng/L level.
    BACKGROUNDThe heavy metals in electrolytic manganese dioxide waste residue can cause different degrees of environmental pollution and hidden dangers to downstream aquatic ecosystems and agricultural ecosystems through surface runoff under rainwater leaching. Therefore, it is of great practical significance to determine the content of heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue. Usually, the detection limits of atomic absorption spectrometry and inductively coupled plasma-optical emission spectrometry are insufficient to meet the measurement requirements, since the content of heavy metal elements in the leaching solution of electrolytic manganese dioxide waste residue is typically very low. The challenge is to eliminate complex spectral interference.
    OBJECTIVESTo find an efficient method for the determination of six heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue.
    METHODSThe objective was determined by inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). The six heavy metal elements Cr, Ni, As, Cd, Hg and Pb in the electrolytic manganese dioxide waste residue were directly measured by ICP-MS/MS after H2SO4-HNO3 mixed acid leaching. The O2 reaction mode was adopted to eliminate the spectral interference of Cr, Ni, As and Cd during analysis. The background equivalent concentrations (BECs) of 52Cr, 60Ni, 75As and 111Cd in the different analytical mode were investigated to evaluate the influence of spectral interference on the analysis results.
    RESULTSIn the MS/MS mode, O2 was selected as the reaction gas, and the spectral interference of 52Cr, 60Ni, 75As and 111Cd was eliminated by using mass shift method and on-mass method. The limits of detection for Cr, Ni, As, Cd, Hg and Pb were 3.06, 9.31, 3.50, 2.72, 2.03, 1.89ng/L, respectively. The spiked recoveries were between 95.6% and 106.2%. The relative standard deviation was no higher than 3.9%.
    CONCLUSIONSThe method has been successfully applied to the determination of heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue.

  • Sarkar D, Khan G G, Singh A K, et al.High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core-shell nanowire heterostructure arrays[J].Journal of Physical Chemistry C, 2013, 117(30):15523-15531. doi: 10.1021/jp4039573
    Yun Y S, Kim J M, Park H H, et al.Free-standing heterogeneous hybrid papers based on mesoporous γ-MnO2 particles and carbon nanotubes for lithium-ion battery anodes[J].Journal of Power Sources, 2013, 244:747-751. doi: 10.1016/j.jpowsour.2012.11.056
    Biswal A, Tripathy B C, Sanjay K, et al.Electrolytic manganese dioxide (EMD):A perspective on worldwide production, reserves and its role in electrochemistry[J].RSC Advances, 2015, 5(72):58255-58283. doi: 10.1039/C5RA05892A
    牛莎莎.从锰阳极渣制备微粒电解二氧化锰及锰酸锂的研究[D].长沙: 中南大学, 2012.

    Niu S S.The study on preparing particle manganese dioxide and LiMn2O4 from manganese anode slag[D].Changsha: Central South University, 2012.
    杨爱江, 吴维, 袁旭, 等.电解锰废渣重金属对周边农田土壤的污染及模拟酸雨作用下的溶出特性[J].贵州农业科学, 2012, 40(3):190-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gznykx201203056

    Yang A J, Wu W, Yuan X, et al.Pollution of metals in the soils around electrolytic manganese residue and dissolving-out characteristics of heavy metals in waste residues in simulated acid rain[J].Guizhou Agricultural Sciences, 2012, 40(3):190-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gznykx201203056
    蔡敬怡, 谭科艳, 路国慧, 等.贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征[J].岩矿测试, 2019, 38(3):305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123

    Cai J Y, Tan K Y, Lu G H, et al.The spatial distribution characteristics of heavy metals in river sediments and suspended matter in small tributaries of the abandoned Wanshan mercury mines, Guizhou Province[J].Rock and Mineral Analysis, 2019, 38(3):305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123
    Li X, Zhong H, Wang S, et al.Leaching behavior and risk assessment of heavy metals in a landfill of electrolytic manganese residue in western Hunan, China[J].Human and Ecological Risk Assessment, 2014, 20(5):1249-1263. doi: 10.1080/10807039.2013.849482
    陈海棠, 周丹丹, 薛南冬, 等.电子固体废弃物拆解作坊附近土壤重金属污染特征及风险[J].环境化学, 2015, 34(5):956-964. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201505019

    Chen H T, Zhou D D, Xue N D, et al.Contamination and health risk of heavy metals in soils near e-waste recycling workshops[J].Environmental Chemistry, 2015, 34(5):956-964. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201505019
    Li Z, Ma Z, van der Kuijp T J, et al.A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J].Science of the Total Environment, 2014, 468-469:843-853. doi: 10.1016/j.scitotenv.2013.08.090
    Wang L, Wang Y, Zhang W, et al.Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China[J].Environmental Earth Sciences, 2014, 71:1183-1193. doi: 10.1007/s12665-013-2522-9
    Huang Z, Pan X D, Wu P G, et al.Heavy metals in vegetables and the health risk to population in Zhejiang, China[J].Food Control, 2014, 36:248-252. doi: 10.1016/j.foodcont.2013.08.036
    Ernst E.Risks of herbal medicinal products[J]. Pharmacoepidemiology and Drug Safety, 2004, 13:767-771. doi: 10.1002/pds.1014
    Khan S, Soylak M, Alosmanov R M, et al.Development of phosphate-containing polymer-based solid phase extraction procedure for the separation, enrichment, and determination of cadmium in water and food samples by FAAS[J].Atomic Spectroscopy, 2018, 39(4):158-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc3df5a12117279451f3907262a1f848
    王增焕, 王许诺, 谷阳光, 等.疏水性螯合物固相萃取-原子吸收光谱法测定海水中5种重金属[J].岩矿测试, 2017, 36(4):360-366. doi: 10.15898/j.cnki.11-2131/td.201701200011

    Wang Z H, Wang X N, Gu Y G, et al.Determination of 5 heavy metals in seawater by atomic absorption spectrometry with solid-phase extraction of hydrophobic chelate[J].Rock and Mineral Analysis, 2017, 36(4):360-366. doi: 10.15898/j.cnki.11-2131/td.201701200011
    Chen S, Zhu S, Lu D.Dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction for speciation of antimony in environmental water samples by electrothermal vaporization ICP-MS[J].Atomic Spectroscopy, 2018, 39(2):55-61. doi: 10.46770/AS.2018.02.001
    田志仁, 封雪, 姜晓旭, 等.生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价[J].岩矿测试, 2019, 38(5):479-488. doi: 10.15898/j.cnki.11-2131/td.201811080119

    Tian Z R, Feng X, Jiang X X, et al.Evaluation of data quality on the detection of heavy metals in soils by atomic absorption spectrometry or atomic fluorescence spectrometry and X-ray fluorescence spectrometry in ecological environment monitoring[J].Rock and Mineral Analysis, 2019, 38(5):479-488. doi: 10.15898/j.cnki.11-2131/td.201811080119
    胡南, 周军媚, 刘运莲, 等.硫酸锰废渣的浸出毒性及无害化处理的研究[J].中国环境监测, 2007, 23(2):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjjc200702013

    Hu N, Zhou J M, Liu Y L, et al.A study of the extraction procedure toxicity and harmless disposal of manganese sulphate waste residue[J].Environmental Monitoring in China, 2007, 23(2):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjjc200702013
    周亚武, 陆谢娟, 高明刚, 等.电解锰渣固结体中重金属浸出毒性及其在模拟酸雨下的淋溶特性分析[J].武汉科技大学学报(自然科学版), 2018, 41(2):127-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whkjdxxb201802009

    Zhou Y W, Lu X J, Gao M G, et al.Leaching toxicity and leaching properties in simulated acid rain of heavy metals in solidified electrolytic manganese residue[J].Journal of Wuhan University of Science and Technology (Natural Science Edition), 2018, 41(2):127-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whkjdxxb201802009
    罗乐, 王金霞, 周皓.锰渣中重金属在模拟酸雨环境下的浸出规律[J].湿法冶金, 2019, 38(5):352-357. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sfyj201905003

    Luo L, Wang J X, Zhou H.Leaching regularities of heavy metals in electrolytic manganese residue using simulation acid rain[J].Hydrometallurgy of China, 2019, 38(5):352-357. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sfyj201905003
    Zack T, Hogmalm K J.Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell[J].Chemistry Geology, 2016, 437:120-133. doi: 10.1016/j.chemgeo.2016.05.027
    Muramatsu Y, Matsuzaki H, Toyama C, et al.Analysis of 129I in the soils of Fukushima Prefecture:Preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi Nuclear Power Plant (FDNPP)[J].Journal of Environmental Radioactivity, 2015, 139:344-350. doi: 10.1016/j.jenvrad.2014.05.007
    Vetere A, Prcfrock D, Schrader W, et al.Quantitative and qualitative analysis of three classes of sulfur compounds in crude oil[J].Angewandte Chemie International Edition, 2017, 56(36):10933-10937. doi: 10.1002/anie.201703205
    Balcaen L, Bolea-Fernandez E, Resano M, et al.Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS):A powerful and universal tool for the interference-free determination of (ultra)trace elements-A tutorial review[J].Analytica Chimica Acta, 2015, 894:7-19. doi: 10.1016/j.aca.2015.08.053
    Virgilio A, Amais R S, Amaral C D B, et al.Reactivity and analytical performance of oxygen as cell gas in inductively coupled plasma tandem mass spectrometry[J].Spectrochimica Acta Part B, 2016, 126:31-36. doi: 10.1016/j.sab.2016.10.013
    Fu L, Xie H, Shi S.Multielement analysis of Zanthoxylum bungeanum Maxim. essential oil using ICP-MS/MS[J].Analytical and Bioanalytical Chemistry, 2018, 410(16):3769-3778. doi: 10.1007/s00216-018-1040-8
    Boting K, Treu S, Leonhard P, et al.First experimental proof of asymmetric charge transfer in ICP-MS/MS (ICP-QQQ-MS) through isotopically enriched oxygen as cell gas[J].Journal of Analytical Atomic Spectrometry, 2014, 29(3):578-582. doi: 10.1039/c3ja50234a
    Walkner C, Gratzer R, Meisel T, et al.Multi-element analysis of crude oils using ICP-QQQ-MS[J].Organic Geochemistry, 2017, 103:22-30. doi: 10.1016/j.orggeochem.2016.10.009
    Galusha A L, Haig A C, Bloom M S, et al.Ultra-trace element analysis of human follicular fluid by ICP-MS/MS:Pre-analytical challenges, contamination control, and matrix effects[J].Journal of Analytical Atomic Spectrometry, 2019, 34(4):741-752. doi: 10.1039/C8JA00423D
    Fu L, Xie H, Huang J, et al.Rapid determination of trace elements in serum of hepatocellular carcinoma patients by inductively coupled plasma tandem mass spectrometry[J].Analytica Chimica Acta, 2020, 1112:1-7. doi: 10.1016/j.aca.2020.03.054
    Zhang Y, Pan Z, Jiao P, et al.Solvent extraction ICP-MS/MS method for the determination of REE impurities in ultra-high purity Ce chelates[J].Atomic Spectroscopy, 2019, 40(5):167-172. doi: 10.46770/AS.2019.05.003
    Amaral C D B, Amais R S, Fialho L L, et al.A novel strategy to determine As, Cr, Hg and V in drinking water by ICP-MS/MS[J].Analytical Methods, 2015, 7(3):1215-1220. doi: 10.1039/C4AY02811B
    Witt B, Bornhorst J, Mitze H, et al.Arsenolipids exert less toxicity in a human neuron astrocyte co-culture as compared to the respective monocultures[J].Metallomics, 2017, 9(5):442-446. doi: 10.1039/C7MT00036G
    Jackson B P.Fast ion chromatography-ICP-QQQ for arsenic speciation[J].Journal of Analytical Atomic Spectrometry, 2015, 30(6):1405-1407. doi: 10.1039/C5JA00049A
    Meyer S, Raber G, Ebert F, et al.In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites[J].Toxicology Research, 2015, 4(5):1289-1296. doi: 10.1039/C5TX00122F
    Barros J A V A, Virgilio A, Schiavo D, et al.Determination of ultra-trace levels of Mo in plants by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS)[J].Microchemical Journal, 2017, 133:567-571. doi: 10.1016/j.microc.2017.04.037
    Amais R S, Virgilio A, Schiavo D, et al.Tandem mass spectrometry (ICP-MS/MS) for overcoming moly-bdenum oxide interferences on Cd determination in milk[J].Microchemical Journal, 2015, 120:64-68. doi: 10.1016/j.microc.2015.01.008
    张洁, 阳国运.树脂交换分离-电感耦合等离子体质谱法测定铅锌矿中钨钼锡锗硒碲[J].岩矿测试, 2018, 37(6):657-663. doi: 10.15898/j.cnki.11-2131/td.201803250028

    Zhang J, Yang G Y.Determination of tungsten, molybdenum, tin, germanium, selenium and tellurium in lead-zinc ore by inductively coupled plasma-mass spectrometry with resin exchange separation[J].Rock and Mineral Analysis, 2018, 37(6):657-663. doi: 10.15898/j.cnki.11-2131/td.201803250028
    刘宏伟, 谢华林, 聂西度.松香中杂质元素的质谱分析[J].光谱学与光谱分析, 2017, 37(2):603-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201702052

    Liu H W, Xie H L, Nie X D.Determination of impurity elements in rosin with inductively coupled plasma mass spectrometry[J].Spectroscopy and Spectral Analysis, 2017, 37(2):603-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201702052
    Moraleja I, Esteban-Fernandez D, Lazaro A, et al. Printing metal-spiked inks for LA-ICP-MS bioimaging internal standardization:Comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin[J].Analytical and Bioanalytical Chemistry, 2016, 408(9):2309-2318. doi: 10.1007/s00216-016-9327-0
  • Related Articles

    [1]LI Chaoqun, LI Lixiang, REN Yingjun, ZHAO Jinhua, HUANG Gang, ZHOU Shiyang, LIU Liping, JIANG Jingsi, LIANG Feng. Determination of 35 Antibiotics in Surface Water by High Performance Liquid Chromatography-Tandem Mass Spectrometry with Online Solid-Phase Extraction and Large-Volume Injection[J]. Rock and Mineral Analysis, 2024, 43(6): 945-956. DOI: 10.15898/j.ykcs.202404050076
    [2]Jing JIA, Zhi-peng YANG. Determination of 1,4-dioxane in Groundwater by Purge and Trap-Gas Chromatography/Mass Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 556-560.
    [3]haiying Zuo, lin Zhang, fei Liu. Determination of Herbicide Residues in Groundwaters Using Liquid/Liquid Extraction and Off-line Purification with Liquid Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(1): 96-101.
    [4]ZHANG Dao-lai, LIN Xue-hui, ZHOU Ming, CHEN Jun-hui, YANG Bai-juan, XIA Ning, WANG Xiao-ru. Determination of Six Phthalate Ester Contaminants in Asterias rollestoni Bell Samples by Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 159-165.
    [5]WANG Yu, LIU Cong, CHEN Shun-cong, WU Yan-wen. Preliminary Identification for Different Quality of Musks by Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 59-62.
    [6]LI Song, RAO Zhu, SONG Shu-ling, TIAN Qin, ZHAO Wei. Application of Gas Chromatography-Mass Spectrometry in Groundwater Analysis[J]. Rock and Mineral Analysis, 2010, 29(5): 518-522.
    [7]WANG Na, WANG Hai-jiao, WANG Yin-fu, LI Li-jun. Determination of 9 Organochlorine Pesticides in Water Samples by Liquid-liquid Extraction-Gas Chromatography[J]. Rock and Mineral Analysis, 2010, 29(5): 497-502.
    [8]LI Qingxia, LIU Yaxuan, CHEN Weiming, ZHANG Qin. Determination of 18 Organochlorine Pesticides in Soils by Gas Chromatography and Gas Chromatography-Mass Spectrometry with Microwave assisted Extraction[J]. Rock and Mineral Analysis, 2010, 29(2): 118-122.
    [9]Determination of Deca Brominated Diphenyl Ether in Soil Sample by Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(4): 274-278.
    [10]Establishment of the Chromatographic Fingerprint of Industrial 3, 5-Dinitrobenzoic Acid by High Performance Liquid Chromatography-Ultraviolet Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(2): 81-86.
  • Cited by

    Periodical cited type(5)

    1. 蔡宁波,王琳霖,鲍一遥,李怡普,万泽鑫,康志梅,罗胜元. 中扬子地台宜昌地区寒武系水井沱组优质页岩储层发育特征及天然气富集机理研究. 中国地质. 2025(01): 111-130 .
    2. 石阳志,季永承,何叶,周芸,陈美军,江铭. 太阳浅层页岩气田有机碳含量预测及其影响因素分析. 能源与环保. 2024(01): 183-192 .
    3. 马超,黄晓依,高胜天,刘鑫,王诚. 核磁共振技术在致密岩心孔隙量化表征中的应用. 中国科技论文. 2024(05): 540-546+574 .
    4. 赵肖飞,李王鹏,葛勋,李沛,葛小瞳,刘雅利,吴海光,吕修祥. 松辽盆地北部林甸地区青山口组一段页岩储层特征及主控因素. 东北石油大学学报. 2024(06): 31-48+143-144 .
    5. 田冲,李怡,黎丁源,张伟,钟可塑,周尚文,罗超,江文滨,李度,何亮,杨雪. 页岩储层孔隙度测定方法优选与推荐. 天然气工业. 2023(06): 57-65 .

    Other cited types(1)

Catalog

    Article views (2769) PDF downloads (32) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return