• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Mei-yun ZENG, Yan-bo CHEN, Jin LIU, Di-min WANG. Preparation of High-phosphorus Iron Ore Reference Materials for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221. DOI: 10.15898/j.cnki.11-2131/td.201808150094
Citation: Mei-yun ZENG, Yan-bo CHEN, Jin LIU, Di-min WANG. Preparation of High-phosphorus Iron Ore Reference Materials for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221. DOI: 10.15898/j.cnki.11-2131/td.201808150094

Preparation of High-phosphorus Iron Ore Reference Materials for Chemical Composition Analysis

More Information
  • Received Date: August 14, 2018
  • Revised Date: December 21, 2018
  • Accepted Date: January 03, 2019
  • Published Date: February 28, 2019
  • HIGHLIGHTS
    (1) The contents of phosphorus and iron in high-phosphorus iron ore form a certain gradient, covering the content range of high-phosphorus iron ore.
    (2) 25 components with certified values in high-phosphorus iron ore include major elements and trace elements.
    (3) The method of certified value, uncertainty evaluation and accuracy achieve the same level of as reference materials.
    BACKGROUNDThe analysis and testing process of high-phosphorus iron ore requires quality control of standard materials with similar matrix components, moderate content and fixed value components. At present, there are no certified reference materials available for high-phosphorus iron ore chemical composition analysis in China. The available iron ore reference materials in China and abroad have different matrix compositions and phosphorus contents. Phosphorus content is mostly less than 0.25%, while phosphorus content in high-phosphorus iron ore is higher than 0.25%. It is difficult to meet the analytical quality control requirements of high-phosphorus iron ore products with these reference materials.
    OBJECTIVESTo develop three high-phosphorus iron ore reference materials with contents of iron and phosphorus forming a certain gradient and covering the content range of high phosphorus iron ore.
    CANDIDATES CHARACTERISTICS The sample GPFe-1 is composed of 40% metallic minerals, 25% quartz, 15% colloidal phosphate, 20% oolitic chlorite, clay mineral, apatite, carbonate minerals, rock debris and a small amount of organic matter. The metal minerals are hematite, limonite and pyrite.The contents of iron and phosphorus are 31%-37% and 0.1%-0.5%, respectively. The sample GPFe-2 consists of 40% hematite, 5% limonite, 55% gangue mineral, and minor collophanite and pyrite. The iron and phosphorus contents in GPFe-2 are 38%-44% and 0.6%-1.0%, respectively. The sample GPFe-3 is composed of 70% metallic minerals (hematite, limonite, pyrite), 5% quartz, 1% collophane, 3% chlorite, 1% cuttings, and minor apatite and calcite. The contents of iron and phosphorus in this sample are 48%-55% and 1.4%-2.0%, respectively.
    METHODSThe samples of high-phosphorus iron ores were collected from the western Hubei Yelangping mining area in Zigui county of Yichang city, the Enshi Changling mining area (Wuhan iron and steel corporation mining area), and the Huoshaoping mining area in Changyang county of Yichang city (Bao Steel Group Changyang mining area). Uniformity and stability were tested for 25 components of SiO2, Al2O3, TiO2, P, K2O, Na2O, Fe, MnO, CaO, MgO, FeO, LOI, S, Cu, Pb, Zn, Cr, Ni, Co, Cd, Sr, Ba, V, As and Hg. Uniformity test was evaluated by variance analysis F test and relative standard deviation of test results. Stability test was evaluated by linear fitting and t-test.
    RESULTSThree samples were homogeneous and stable. The RSD of major elements and trace elements of 3 samples was less than 5%. The F value of variance test was less than the critical value F0.05(24, 25)=1.96, indicating that all the components of 3 samples were homogeneous. The stability test showed that the components of 3 samples had no directional change and statistically significant differences, indicating that the elements in the 3 samples were stable. The verified value was tested by 11 laboratories and by two or more different principles. The verified value components included 25 major elements and trace elements. Three components of Na2O, S and Hg of GPFe-1 had reference values, whereas other 22 components had certified values and uncertainties. The contents of iron and phosphorus in GPFe-1 were 35.18%±0.20% and 0.285%±0.010%, respectively. Two components of Cd and Hg in GPFe-2 had reference values, and other 23 components had certified values and uncertainties. The contents of iron and phosphorus in GPFe-2 were 41.46%±0.20% and 0.735%±0.020%, respectively. Two components of FeO and Hg in GPFe-3 had reference values, while other 23 components had certified values and uncertainties. The contents of iron and phosphorus in GPFe-3 were 51.44%±0.13% and 1.73%±0.05%, respectively.
    CONCLUSIONSThe developed high-phosphorus iron ore reference materials meet the requirements for exploration, evaluation, and comprehensive utilization of high-phosphorus iron ore.
  • 张亮, 杨卉芃, 冯安生, 等.全球铁矿资源开发利用现状及供需分析[J].矿产保护与利用, 2016(6):57-63. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201606012

    Zhang L, Yang H P, Feng A S, et al.Study on utilization and analysis of supply and demand of global iron ore resources[J].Conservation and Utilization of Mineral Resources, 2016(6):57-63. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201606012
    崔立伟, 夏浩东, 王聪, 等.中国铁矿资源现状与铁矿实物地质资料筛选[J].地质与勘探, 2012, 48(5):894-905. http://d.old.wanfangdata.com.cn/Periodical/dzykt201205004

    Cui L W, Xia H D, Wang C, et al.Current status of iron-ore resources in China and screening of object iron-ore geological data[J].Geology and Exploration, 2012, 48(5):894-905. http://d.old.wanfangdata.com.cn/Periodical/dzykt201205004
    阴江宁, 肖克炎, 娄德波.中国铁矿预测模型与资源潜力分析[J].地学前缘, 2018, 25(3):107-117. http://d.old.wanfangdata.com.cn/Periodical/dxqy201803009

    Yin J N, Xiao K Y, Lou D B.Prediction model and resource potential of iron in China[J].Earth Science Frontiers, 2018, 25(3):107-117. http://d.old.wanfangdata.com.cn/Periodical/dxqy201803009
    范松梅, 沙景华, 闫晶晶, 等.中国铁矿石资源供应风险评价与治理研究[J].资源科学, 2018, 40(3):507-515. http://d.old.wanfangdata.com.cn/Periodical/zykx201803006

    Fan S M, Sha J H, Yan J J, et al.Risk assessment and management of iron ore resource supply in China[J].Resources Science, 2018, 40(3):507-515. http://d.old.wanfangdata.com.cn/Periodical/zykx201803006
    刘云勇, 贺爱平, 秦元奎, 等.中国宁乡式铁矿[M].北京:冶金工业出版社, 2017.

    Liu Y Y, He A P, Qin Y K, et al.Chinese Ningxiang Iron Ore[M].Beijing:Metallurgical Industry Press, 2017.
    韩跃新, 孙永升, 高鹏, 等.高磷鲕状赤铁矿开发利用现状及发展趋势[J].金属矿山, 2012(3):1-5. http://d.old.wanfangdata.com.cn/Periodical/jsks201203001

    Han Y X, Sun Y S, Gao P, et al.Exploitation situation and development trend of high phosphorus oolitic hematite[J].Metal Mine, 2012(3):1-5. http://d.old.wanfangdata.com.cn/Periodical/jsks201203001
    杨舒萍, 卿山, 邓文龙, 等.高磷铁矿工艺矿物学研究[J].工业加热, 2015, 44(1):44-47. doi: 10.3969/j.issn.1002-1639.2015.01.013

    Yang S P, Qing S, Deng W L, et al.Study on technological mineralogy of high phosphorus iron ore[J].Industrial Heating, 2015, 44(1):44-47. doi: 10.3969/j.issn.1002-1639.2015.01.013
    贺爱平.鄂西高磷铁矿选冶技术及开发方式探讨[J].资源环境与工程, 2013, 27(5):688-693. doi: 10.3969/j.issn.1671-1211.2013.05.017

    He A P.Disussion on beneficiation & metallurgy technology and development mode of high phosphorus iron ore, Western Hubei[J].Resources Environment & Engineering, 2013, 27(5):688-693. doi: 10.3969/j.issn.1671-1211.2013.05.017
    艾光华, 李晓波, 周源.高磷铁矿石脱磷技术研究现状及发展趋势[J].有色金属科学与工程, 2011, 2(4):53-58. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201104013

    Ai G H, Li X B, Zhou Y.Research status and trend of the dephosphorization technology of high-phosphorus iron ore[J].Nonferrous Metals Science and Engineering, 2011, 2(4):53-58. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201104013
    黄凯, 修祎帆, 郭占成, 等.高磷铁矿脱磷技术现状及磷资源化提取新方法[J].钢铁, 2016, 51(10):1-5. http://d.old.wanfangdata.com.cn/Periodical/gt201610002

    Huang K, Xiu Y F, Guo Z C, et al.Advance in dephosphorisation of high phosphorus iron ore and new technology of recovering phosphorus as a resource[J].Iron and Steel, 2016, 51(10):1-5. http://d.old.wanfangdata.com.cn/Periodical/gt201610002
    郭威, 孙永升, 杨耀辉.高磷鲕状赤铁矿脱磷处理研究进展[J].矿产综合利用, 2014(6):15-19. doi: 10.3969/j.issn.1000-6532.2014.06.004

    Guo W, Sun Y S, Yang Y H.Research progress of dephosphorization of high phosphorus oolitic hematite[J].Multipurpose Utilization of Mineral Resources, 2014(6):15-19. doi: 10.3969/j.issn.1000-6532.2014.06.004
    朱德庆, 王浩, 潘建, 等.机械活化强化高磷粗铁精矿酸浸脱磷的工艺及机理[J].中南大学学报(自然科学版), 2017, 48(3):553-561. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201703001

    Zhu D Q, Wang H, Pan J, et al.Technology and mechanism of mechanical activation enhancing acid leaching dephosphorization of high phosphorus rough iron ore concentrate[J].Journal of Central South University (Science and Technology), 2017, 48(3):553-561. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201703001
    向杰, 肖春桥, 刘婷婷, 等.4种添加剂对黑曲霉脱除高磷铁矿中磷的影响[J].矿冶工程, 2016, 36(4):76-79. doi: 10.3969/j.issn.0253-6099.2016.04.020

    Xiang J, Xiao C Q, Liu T T, et al.Effects of four additives on dephosphorization of high-phosphorus iron ore by aspergillus niger[J].Mining and Metallurgical Engineering, 2016, 36(4):76-79. doi: 10.3969/j.issn.0253-6099.2016.04.020
    肖婉琴.云南某高磷铁矿直接还原同步脱磷试验研究[J].矿冶, 2017, 26(3):5-8. doi: 10.3969/j.issn.1005-7854.2017.03.002

    Xiao W Q.Study of direct reduction and synchronous dephosphorization for high-phosphorus hematite from Yunnan[J].Mining and Metallurgy, 2017, 26(3):5-8. doi: 10.3969/j.issn.1005-7854.2017.03.002
    王辉, 张建松, 孙瑞靖, 等.高磷铁矿气化脱磷理论及试验研究[J].钢铁钒钛, 2018, 39(2):110-114. http://d.old.wanfangdata.com.cn/Periodical/gtft201802019

    Wang H, Zhang J S, Sun R J, et al.Theoretical and experimental study on gasification dephosphorization in high-phosphorus iron ore[J].Iron Steel Vanadium Titanium, 2018, 39(2):110-114. http://d.old.wanfangdata.com.cn/Periodical/gtft201802019
    Jochum K P, Weis U, Schwager B, et al.Reference values following ISO guidelines for frequently requested rock reference materials[J].Geostandards and Geoanalytical Research, 2016, 40(3):333-350. doi: 10.1111/ggr.2016.40.issue-3
    Weis U, Schwager B, Nohl U, et al.Geostandards and geoanalytical research bibliographic review 2015[J].Geostandards and Geoanalytical Research, 2016, 40(4):599-601. doi: 10.1111/ggr.2016.40.issue-4
    黄宏库, 程志中, 刘妹, 等.铬铁矿标准物质研制[J].化学分析计量, 2010, 19(5):4-6. doi: 10.3969/j.issn.1008-6145.2010.05.001

    Huang H K, Cheng Z Z, Liu M, et al.Development of reference materials of chrimote[J].Chemical Analysis and Meterage, 2010, 19(5):4-6. doi: 10.3969/j.issn.1008-6145.2010.05.001
    洪飞, 刘耀华, 吕振生, 等.钛铁矿化学成分标准物质研制[J].岩矿测试, 2014, 33(1):67-73. doi: 10.3969/j.issn.0254-5357.2014.01.012

    Hong F, Liu Y H, Lü Z S, et al.Certified reference materials preparation of ilmenite chemical composition[J].Rock and Mineral Analysis, 2014, 33(1):67-73. doi: 10.3969/j.issn.0254-5357.2014.01.012
    程志中, 顾铁新, 范永贵, 等.九个铁矿石标准物质研制[J].岩矿测试, 2010, 29(3):305-308. doi: 10.3969/j.issn.0254-5357.2010.03.023

    Cheng Z Z, Gu T X, Fan Y G, et al.Preparation of nine iron reference materials of GFe1-GFe9[J].Rock and Mineral Analysis, 2010, 29(3):305-308. doi: 10.3969/j.issn.0254-5357.2010.03.023
    谢承祥, 李厚民, 王瑞江, 等.中国查明铁矿资源储量的数量、分布及保障程度分析[J].地球学报, 2009, 30(3):387-394. doi: 10.3321/j.issn:1006-3021.2009.03.013

    Xie C X, Li H M, Wang R J, et al.Analysis of the quantity and distribution of the total identified iron resources in China and their supply capability[J].Acta Geoscientica Sinica, 2009, 30(3):387-394. doi: 10.3321/j.issn:1006-3021.2009.03.013
    刘云勇, 姚敬劬, 万传辉.鄂西泥盆纪沉积铁矿成矿元素和主要伴生元素分布规律[J].资源环境与工程, 2016, 30(1):17-24. http://d.old.wanfangdata.com.cn/Periodical/hbdk201601004

    Liu Y Y, Yao J Q, Wan C H.Distribution law of the ore-forming element and major associated elements in the devonian sedimentary iron deposits, Western Hubei[J].Resources Environment and Engineering, 2016, 30(1):17-24. http://d.old.wanfangdata.com.cn/Periodical/hbdk201601004
    郑赫.鄂西宁乡式铁矿地球化学特征及对成矿环境的指示[D].北京: 中国地质大学(北京), 2016. https://www.ixueshu.com/document/23109049a39394839e908a3c0d3d464d.html

    Zheng H.Geochemical Characteristics of Ningxiang-type Iron Deposits in the West of Hubei Province and Their Implication for Metallogenic Environment[D].Beijing: China University of Geosciences (Beijing), 2016. https://www.ixueshu.com/document/23109049a39394839e908a3c0d3d464d.html
    王树林, 黄志良, 杨超, 等.鄂西某高磷铁矿中磷的赋存状态[J].有色金属工程, 2014, 4(2):58-60. doi: 10.3969/j.issn.2095-1744.2014.02.013

    Wang S L, Huang Z L, Yang C, et al.The existent states of phosphorus in a high phosphorus iron ore in Western Hubei[J].Nonferrous Metals Engineering, 2014, 4(2):58-60. doi: 10.3969/j.issn.2095-1744.2014.02.013
    Botha A, Ellison S, Linsinger T, et al.Outline for the revision of ISO Guide 35[J].Accreditation and Quality Assurance, 2013, 18:115-118. doi: 10.1007/s00769-012-0940-0
    宋丽华, 郝原芳, 杨柳, 等.地质标准物质的研制方法[J].地质与资源, 2013, 22(5):419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013

    Song L H, Hao Y F, Yang L, et al.Preparation on method of geochemical reference materials[J].Geology and Resources, 2013, 22(5):419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013
    刘妹, 顾铁新, 潘含江, 等.泛滥平原沉积物标准物质研制[J].岩矿测试, 2018, 37(5):558-571. doi: 10.15898/j.cnki.11-2131/td.201801080002

    Liu M, Gu T X, Pan H J, et al.Preparation of seven reference materials for floodplain sediments[J].Rock and Mineral Analysis, 2018, 37(5):558-571. doi: 10.15898/j.cnki.11-2131/td.201801080002
    杨理勤.常量金标准物质标准值的不确定度评定方法[J].黄金, 2015, 36(9):80-82. http://d.old.wanfangdata.com.cn/Periodical/huangj201509019

    Yang L Q.Discussion about the assessment method of the uncertainty degree of certified values from ore gold reference materials[J].Gold, 2015, 36(9):80-82. http://d.old.wanfangdata.com.cn/Periodical/huangj201509019
    曾美云, 刘金, 邵鑫, 等.磷矿石化学成分分析标准物质研制[J].岩矿测试, 2017, 36(6):633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082

    Zeng M Y, Liu J, Shao X, et al.Preparation of phosphate ore concentrate reference materials[J].Rock and Mineral Analysis, 2017, 36(6):633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082
    赵晓亮, 李志伟, 王烨, 等.铌钽精矿标准物质研制[J].岩矿测试, 2018, 37(6):687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185

    Zhao X L, Li Z W, Wang Y, et al.Preparation and certification of niobium-tantalum concentrate reference materials[J].Rock and Mineral Analysis, 2018, 37(6):687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185
  • Related Articles

    [1]ZHANG Lei, LI Ying-chun, QU Wen-jun, ZHOU Wei, SHANG Wen-yu, YI Qin. Preparation of Ion-adsorption Type REE Monitoring Samples[J]. Rock and Mineral Analysis, 2020, 39(6): 878-885. DOI: 10.15898/j.cnki.11-2131/td.202004230058
    [2]Mei LIU, Tie-xin GU, Han-jiang PAN, Bin-bin SUN, Hong-ku HUANG, Rong YANG, Wei-dong YAN. Preparation of Seven Certified Reference Materials for Floodplain Sediments[J]. Rock and Mineral Analysis, 2018, 37(5): 558-571. DOI: 10.15898/j.cnki.11-2131/td.201801080002
    [3]ZHAO Yu-yan, LU Ji-long, HAO Li-bo, SUN Li-ji, WANG Lian-he. Management and Quality Control System for Geochemical Sample Analysis Based on Network[J]. Rock and Mineral Analysis, 2010, 29(6): 727-732.
    [4]GUO Lin, WEN Hong-li, WANG Su-ming, QU Wen-jun, CAO Ya-ping. Preparation and Application of Quality Control Samples for Inorganic Multi-element Analysis of Groundwater[J]. Rock and Mineral Analysis, 2010, 29(5): 575-579.
    [5]GAN Lu, WANG Su-ming, LIU Fei, HUO Zhi-bin. Development of Real-time Monitoring and Management System for Analytical Data Quality Control in Groundwater Pollution Survey[J]. Rock and Mineral Analysis, 2010, 29(5): 571-574.
    [6]Computerization on Quality Control in Analysis of Regional Geochemical Samples[J]. Rock and Mineral Analysis, 2008, 27(3): 219-222.
    [7]Quality Control of Chemical Analysis for 1:200000 Regional Geochemical Exploration Samples[J]. Rock and Mineral Analysis, 2004, (2): 143-147.
    [8]Quality Control and Quality Evaluation of Analytical Data in Isotope Geology[J]. Rock and Mineral Analysis, 2000, (2): 137-141.
    [9]Quality Control System in Windows Environment[J]. Rock and Mineral Analysis, 1996, (2): 154-156.
    [10]Application of Regression Equation to the Quality Monitor of Rock and Mineral Analysis[J]. Rock and Mineral Analysis, 1992, (3): 281-283.

Catalog

    Article views (2832) PDF downloads (69) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return