• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
TAO Longfeng, JIN Cuiling, ZHANG Qianshen, HAN Xiuli. Mineralogy Characteristics and Coloration Mechanism of Green Tourmaline in Tanzania[J]. Rock and Mineral Analysis, 2022, 41(2): 324-331. DOI: 10.15898/j.cnki.11-2131/td.202009280127
Citation: TAO Longfeng, JIN Cuiling, ZHANG Qianshen, HAN Xiuli. Mineralogy Characteristics and Coloration Mechanism of Green Tourmaline in Tanzania[J]. Rock and Mineral Analysis, 2022, 41(2): 324-331. DOI: 10.15898/j.cnki.11-2131/td.202009280127

Mineralogy Characteristics and Coloration Mechanism of Green Tourmaline in Tanzania

More Information
  • Received Date: September 27, 2020
  • Revised Date: June 23, 2021
  • Accepted Date: October 21, 2021
  • Published Date: March 27, 2022
  • HIGHLIGHTS
    (1) The chemical composition of green tourmaline in the study area was different from that of green tourmaline in other area. The former was magnesium tourmaline, while the latter was generally lithium tourmaline.
    (2) Tanzanian green tourmaline showed a single crystal, small grain, no cleavage, and split development.
    (3) Minor Cr3+ replacing Al3+ into the crystal lattice was the main cause of the green color, with little contribution from Fe.
    BACKGROUNDThere are differences in the production characteristics, chemical composition, coloration mechanism and formation conditions of green tourmaline from different producing areas. At present, the mineral species and coloration mechanism of Tanzanian green tourmaline have not been solved, which makes it difficult for its scientific identification and quality rating.
    OBJECTIVESTo study the mineralogical characteristics and coloration mechanism of Tanzanian green tourmaline.
    METHODSThe mineral component was analyzed by infrared spectroscopy and Raman spectroscopy. Microtexture was characterized by polarized light microscopy. Electron probe microanalyzer, and ultraviolet-visible (UV-Vis) spectroscopy were applied to analyze the chemical composition.
    RESULTSThe main mineral component of tourmaline in Tanzania was MgO tourmaline, which was characterized by single crystal, small grain, no cleavage, and split development, and can be used as a gemstone. The main chemical component of green tourmaline was SiO2, Al2O3, MgO and B2O3, with average contents of 37.52%, 36.26%, 9.65% and 8.42%, respectively. In addition, it contained a small amount of FeO, Cr2O3 and TiO2. Combined with the absorption spectrum in the ultraviolet region of 440nm, 600nm and 680nm in UV-Vis spectroscopy, it was concluded that the tiny amounts of Cr3+ replacing Al3+ into the crystal lattice was the main cause of the green color.
    CONCLUSIONSThe mineralogical characteristics and coloration mechanism of green tourmaline in Tanzania was confirmed, which provides a theoretical basis for the scientific identification, further quality evaluation and utilization.

  • 王长秋, 张丽葵. 珠宝玉石学[M]. 北京: 地质出版社, 2017: 407-413.

    Wang C Q, Zhang L K. Gemmology[M]. Beijing: Geological Publishing House, 2017: 407-413.
    李胜荣. 结晶学与矿物学[M]. 北京: 地质出版社, 2018: 141-142.

    Li S R. Crystallgraphy and mineralogy[M]. Beijing: Geological Publishing House, 2018: 141-142.
    林森, 孙仕勇, 申珂璇, 等. 电气石的环境功能属性及其复合材料应用研究[J]. 材料导报, 2017, 31(13): 131-137. doi: 10.11896/j.issn.1005-023X.2017.013.017

    Lin S, Sun S Y, Shen K X, et al. Environmental functionalities of tourmaline and applications of its functional composites[J]. Materials Reports, 2017, 31(13): 131-137. doi: 10.11896/j.issn.1005-023X.2017.013.017
    孙健鑫, 廖建彬, 戴乐阳. 高能球磨电气石红外辐射特性[J]. 造船技术, 2017(4): 18-23. doi: 10.3969/j.issn.1000-3878.2017.04.005

    Sun J X, Liao J B, Dai L Y. Infrared radiation characteristics of high energy ball milling tourmaline[J]. Marine Technology, 2017(4): 18-23. doi: 10.3969/j.issn.1000-3878.2017.04.005
    陈杰, 崔弘妍, 张启忠. 电气石改性研究[J]. 广州化工, 2020, 48(11): 47-49. doi: 10.3969/j.issn.1001-9677.2020.11.015

    Chen J, Cui H Y, Zhang Q Z. Study on modification of tourmaline[J]. Guangzhou Chemical Industry, 2020, 48(11): 47-49. doi: 10.3969/j.issn.1001-9677.2020.11.015
    Liang Y F, Tang X J, Zhu Q, et al. A review: Application of tourmaline in environmental fields[J]. Chemosphere, 2021, 281: 130780. doi: 10.1016/j.chemosphere.2021.130780
    戴苏兰, 曲蔚, 夏玉梅, 等. 碧玺充填处理鉴定与充填程度分级研究[J]. 矿物岩石, 2017, 37(3): 6-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201703002.htm

    Dai S L, Qu W, Xia Y M, et al. Research on the identification of filled tourmaline and its filling grade[J]. Journal of Mineralogy and Petrology, 2017, 37(3): 6-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201703002.htm
    李长城, 李可. 内蒙古突泉县电气石矿矿体特征及成因分析[J]. 现代矿业, 2019, 35(7): 73-75, 79. doi: 10.3969/j.issn.1674-6082.2019.07.017

    Li C C, Li K. Characteristics and genesis of tourmaline ore body in Tuquan County, Inner Mongolia[J]. Modern Mining, 2019, 35(7): 73-75, 79. doi: 10.3969/j.issn.1674-6082.2019.07.017
    李真真, 秦克章, 裴斌, 等. 大兴安岭南段白音查干Sn-Ag-Zn-Pb矿床电气石矿物学特征及对岩浆-热液演化过程的启示[J]. 岩石学报, 2020, 36(12): 3797-3812. doi: 10.18654/1000-0569/2020.12.14

    Li Z Z, Qin K Z, Pei B, et al. Mineralogical features of tourmaline in Baiyinchagan Sn-Ag-Pb-Zn deposit, southern great Xing'an Range, and its implications for magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2020, 36(12): 3797-3812. doi: 10.18654/1000-0569/2020.12.14
    郭佳, 严海波, 凌明星, 等. 广西大厂地区黑云母花岗岩中电气石的化学组成及其对岩浆热液演化的指示[J]. 岩石学报, 2020, 36(1): 171-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001016.htm

    Guo J, Yan H B, Ling M X, et al. Chemical composition of tourmaline in the biotite granite, the Dachang district: Insights into magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2020, 36(1): 171-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001016.htm
    张文弢. 新疆阿尔泰碧玺(电气石)成矿区域地质条件综述[J]. 西部资源, 2017(2): 83-85. doi: 10.3969/j.issn.1672-562X.2017.02.036

    Zhang W T. A summary of regional geological conditions for tourmaline mineralization in Altay, Xinjiang[J]. Western Resources, 2017(2): 83-85. doi: 10.3969/j.issn.1672-562X.2017.02.036
    Patel S, Upadhyay D, Mishra B, et al. Multiple episodes of hydrothermal alteration and uranium mineralization in the Singhbhum Shear Zone, eastern India: Constraints from chemical and boron isotope composition of tourmaline[J]. Lithos, 2021, 388-389: 106084. doi: 10.1016/j.lithos.2021.106084
    Liu T, Jiang S Y. Multiple generations of tourmaline from Yushishanxi leucogranite in South Qilian of western China record a complex formation history from B-rich melt to hydrothermal fluid[J]. American Mineralogist, 2021, 106(6): 994-1008. doi: 10.2138/am-2021-7473
    Vereshchagin O, Wunder B, Britvin S, et al. Synthesis and crystal structure of Pb-dominant tourmaline[J]. American Mineralogist, 2020, 105(10): 1589-1592.
    廖秦镜, 黄伟志, 张倩, 等. 莫桑比克棕黄色碧玺的宝石学及光谱学表征[J]. 光谱学与光谱分析, 2019, 39(12): 3844-3848. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201912037.htm

    Liao Q J, Huang W Z, Zhang Q, et al. Gemological and spectral characterization of brownish yellow tourmaline from Mozambique[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3844-3848. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201912037.htm
    仲佩佩, 沈锡田. 赞比亚墨绿色电气石的颜色成因初探[J]. 宝石和宝石学杂志, 2017, 19(6): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201706002.htm

    Zhong P P, Shen X T. Colour origin of dark green tourmaline from Zambia[J]. Journal Gems and Gemmology, 2017, 19(6): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201706002.htm
    Martin K, Bernd W, Iris W, et al. Raman spectroscopic quantification of tetrahedral boron in synthetic aluminum-rich tourmaline[J]. American Mineralogist, 2021, 106(6): 872-882. doi: 10.2138/am-2021-7758
    Spivak A V, Borovikova E Y, Setkova T V. Raman spec-troscopy and high pressure study of synthetic Ga, Ge-rich tourmaline[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 248: 1-12.
    Physics R. Color change of tourmaline by heat treatment and electron beam irradiation: UV-visible, EPR, and mid-IR spectroscopic analyses[J]. Journal of Technology & Science, 2016, 68(1): 83-92.
    孙麟, 杨明星, 吴改. 近期市场出现的铬碧玺宝石学性质及谱学特征[J]. 宝石和宝石学杂志, 2015, 17(1): 31-37. doi: 10.3969/j.issn.1008-214X.2015.01.005

    Sun L, Yang M X, Wu G. Gemmological and spectroscopic characteristics of chrome tourmaline appeared on the market recently[J]. Journal Gems and Gemmology, 2015, 17(1): 31-37. doi: 10.3969/j.issn.1008-214X.2015.01.005
    Liu Y, Shigley J E, Halvorsen A, 等. 坦桑尼亚Umba谷电气石的变色效应[J]. 宝石和宝石学杂志, 1999, 1(3): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199903013.htm

    Liu Y, Shigley J E, Halvorsen A, et al. Usambara effect of tourmaline from Umba Valley, Tanzania[J]. Journal Gems and Gemmology, 1999, 1(3): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199903013.htm
    刘俊涛, 贾秀阁, 刘灵钰. 新疆阿勒泰地区碧玺宝石学特征[J]. 现代矿业, 2019, 35(6): 68-71. doi: 10.3969/j.issn.1674-6082.2019.06.017

    Liu J T, Jia X G, Liu L Y. Gemological characteristics of the tourmaline in Altay area, Xinjiang[J]. Modern Mining, 2019, 35(6): 68-71. doi: 10.3969/j.issn.1674-6082.2019.06.017
    田亮光, 黄文慧, 程佑法, 等. 高折射率电气石的鉴定[J]. 宝石和宝石学杂志, 2002, 4(1): 12-15, 50. doi: 10.3969/j.issn.1008-214X.2002.01.003

    Tian L G, Huang W H, Cheng Y F, et al. Identification of a tourmaline with high refractive index[J]. Journal Gems and Gemmology, 2002, 4(1): 12-15, 50. doi: 10.3969/j.issn.1008-214X.2002.01.003
    黄文清, 金绪广, 左锐, 等. 天然与合成紫晶的红外和偏振拉曼光谱鉴定特征[J]. 岩矿测试, 2019, 38(4): 403-410. doi: 10.15898/j.cnki.11-2131/td.201807230087

    Huang W Q, Jin X G, Zuo R, et al. Identification characteristics of natural and synthetic amethyst by infrared and polarized Raman spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(4): 403-410. doi: 10.15898/j.cnki.11-2131/td.201807230087
    宁珮莹, 张天阳, 马泓, 等. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征[J]. 岩矿测试, 2019, 38(6): 640-648. doi: 10.15898/j.cnki.11-2131/td.201903050033

    Ning P Y, Zhang T Y, Ma H, et al. Characterization of hydrous mineral inclusions in ruby and sapphire by infrared spectroscopy and microscopic confocal laser Raman spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(6): 640-648. doi: 10.15898/j.cnki.11-2131/td.201903050033
    Qiu K F, Yu H C, Hetherington C, et al. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes[J]. American Mineralogist, 2021, 106(7): 1033-1044. doi: 10.2138/am-2021-7495
    Bačík P, Fridrichová J. Cation partitioning among crystallographic sites based on bond-length constraints in tourmaline-supergroup minerals[J]. American Mineralogist, 2021, 106(6): 851-861. doi: 10.2138/am-2021-7804
    Hawhorrne F C, Henry D J. Classification of the minerals of the tourmaline group[J]. European Journal of Mineralogy, 1999, 11(2): 201-215. doi: 10.1127/ejm/11/2/0201
    杨莉, 祖恩东. 红色碧玺的色度学研究[J]. 中国锰业, 2018, 36(1): 177-179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201801046.htm

    Yang L, Zu E D. Colorimetry research on red tourmaline[J]. China's Manganese Industry, 2018, 36(1): 177-179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201801046.htm
    杨育玲, 郭颖, 谭咏婷, 等. 不同标准光源对碧玺红色的影响[J]. 矿物学报, 2016, 36(2): 220-224. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201602009.htm

    Yang Y L, Guo Y, Tan Y T, et al. The influence of different standard illuminants on tourmaline color red[J]. Acta Mineralogica Sinica, 2016, 36(2): 220-224. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201602009.htm
    宋彦军, 李甘雨, 张健, 等. 黄绿色明矾石玉的矿物学特征及颜色成因研究[J]. 岩矿测试, 2020, 39(5): 709-719. doi: 10.15898/j.cnki.11-2131/td.202003160036

    Song Y J, Li G Y, Zhang J, et al. Mineralogical characteristics and coloration mechanism of yellow-green alunite jade[J]. Rock and Mineral Analysis, 2020, 39(5): 709-719. doi: 10.15898/j.cnki.11-2131/td.202003160036
  • Related Articles

    [1]GAO Qiyun, ZHOU Li, YI Zebang, CHEN Zhengshan. Effect of Granularity on the Characteristic Visible-Near Infrared Spectra of Karst-Type Bauxite[J]. Rock and Mineral Analysis, 2024, 43(2): 234-246. DOI: 10.15898/j.ykcs.202308090133
    [2]ZHU Hongwei, CHENG Youfa, LI Ting, MA Xiao, DING Xiuyun, FAN Chunli, ZHAO Xiaoxue, CHEN Shuxiang, HU Jianhua. Gemological and Spectral Characteristics of a New Type of Emerald Synthesized by the Hydrothermal Method[J]. Rock and Mineral Analysis, 2023, 42(2): 307-316. DOI: 10.15898/j.cnki.11-2131/td.202203290067
    [3]SONG Yan-jun, LI Gan-yu, ZHANG Jian, TAO Long-feng, LIU Yun-gui, ZHANG Lu. Mineralogical Characteristics and Coloration Mechanism of Yellow-Green Alunite Jade[J]. Rock and Mineral Analysis, 2020, 39(5): 709-719. DOI: 10.15898/j.cnki.11-2131/td.202003160036
    [4]SHAO Hui-ping, YAN Xue-jun, YAN Jun, WANG Jin, YU Si-yi, PENG Qiu-jin, HU Xian-chao. Identification of Two Kinds of Seawater Cultured Gray Pearls by Fourier Transform Infrared Spectroscopy and Ultraviolet-visible Absorption Spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(5): 489-496. DOI: 10.15898/j.cnki.11-2131/td.201809280109
    [5]Zhong-hua SONG, Tai-jin LU, Jun SU, Jie KE, Shi TANG, Jian LI, GAO-bo, Jun ZHANG. Identification of HPHT-treated Hydrogen-rich Diamonds by Optical Absorption and Photo Luminescence Spectroscopy Techniques[J]. Rock and Mineral Analysis, 2018, 37(1): 64-69. DOI: 10.15898/j.cnki.11-2131/td.201705040072
    [6]Jun YAN, Dan-jing HU, Xue-bing HUANG, Qiu-jin PENG, Jin-hua LIU, Xu ZHANG, Jian ZHANG. Investigation of the Microstructure and Play of Color Mechanism of a Synthetic Opal by FTIR-SEM[J]. Rock and Mineral Analysis, 2017, 36(1): 59-65. DOI: 10.15898/j.cnki.11-2131/td.2017.01.009
    [7]Yi WANG, Na CHANG, Ya-fei LIU, Hui-bo ZHAO, San LIU. Study on the Mineralogical Characteristics of Cinnabar Jade by X-ray Powder Diffraction-Laser Raman Spectroscopy-Electron Probe from Xunyang, Shan'xi Province[J]. Rock and Mineral Analysis, 2014, 33(6): 802-807. DOI: 10.15898/j.cnki.11-2131/td.2014.06.007
    [8]Progress in Background Subtraction and Spectral Interference Correction in Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49-54.
    [9]Digitalization Application in Visible Spectroscopic Analysis of Chromium in Fe-based Alloy[J]. Rock and Mineral Analysis, 2008, 27(1): 33-36.
    [10]Characteristics of Visible Spectrum for Cu-based Alloy and Their Application[J]. Rock and Mineral Analysis, 2006, 25(4): 337-340.
  • Cited by

    Periodical cited type(3)

    1. 陈程,闫冰,尹作为,曹维宇,王文婧. 基于高光谱成像技术的“达碧兹”电气石光谱与可视化研究. 光谱学与光谱分析. 2024(12): 3429-3434 .
    2. 盛湘旗,杨云淇,王浩天,黄慧敏,王朝文. 内蒙古角力格太碧玺的宝石学和产地特征. 宝石和宝石学杂志(中英文). 2024(06): 1-14 .
    3. 李净净. 铬碧玺的宝石学及光谱学特征. 中国宝玉石. 2022(03): 3-8 .

    Other cited types(0)

Catalog

    Article views (331) PDF downloads (26) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return