Bao-dong CHEN, Xin ZHANG, Song-lin WU, Lin-feng LI. The Role of Arbuscular Mycorrhizal Fungi in Heavy Metal Translocation, Transformation and Accumulation in the Soil-Plant Continuum: Underlying Mechanisms and Ecological Implications[J]. Rock and Mineral Analysis, 2019, 38(1): 1-25. DOI: 10.15898/j.cnki.11-2131/td.201807110083
Citation: Bao-dong CHEN, Xin ZHANG, Song-lin WU, Lin-feng LI. The Role of Arbuscular Mycorrhizal Fungi in Heavy Metal Translocation, Transformation and Accumulation in the Soil-Plant Continuum: Underlying Mechanisms and Ecological Implications[J]. Rock and Mineral Analysis, 2019, 38(1): 1-25. DOI: 10.15898/j.cnki.11-2131/td.201807110083

The Role of Arbuscular Mycorrhizal Fungi in Heavy Metal Translocation, Transformation and Accumulation in the Soil-Plant Continuum: Underlying Mechanisms and Ecological Implications

More Information
  • Received Date: July 10, 2018
  • Revised Date: September 02, 2018
  • Accepted Date: September 09, 2018
  • Published Date: December 31, 2018
  • HIGHLIGHTS
    (1) An overview of the effects of arbuscular mycorrhizal fungi (AMF) on plant metal uptake and accumulation, and the factors influencing AM functions was performed.
    (2) From the aspects of AMF directly and indirectly affecting the process of heavy metal (HM) migration and transformation in soil plant systems, the mechanism of AMF enhancing plant heavy metal tolerance was summarized.
    (3) Potential application of AMF for bioremediation of HM contaminated soils was proposed.
    BACKGROUNDArbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi in natural and agricultural ecosystems. They are obligate symbionts that can form symbiotic association with the majority of terrestrial plants. AMF obtains carbohydrates from host plants to maintain its own growth; in return, AMF can help plants absorb mineral nutrients and water from the soil. Many studies demonstrate the importance of AM symbiosis in plant adaptation to various environmental stresses, including nutrient deficiency, drought stress and heavy metal (HM) contamination.
    OBJECTIVESTo summarize the underlying mechanisms for the enhanced plant tolerance to HMs by AM symbiosis, and to overview the possible involvements of AMF in HM translocation, transformation and accumulation in the soil-plant continuum.
    METHODSA literature review was conducted and a total of 189 publications were identified, from 1984 to 2018. Direct and indirect involvements of AMF in metal uptake and accumulation by host plants have been overviewed. Key factors influencing the mycorrhizal effects have been fully discussed.
    RESULTSAMF can take an active part in HM uptake, accumulation and detoxification, resulting in protective effects on host plants against HMs. On one hand, AMF can directly immobilize HMs, influence bioavailability of HMs, and consequently influence HM uptake and accumulation by host plants. On the other hand, AMF can also indirectly influence plant tolerance to HM by improving plant mineral nutrition and promoting plant growth. The mycorrhizal effects can be influenced largely by HM type and contamination level, plant and AM fungal species, and soil chemo-physical properties.
    CONCLUSIONSAMF can essentially influence plant metal uptake and tolerance, thus can be used for ecological restoration of HM contaminated soils. Future research should go deep into the stress physiology of AMF. The effectiveness of AMF in bioremediation is also expected to be tested under field conditions.

  • 崔玉静, 张旭红, 朱永官.体外模拟法在土壤-人途径重金属污染的健康风险评价中的应用[J].环境与健康杂志, 2007, 24(9):672-674. doi: 10.3969/j.issn.1001-5914.2007.09.006

    Cui Y J, Zhang X H, Zhu Y G.Health risk assessment of soil-oral exposure of heavy metal contaminated soil by in vitro method[J]. Journal of Environment and Health, 2007, 24(9):672-674. doi: 10.3969/j.issn.1001-5914.2007.09.006
    赵永红, 张涛, 成先雄.矿山废弃地植物修复中微生物的协同作用[J].中国矿业, 2008(10):46-48. doi: 10.3969/j.issn.1004-4051.2008.10.014

    Zhao Y H, Zhang T, Cheng X X.Cooperation effect of microbe in plant remediation of mining wasteland[J]. China Mining Magazine, 2008(10):46-48. doi: 10.3969/j.issn.1004-4051.2008.10.014
    周宝利, 陈玉成.植物修复的促进措施及根际微生物的作用[J].环境保护科学, 2006(3):39-42. doi: 10.3969/j.issn.1004-6216.2006.03.014

    Zhou B L, Chen Y C.Enhancing approaches of phytoremediation and role of rhizomicrobes in remediation processes[J]. Environmental Protection Science, 2006(3):39-42. doi: 10.3969/j.issn.1004-6216.2006.03.014
    Smith S E, Read D.Mycorrhizal Symbiosis[M]. San Diego:Academic Press, 2008:13-15.
    Garg N, Chandel S.Arbuscular mycorrhizal networks:Process and functions.A review[J]. Agronomy for Sustainable Development, 2010, 30:581-599. doi: 10.1051/agro/2009054
    Zarei M, Hempel S, Wubet T, et al.Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination[J]. Environmental Pollution, 2010, 158(8):2757-2765. doi: 10.1016/j.envpol.2010.04.017
    Whitfield L, Richards A J, Rimmer D L.Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in Northern England[J]. Mycorrhiza, 2004, 14(1):55-62. doi: 10.1007/s00572-003-0268-z
    Meier S, Borie F, Bolan N, et al.Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7):741-775. doi: 10.1080/10643389.2010.528518
    Wang F.Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration:Mechanisms and applications[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(20):1901-1957. doi: 10.1080/10643389.2017.1400853
    Chen B D, Tang X Y, Zhu Y G, et al.Metal concen-trations and mycorrhizal status of plants colonizing copper mine tailings:Potential for revegetation[J]. Science in China Series C-Life Sciences, 2005, 48(Supplement 1):156-164. http://www.cnki.com.cn/Article/CJFDTotal-JCXG2005S1021.htm
    伍松林, 张莘, 陈保冬.丛枝菌根对土壤-植物系统中重金属迁移转化的影响[J].生态毒理学报, 2013, 8(6):847-856. http://d.old.wanfangdata.com.cn/Periodical/cyyhj201306005

    Wu S L, Zhang X, Chen B D.Effects of arbuscular mycorrhizal fungi on heavy metal translocation and transformation in the soil-plant continuum[J]. Asian Journal of Ecotoxicology, 2013, 8(6):847-856. http://d.old.wanfangdata.com.cn/Periodical/cyyhj201306005
    Ortega-Larrocea M D, Xoconostle-Cazares B, Maldonado-Mendoza I E, et al.Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico[J]. Environmental Pollution, 2010, 158(5):1922-1931. doi: 10.1016/j.envpol.2009.10.034
    Regvar M, Likar M, Piltaver A, et al.Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site:The potential of screening in a model phytostabilisation study[J]. Plant and Soil, 2010, 330(1/2):345-356.
    Long L K, Yao Q, Guo J, et al.Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils[J]. European Journal of Soil Biology, 2010, 46(5):288-294. doi: 10.1016/j.ejsobi.2010.06.003
    Chen B D, Liu Y, Shen H, et al.Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.)[J]. Mycorrhiza, 2004, 14(6):347-354. doi: 10.1007/s00572-003-0281-2
    Chen B D, Li X L, Tao H Q, et al.The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc[J]. Chemosphere, 2003, 50(6):839-846. doi: 10.1016/S0045-6535(02)00228-X
    Andrade S A L, Abreu C A, de Abreu M F, et al.Influence of lead additions on arbuscular mycorrhiza and rhizobium symbioses under soybean plants[J]. Applied Soil Ecology, 2004, 26(2):123-131. doi: 10.1016/j.apsoil.2003.11.002
    Chen B D, Shen H, Li X L, et al.Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc[J]. Plant and Soil, 2004, 261(1/2):219-229. doi: 10.1023/B:PLSO.0000035538.09222.ff
    张淑彬.土壤中重金属镉铅对丛枝菌根真菌生长的直接影响研究[D].北京: 中国农业大学出版社, 2005. http://cdmd.cnki.com.cn/article/cdmd-10019-2005084346.htm

    Zhang S B.Direct Effects of Soil Cadmium and Lead on Growth of Arbuscular Mycorrhizal Fungi[D]. Beijing: China Agricultural University Press, 2005. http://cdmd.cnki.com.cn/article/cdmd-10019-2005084346.htm
    Zhang S, Feng G, Li X L.The direct effect of cadmium in soil on growth of arbuscular mycorrhizal fungi Glomus mosseae[J]. Mygosystema, 2005, 24(4):576-581. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jwxt200504017
    Chen X, Wu C H, Tang J J, et al.Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment[J]. Chemosphere, 2005, 60(5):665-671. doi: 10.1016/j.chemosphere.2005.01.029
    Leyval C, Turnau K, Haselwandter K.Effect of heavy metal pollution on mycorrhizal colonization and function:Physiological, ecological and applied aspects[J]. Mycorrhiza, 1997, 7(3):139-153. doi: 10.1007/s005720050174
    Chen B D, Zhu Y G, Duan J, et al.Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings[J]. Environmental Pollution, 2007, 147(2):374-380. doi: 10.1016/j.envpol.2006.04.027
    Dong Y, Zhu Y G, Smith F A, et al.Arbuscular mycorr-hiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil[J]. Environmental Pollution, 2008, 155(1):174-181. doi: 10.1016/j.envpol.2007.10.023
    Zhang X, Ren B H, Wu S L, et al.Arbuscular mycorr-hizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil[J]. Chemosphere, 2015, 119:224-230. doi: 10.1016/j.chemosphere.2014.06.042
    Zhang X, Ren B H, Wu S L, et al.Rhizophagus irregu-laris influences As and P uptake by alfafaand the neighboring non-host pepperweed growing in an As-contaminated soil[J]. Journal of Environmental Sciences, 2018, 67:36-44. doi: 10.1016/j.jes.2017.07.005
    Zhang X, Wu S L, Ren B H, et al.Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains[J]. Mycorrhiza, 2016, 26:299-309. doi: 10.1007/s00572-015-0669-9
    Wu S L, Hu Y J, Zhang X, et al.Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism[J]. Environmental and Experimental Botany, 2018, 147:43-52. doi: 10.1016/j.envexpbot.2017.11.010
    Wu S L, Chen B D, Sun Y Q, et al.Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(Ⅵ)-contaminated soils[J]. Environmental Toxicology and Chemistry, 2014, 33:2105-2113. doi: 10.1002/etc.v33.9
    Chen B D, Zhu Y G, Zhang X H, et al.The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil[J]. Environmental Science and Pollution Research, 2005, 12(6):325-331. doi: 10.1065/espr2005.06.267
    Davies F T, Puryear J D, Newton R J, et al.Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus)[J]. Journal of Plant Physiology, 2001, 158(6):777-786. doi: 10.1078/0176-1617-00311
    Li H Y, Smith S E, Holloway R E, et al.Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J]. New Phytologist, 2006, 172(3):536-543. doi: 10.1111/nph.2006.172.issue-3
    Feng G, Song Y C, Li X L, et al.Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil[J]. Applied Soil Ecology, 2003, 22(2):139-148. doi: 10.1016/S0929-1393(02)00133-6
    Yao Q, Li X L, Ai W D, et al.Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links[J]. European Journal of Soil Biology, 2003, 39(1):47-54. doi: 10.1016/S1164-5563(02)00008-0
    Chen B D, Roos P, Borggaard O K, et al.Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer[J]. New Phytologist, 2005, 165(2):591-598. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM15720669
    Chen B D, Xiao X Y, Zhu Y G, et al.The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa linn[J]. Science of the Total Environment, 2007, 379(2-3):226-234. doi: 10.1016/j.scitotenv.2006.07.038
    Chen B D, Jakobsen I, Roos P, et al.Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil[J]. Plant and Soil, 2005, 275(1/2):349-359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fda2e9d421c7bdc08cc35e13cb49eec9
    Bissonnette L, St-Arnaud M, Labrecque M.Phytoextrac-tion of heavy metals by two salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial[J]. Plant and Soil, 2010, 332(1-2):55-67. doi: 10.1007/s11104-009-0273-x
    Yu X Z, Cheng J M, Wong M H.Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass[J]. Soil Biology & Biochemistry, 2005, 37(2):195-201. https://www.sciencedirect.com/science/article/abs/pii/S0038071704002810
    刘灵芝, 李培军, 巩宗强, 等.矿区分离丛枝菌根真菌对万寿菊吸Cd潜力影响[J].微生物学通报, 2011, 38(4):575-582. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201104020

    Liu L Z, Li P J, Gong Z Q, et al.Effects of arbuscular mycorrhizal fungi isolated from mining area on the enhancement of Cd uptake in marigold plants[J]. Microbiology China, 2011, 38(4):575-582. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201104020
    Arriagada C, Aranda E, Sampedro I, et al.Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus[J]. Chemosphere, 2009, 77(2):273-278. doi: 10.1016/j.chemosphere.2009.07.042
    Citterio S, Prato N, Fumagalli P, et al.The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.[J]. Chemosphere, 2005, 59(1):21-29. doi: 10.1016/j.chemosphere.2004.10.009
    Li J L, Sun Y Q, Jiang X, et al.Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning[J]. Ecotoxicology and Environmental Safety, 2018, 157:235-243. doi: 10.1016/j.ecoenv.2018.03.073
    Findeneg G, Broda E.Mechanism of uptake of trace ele-ments by plant roots[J]. Nature, 1965, 208:196-197. doi: 10.1038/208196a0
    Dalton F N.Dual pattern of potassium-transport in plant-cells-A physical artifact of a single uptake mechanism[J]. Journal of Experimental Botany, 1984, 35(161):1723-1732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002112909
    Leitenmaier B, Witt A, Witzke A, et al.Biochemical and biophysical characterisation yields insights into the mechanism of a Cd/Zn transporting ATPase purified from the hyperaccumulator plant Thlaspi caerulescens[J]. Biochimica et Biophysica Acta-Biomembranes, 2011, 1808(10):2591-2599. doi: 10.1016/j.bbamem.2011.05.010
    Zhao F J, McGrath S P, Meharg A A.Arsenic as a food chain contaminant:Mechanisms of plant uptake and metabolism and mitigation strategies[J]. Annual Review of Plant Biology, 2010, 61:535-559. doi: 10.1146/annurev-arplant-042809-112152
    Kaszycki P, Gabrys H, Appenroth K J, et al.Exogenously applied sulphate as a tool to investigate transport and reduction of chromate in the duckweed Spirodela polyrhiza[J]. Plant Cell and Environment, 2005, 28(2):260-268. doi: 10.1111/pce.2005.28.issue-2
    Zhu Y G, Smolders E.Plant uptake of radiocaesium:A review of mechanisms, regulation and application[J]. Journal of Experimental Botany, 2000, 51(351):1635-1645. doi: 10.1093/jexbot/51.351.1635
    Cavagnaro T R.The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations:A review[J]. Plant and Soil, 2008, 304(1/2):315-325. doi: 10.1007/s11104-008-9559-7
    Carvalho L M, Cacador I, Martins-Loucao M A.Arbus-cular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L[J]. Plant and Soil, 2006, 285(1/2):161-169. doi: 10.1007/s11104-006-9001-y
    Wang F Y, Lin X G, Yin R.Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil[J]. Pedobiologia, 2007, 51(2):99-109. doi: 10.1016/j.pedobi.2007.02.003
    Latef A.Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.)[J]. Mycorrhiza, 2011, 21(6):495-503. doi: 10.1007/s00572-010-0360-0
    Xu P L, Christie P, Liu Y, et al.The arbuscular mycorr-hizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake[J]. Environmental Pollution, 2008, 156(1):215-220. doi: 10.1016/j.envpol.2008.01.003
    Yu Y, Zhang S Z, Huang H L, et al.Arsenic accumu-lation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae[J]. Journal of Agricultural and Food Chemistry, 2009, 57(9):3695-3701. doi: 10.1021/jf900107y
    Eleiwa M M E.Effect of different concentrations of zinc or cadmium on Vigna sinensis plants in presence or absence of arbuscular mycorrhizal fungi and rhizobia[J]. Egyptian Journal of Soil Science, 2004, 44(3):385-405. http://d.old.wanfangdata.com.cn/Periodical/xblxyxb201803025
    Hutchinson J J, Young S D, Black C R, et al.Deter-mining uptake of radio-labile soil cadmium by arbuscular mycorrhizal hyphae using isotopic dilution in a compartmented-pot system[J]. New Phytologist, 2004, 164(3):477-484. doi: 10.1111/j.1469-8137.2004.01206.x
    Janouskova M, Vosatka M, Rossi L, et al.Effects of arbuscular mycorrhizal inoculation on cadmium accumulation by different tobacco (Nicotiana tabacum L.) types[J]. Applied Soil Ecology, 2007, 35(3):502-510. doi: 10.1016/j.apsoil.2006.10.002
    Hovsepyan A, Greipsson S.Effect of arbuscular mycorr-hizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil[J]. International Journal of Phytoremediation, 2004, 6(4):305-321. doi: 10.1080/16226510490888820
    Wu F Y, Ye Z H, Wong M H.Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L[J]. Chemosphere, 2009, 76(9):1258-1264. doi: 10.1016/j.chemosphere.2009.05.020
    Vinichuk M, Martensson A, Ericsson T, et al.Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils[J]. Journal of Environmental Radioactivity, 2013, 115:151-156. doi: 10.1016/j.jenvrad.2012.08.004
    de Souza L A, de Andrade S A L, de Souza S C R, et al.Tolerance and phytoremediation potential of Stizolobium aterrimum associated to the arbuscular mycorrhizal fungi Glomus etunicatum in lead-contaminated soil[J]. Revista Brasileira De Ciencia Do Solo, 2011, 35(4):1441-1451. doi: 10.1590/S0100-06832011000400038
    Liu L, Zhang Y, Li P, et al.Effect of arbuscular mycorr-hizal fungi isolated from mining area on growth and Cd uptake of Tagetes erecta L.[J]. Acta Pedologica Sinica, 2012, 49(1):43-49.
    Zhong W I, Li J T, Chen Y T, et al.A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi[J]. Journal of Environmental Monitoring, 2012, 14(9):2497-2504. doi: 10.1039/c2em30333g
    Garg N, Kaur H.Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi[J]. Journal of Plant Nutrition, 2013, 36(1):67-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/01904167.2012.733051
    Shen H, Christie P, Li X.Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium[J]. Environmental Geochemistry and Health, 2006, 28(1/2):111-119. doi: 10.1007/s10653-005-9020-2
    Chen B D, Zhu Y G, Smith F A.Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil[J]. Chemosphere, 2006, 62(9):1464-1473. doi: 10.1016/j.chemosphere.2005.06.008
    Liu Y, Christie P, Zhang J L, et al.Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus[J]. Environmental and Experimental Botany, 2009, 66(3):435-441. doi: 10.1016/j.envexpbot.2009.03.002
    Vogel-Mikus K, Pongrac P, Kump P, et al.Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake[J]. Environmental Pollution, 2006, 139(2):362-371. doi: 10.1016/j.envpol.2005.05.005
    Audet P, Charest C.Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation:Meta-analytical and conceptual perspectives[J]. Environmental Pollution, 2007, 147(3):609-614. doi: 10.1016/j.envpol.2006.10.006
    Janouskova M, Pavlikova D, Macek T, et al.Influence of arbuscular mycorrhiza on the growth and cadmium uptake of tobacco with inserted metallothionein gene[J]. Applied Soil Ecology, 2005, 29(3):209-214. doi: 10.1016/j.apsoil.2004.12.006
    Biro I, Nemeth T, Takacs T.Changes of parameters of infectivity and efficiency of different Glomus mosseae arbuscular mycorrhizal fungi strains in cadmium-loaded soils[J]. Communications in Soil Science and Plant Analysis, 2009, 40(1/2/3/4/5/6):227-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c410d1e0ece1f841686487752015253b
    Yu Y, Zhang S Z, Huang H L, et al.Uptake of arsenic by maize inoculated with three different arbuscular mycorrhizal fungi[J]. Communications in Soil Science and Plant Analysis, 2010, 41(6):735-743. doi: 10.1080/00103620903563964
    刘茵, 孔凡美, 冯固, 等.丛枝菌根真菌对紫羊茅镉吸收与分配的影响[J].环境科学学报, 2004, 24(6):1122-1127. doi: 10.3321/j.issn:0253-2468.2004.06.029

    Liu Y, Kong F, Feng G, et al.Effect of arbuscular mycorrhizal fungi on cadmium uptake and translocation in Festuca rubra plant[J]. Acta Scientiae Circumstantiae, 2004, 24(6):1122-1127. doi: 10.3321/j.issn:0253-2468.2004.06.029
    de Andrade S A L, Jorge R A, da Silveira A P D.Cadmium effect on the association of jackbean (Canavalia ensiformis) and arbuscular mycorrhizal fungi[J]. Scientia Agricola, 2005, 62(4):389-394. doi: 10.1590/S0103-90162005000400013
    Hua J F, Lin X G, Yin R, et al.Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.)[J]. Journal of Environmental Sciences-China, 2009, 21(9):1214-1220. doi: 10.1016/S1001-0742(08)62406-7
    Sudova R, Vosatka M.Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants[J]. Plant and Soil, 2007, 296(1/2):77-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45769064937388db6cb765321c638a51
    Weissenhorn I, Glashoff A, Leyval C, et al.Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils[J]. Plant and Soil, 1994, 167(2):189-196. doi: 10.1007/BF00007944
    Tullio M, Pierandrei F, Salerno A, et al.Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil[J]. Biology and Fertility of Soils, 2003, 37(4):211-214. doi: 10.1007/s00374-003-0580-y
    于永光, 赵斌.不同pH水平下两种菌根真菌对紫云英生长的影响及其相互作用[J].菌物学报, 2008, 27(2):209-216. http://d.old.wanfangdata.com.cn/Periodical/jwxt200802007

    Yu Y G, Zhao B.The interaction and effect of two species of arbuscular mycorrhizal fungi on the growth of Astragalus sinicus L. at different pH level[J]. Mycosystema, 2008, 27(2):209-216. http://d.old.wanfangdata.com.cn/Periodical/jwxt200802007
    冯海艳, 刘茵, 冯固, 等.接种AM真菌对黑麦草吸收和分配Cd的影响[J].农业环境科学学报, 2005, 24(3):426-431. doi: 10.3321/j.issn:1672-2043.2005.03.003

    Feng H Y, Liu Y, Feng G, et al.Effect of arbuscular mycorrhizal fungi on uptake and distribution of cadmium in Lolium L.[J]. Journal of Agro-environment Science, 2005, 24(3):426-431. doi: 10.3321/j.issn:1672-2043.2005.03.003
    Coughlan A P, Dalpe Y, Lapointe L, et al.Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests[J]. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2000, 30(10):1543-1554. doi: 10.1139/x00-090
    Gao X P, Tenuta M, Flaten D N, et al.Cadmium concen-tration in flax colonized by mycorrhizal fungi depends on soil phosphorus and cadmium concentrations[J]. Communications in Soil Science and Plant Analysis, 2011, 42(15):1882-1897. doi: 10.1080/00103624.2011.587572
    Angle J S, Heckman J R.Effect of soil-pH and sewage-sludge on VA mycorrhizal infection of soybeans[J]. Plant and Soil, 1986, 93(3):437-441. doi: 10.1007/BF02374294
    Robinson B H, Leblanc M, Petit D, et al.The potential of Thlaspi caerulescens for phytoremediation of contaminated soils[J]. Plant and Soil, 1998, 203(1):47-56. doi: 10.1023/A:1004328816645
    Christophersen H M, Smith F A, Smith S E.Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway[J]. New Phytologist, 2009, 184(4):962-974. doi: 10.1111/j.1469-8137.2009.03009.x
    Kothari S K, Marschner H, George E.Effect of VA my-corrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize[J]. New Phytologist, 1990, 116(2):303-311. doi: 10.1111/nph.1990.116.issue-2
    Guo Y, George E, Marschner H.Contribution of an arbu-scular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants[J]. Plant and Soil, 1996, 184(2):195-205. doi: 10.1007/BF00010449
    Joner E J, Leyval C.Uptake of Cd-109 by roots and hyphae of a Glomus mosseae Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium[J]. New Phytologist, 1997, 135(2):353-360. doi: 10.1046/j.1469-8137.1997.00633.x
    Jansa J, Mozafar A, Frossard E.Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize[J]. Agronomie, 2003, 23(5/6):481-488. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5e3574471df33d0cee55d828b2b7ae1
    Gonzalez-Chavez M D A, Ortega-Larrocea M D, Carrillo-Gonzalez R, et al.Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza[J]. Fungal Biology, 2011, 115(12):1197-1209. https://www.sciencedirect.com/science/article/pii/S1878614611001577
    Dupre de B H, Voets L, Delvaux B, et al.Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions[J]. Environmental Microbiology, 2006, 8(11):1926-1934. doi: 10.1111/emi.2006.8.issue-11
    Rufyikiri G, Thiry Y, Declerck S.Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions[J]. New Phytologist, 2003, 158(2):391-399. doi: 10.1046/j.1469-8137.2003.00747.x
    Wu S L, Zhang X, Sun Y Q, et al.Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS[J]. Environmental Science & Technology, 2015, 49:14036-14047. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=487c2f070c788d423ce08a59f50bcd61
    Wu S L, Zhang X, Sun Y Q, et al.Chromium immobili-zation by extra-and intraradical fungal structures of arbuscular mycorrhizal symbioses[J]. Journal of Hazardous Materials, 2016, 316:34-42. doi: 10.1016/j.jhazmat.2016.05.017
    Galli U, Schuepp H, Brunold C.Heavy-metal binding by mycorrhizal fungi[J]. Physiologia Plantarum, 1994, 92(2):364-368. doi: 10.1111/ppl.1994.92.issue-2
    Chen B D, Christie P, Li X L.A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza[J]. Chemosphere, 2001, 42(2):185-192. doi: 10.1016/S0045-6535(00)00124-7
    陈保冬, 李晓林, 朱永官.丛枝菌根真菌菌丝体吸附重金属的潜力及特征[J].菌物学报, 2005, 24(2):283-291. http://d.old.wanfangdata.com.cn/Periodical/jwxt200502019

    Chen B D, Li X L, Zhu Y G.Potential and characteristics of heavy metals adsorption by AM fungal mycelium[J]. Mycosystema, 2005, 24(2):283-291. http://d.old.wanfangdata.com.cn/Periodical/jwxt200502019
    Joner E J, Briones R, Leyval C.Metal-binding capacity of arbuscular mycorrhizal mycelium[J]. Plant and Soil, 2000, 226(2):227-234. doi: 10.1023/A:1026565701391
    Gonzalez-Chavez C, D'Haen J, Vangronsveld J, et al.Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil[J]. Plant and Soil, 2002, 240(2):287-297. doi: 10.1023/A:1015794622592
    Zhang X H, Lin A J, Gao Y L, et al.Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake[J]. Soil Biology and Biochemistry, 2009, 41(5):930-935. doi: 10.1016/j.soilbio.2008.08.011
    Weiersbye I M, Straker C J, Przybylowicz W J.Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings[J]. Nuclear Instruments & Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1999, 158(1/2/3/4):335-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9c1362bf7ce2358268cfc8bc956e14f
    Gonzalez-Guerrero M, Melville L H, Ferrol N, et al.Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices[J]. Canadian Journal of Microbiology, 2008, 54(2):103-110. doi: 10.1139/W07-119
    Wu S L, Zhang X, Chen B D, et al.Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance[J]. Environmental and Experimental Botany, 2016, 122:10-18. doi: 10.1016/j.envexpbot.2015.08.006
    Nayuki K, Chen B D, Ohtomo R, et al.Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence[J]. Microbes and Environments, 2014, 29(1):60-66. doi: 10.1264/jsme2.ME13093
    Wu S L, Vosátka M, Vogel-Mikus K, et al.Nano zero-valent iron mediated metal (loid) uptake and translocation by arbuscular mycorrhizal symbioses[J]. Environmental Science & Technology, 2018, DOI: 10.1021/acs.est.7b05516.
    Subramanian K S, Tenshia V, Jayalakshmi K, et al.Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization[J]. Applied Soil Ecology, 2009, 43(1):32-39. doi: 10.1016/j.apsoil.2009.05.009
    张旭红, 林爱军, 张莘, 等.丛枝菌根真菌对旱稻根际Pb形态分布的影响[J].中国农学通报, 2012, 28(6):24-29. doi: 10.3969/j.issn.1000-6850.2012.06.005

    Zhang X H, Lin A J, Zhang X, et al.The effects of arbuscular mycorrhizal fungi (AMF) on forms of Pb in the upland rice rhizosphere[J]. Chinese Agricultural Science Bulletin, 2012, 28(6):24-29. doi: 10.3969/j.issn.1000-6850.2012.06.005
    Manceau A, Nagy K L, Marcus M A, et al.Formation of metallic copper nanoparticles at the soil-root interface[J]. Environmental Science & Technology, 2008, 42(5):1766-1772. doi: 10.1089-fpd.2009.0421/
    Huang Y, Tao S, Chen Y J.The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil[J]. Journal of Environmental Sciences-China, 2005, 17(2):276-280. http://www.cnki.com.cn/Article/CJFDTotal-HJKB200502022.htm
    Leung H M, Wu F Y, Cheung K C, et al.Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator[J]. Journal of Hazardous Materials, 2010, 181(1-3):497-507. doi: 10.1016/j.jhazmat.2010.05.042
    刘云霞, 周益奇, 董妍, 等.接种丛枝菌根真菌(Glomus mosseae)对旱稻吸收砷及土壤砷形态变化的影响[J].生态毒理学报, 2012, 7(2):195-200. http://d.old.wanfangdata.com.cn/Periodical/cyyhj201202012

    Liu Y X, Zhou Y Q, Dong Y, et al.Effect of inoculation of arbuscular mycorrhizal fungi (Glomus mosseae) on As uptake of upland rice and transformation of As speciation in soil[J]. Asian Journal of Ecotoxicology, 2012, 7(2):195-200. http://d.old.wanfangdata.com.cn/Periodical/cyyhj201202012
    Rillig M C.Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian Journal of Soil Science, 2004, 84(4):355-363. doi: 10.4141/S04-003
    Rillig M C, Wright S F, Nichols K A, et al.Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant and Soil, 2001, 233(2):167-177. doi: 10.1023/A:1010364221169
    Gonzalez-Chavez M C, Carrillo-Gonzalez R, Wright S F, et al.The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental Pollution, 2004, 130(3):317-323. doi: 10.1016/j.envpol.2004.01.004
    Driver J D, Holben W E, Rillig M C.Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology & Biochemistry, 2005, 37(1):101-106. https://www.sciencedirect.com/science/article/abs/pii/S0038071704002718
    Cornejo P, Meiera S, Borie G, et al.Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration[J]. Science of the Total Environment, 2008, 406(1-2):154-160. doi: 10.1016/j.scitotenv.2008.07.045
    Vodnik D, Grcman H, Macek I, et al.The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil[J]. Science of the Total Environment, 2008, 392(1):130-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5796ed291317d90d3751ad9a7e9a5bf
    Gonzáalez-Chávez M C, Carrillo-González R, Wright S F.The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental Pollution, 2004, 130(3):317-323. https://www.sciencedirect.com/science/article/pii/S0269749104000375
    Posta K, Marschner H, Romheld V.Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize[J]. Mycorrhiza, 1994, 5(2):119-124. doi: 10.1007/BF00202343
    Kothari S K, Marschner H, Romheld V. Effect of a vesicular arbuscular mycorrhizal fungus and rhizosphere microorganisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea Mays L.)[J]. New Phytologist, 1991, 117(4):649-655. doi: 10.1111/nph.1991.117.issue-4
    Solis-Dominguez F A, Valentin-Vargas A, Chorover J, et al.Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings[J]. Science of the Total Environment, 2011, 409(6):1009-1016. doi: 10.1016/j.scitotenv.2010.11.020
    Li X L, Christie P.Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil[J]. Chemosphere, 2001, 42(2):201-207. doi: 10.1016/S0045-6535(00)00126-0
    Bethlenfalvay G J, Andrade G, Azcon-Aguilar C.Plant and soil responses to mycorrhizal fungi and rhizobacteria in nodulated or nitrate-fertilized peas (Pisum sativum L.)[J]. Biology and Fertility of Soils, 1997, 24(2):164-168. doi: 10.1007/s003740050225
    Bi Y L, Li X L, Christie P.Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus[J]. Chemosphere, 2003, 50(6):831-837. doi: 10.1016/S0045-6535(02)00227-8
    Janouskova M, Pavlikova D.Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium[J]. Plant and Soil, 2010, 332(1/2):511-520. doi: 10.1007-s11104-010-0317-2/
    González-Chávez M del C A, Ortega-Larrocea M del P, Carrillo-González R, et al.Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza[J]. Fungal Biology, 2011, 115(12):1197-209. doi: 10.1016/j.funbio.2011.08.005
    González-Guerrero M, Azcón-Aguilar C, Mooney M, et al.Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family[J]. Fungal Genetics and Biology, 2005, 42(2):130-140. doi: 10.1016/j.fgb.2004.10.007
    Burleigh S H, Kristensen B K, Bechmann I E.A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization[J]. Plant Molecular Biology, 2003, 52(5):1077-1088. doi: 10.1023/A:1025479701246
    Chen B, Nayuki K, Kuga Y, et al.Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis[J]. Microbes and Environments, 2018:ME18010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_4356321
    González-Guerrero M, Melville L H, Ferrol N, et al.Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices[J]. Canadian Journal of Microbiology, 2008, 54(2):103-110. doi: 10.1139/W07-119?journalCode=cjm#.XGywoPm-CZQ
    Li J L, Sun Y Q, Zhang X, et al.A novel methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization[J]. Chemosphere, 2018, 209:392-400. doi: 10.1016/j.chemosphere.2018.06.092
    Chen X, Li H, Chan W F, et al.Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress[J]. Chemosphere, 2012, 89(10):1248-1254. doi: 10.1016/j.chemosphere.2012.07.054
    Christophersen H M, Smith F A, Smith S E.Unraveling the influence of arbuscular mycorrhizal colonization on arsenic tolerance in medicago:Glomus mosseae is more effective than G. intraradices, associated with lower expression of root epidermal Pi transporter genes[J]. Frontiers in Physiology, 2012, 3:91. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3325761
    陈英旭.土壤重金属的植物污染化学[M].北京:科学出版社, 2008:74-84.

    Chen Y X.Plant Contamination Chemistry of Heavy Metals in Soil[M]. Beijing:Science Press, 2008:74-84.
    Paradi I, Berecz B, Halasz K, et al.Influence of arbuscular mycorrhiza and cadmium on the polyamine contents of Ri T-DNA transformed Daucus carota L. root cultures[J]. Acta Biologica Szegediensis, 2003, 47(1/2/3/4):31-36. http://www.academia.edu/6138512/Influence_of_arbuscular_mycorrhiza_and_cadmium_on_the_polyamine_contents_of_Ri_T-DNA_transformed_Daucus_carota_L._root_cultures
    Aloui A, Dumas-Gaudot E, Daher Z, et al.Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation[J]. Plant Physiology and Biochemistry, 2012, 60:233-239. doi: 10.1016/j.plaphy.2012.08.014
    Andrade S A L, Gratao P L, Schiavinato M A, et al.Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations[J]. Chemosphere, 200975(10):1363-1370. doi: 10.1016/j.chemosphere.2009.02.008
    Liu L Z, Gong Z Q, Zhang Y L, et al.Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi[J]. Pedosphere, 2011, 21(3):319-327. doi: 10.1016/S1002-0160(11)60132-X
    Campagnac E, Sahraoui A L H, Debiane D, et al.Arbuscular mycorrhiza partially protect chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid[J]. Mycorrhiza, 2010, 20(3):167-178. doi: 10.1007/s00572-009-0267-9
    Garg N, Chandel S.Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp under NaCl and Cd stresses[J]. Journal of Plant Growth Regulation, 2012, 31(3):292-308. doi: 10.1007/s00344-011-9239-3
    Ouziad F, Hildebrandt U, Schmelzer E, et al.Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress[J]. Journal of Plant Physiology, 2005, 162(6):634-649. doi: 10.1016/j.jplph.2004.09.014
    Cicatelli A, Lingua G, Todeschini V, et al.Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression[J]. Annals of Botany, 2010, 106(5):791-802. doi: 10.1093/aob/mcq170
    Rivera-Becerril F, van Tuinen D, Martin-Laurent F, et al.Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress[J]. Mycorrhiza, 2005, 16(1):51-60. doi: 10.1007/s00572-005-0016-7
    梁宇, 荆玉祥, 沈世华.植物蛋白质组学研究进展[J].植物生态学报, 2004, 28(1):114-125. doi: 10.3321/j.issn:1005-264X.2004.01.017

    Liang Y, Jing Y X, Shen S H.Advances in plant proteomics[J]. Chinese Journal of Plant Ecology, 2004, 28(1):114-125. doi: 10.3321/j.issn:1005-264X.2004.01.017
    Repetto O, Bestel-Corre G, Dumas-Gaudot E, et al.Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots[J]. New Phytologist, 2003, 157(3):555-567. doi: 10.1046/j.1469-8137.2003.00682.x
    Aloui A, Recorbet G, Gollotte A, et al.On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis:A root proteomic study[J]. Proteomics, 2009, 9(2):420-433. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19072729
    王真辉.丛枝菌根对植物吸收转运砷的影响及砷胁迫相关比较蛋白组学研究[D].北京: 中国农业大学出版社, 2009: 75-89.

    Wang Z H.Effects of Arbuscular Mycorrhiza on Arsenic Uptake and Translocation in Plants and Comparative Genomics Studies on Arsenic Stress[D]. Beijing: China Agricultural University Press, 2009: 75-89.
    Halliwell B, Gutteridge J M C.Free Radicals in Biology and Medicine[M]. New York:Oxford Science Publications, 1999:31-47.
    Avery S V.Metal toxicity in yeasts and the role of oxidative stress[J]. Advances in Applied Microbiology, 2001, 49:111-142. doi: 10.1016/S0065-2164(01)49011-3
    孙存普, 张建中, 段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社, 1999:30-32.

    Sun C P, Zhang J Z, Duan S J.Introduction to Free Radical Biology[M]. Hefei:University of Science and Technology of China Press, 1999:30-32.
    Fridovich I.Superoxide radical and superoxide dismutase[J]. Biochemical Society Transactions, 1973, 1:48-50. doi: 10.1042/bst0010048
    Miller A F.Superoxide dismutases:Active sites that save, but a protein that kills[J]. Current Opinion in Chemical Biology, 2004, 8(2):162-168. doi: 10.1016/j.cbpa.2004.02.011
    Sturtz L A, Diekert K, Jensen L T, et al.A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria-A physiological role for SOD1 in guarding against mitochondrial oxidative damage[J]. Journal of Biological Chemistry, 2001, 276(41):38084-38089. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2305553da1969c828ee650abd131ed6
    Lanfranco L, Novero M, Bonfante P.The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts[J]. Plant Physiology, 2005, 137(4):1319-1330. doi: 10.1104/pp.104.050435
    González-Guerrero M, Oger E, Benabdellah K, et al.Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices[J]. Current Genetics, 2010, 56(3):265-274. doi: 10.1007/s00294-010-0298-y
    Sheehan D, Meade G, Foley V M, et al.Structure, function and evolution of glutathione transferases:Implications for classification of non-mammalian members of an ancient enzyme superfamily[J]. Biochemical Journal, 2001, 360:1-16. doi: 10.1042/bj3600001
    Waschke A, Sieh D, Tamasloukht M, et al.Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices[J]. Mycorrhiza, 2006, 17(1):1-10. doi: 10.1007/s00572-006-0075-4
    Benabdellah K, Azcon-Aguilar C, Valderas A, et al.GintPDX1 encodes a protein involved in vitamin B6 biosynthesis that is up-regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus intraradices[J]. New Phytologist, 2009, 184(3):682-693. doi: 10.1111/nph.2009.184.issue-3
    Benabdellah K, Merlos M, Azconaguilar C, et al.GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress[J]. Fungal Genetics and Biology, 2009, 46(1):94-103. doi: 10.1016/j.fgb.2008.09.013
    Lanfranco L.The fine-tuning of heavy metals in my-corrhizal fungi[J]. New Phytologist, 2007, 174(1):3-6. doi: 10.1111/j.1469-8137.2007.02029.x
    Gonzalez-Guerrero M, Cano C, Azcon-Aguilar C, et al.GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress[J]. Mycorrhiza, 2007, 17(4):327-335. doi: 10.1007/s00572-007-0108-7
    Bergero R, Lanfranco L, Ghignone S, et al.Enhanced activity of the GmarMT1 promoter from the mycorrhizal fungus Gigaspora margarita at limited carbon supply[J]. Fungal Genetics and Biology, 2007, 44(9):877-885. doi: 10.1016/j.fgb.2007.01.010
    Lanfranco L, Bolchi A, Ros E C, et al.Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus[J]. Plant Physiology, 2002, 130(1):58-67. doi: 10.1104-pp.003525/
    González-Guerrero M, Benabdellah K, Valderas A, et al.GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices[J]. Mycorrhiza, 2009, 20(2):137-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31940163642fde03f5d816113d3dd5dd
    Azcón-Aguilar C, Barea J M, Gianinazzi S, et al.Mycorrhizas-functional Processes and Ecological Impact[M]. Heidelberg:Springer, 2009:107-122.
    Montanini B, Blaudez D, Jeandroz S, et al.Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family:Improved signature and prediction of substrate specificity[J]. BMC Genomics, 2007, 8:107 doi: 10.1186/1471-2164-8-107.
    Eide D J.The SLC39 family of metal ion transporters[J]. Pflugers Archiv-European Journal of Physiology, 2004, 447(5):796-800. doi: 10.1007/s00424-003-1074-3
    Hildebrandt U, Regvar M, Bothe H.Arbuscular mycorr-hiza and heavy metal tolerance[J]. Phytochemistry, 2007, 68(1):139-146. doi: 10.1016/j.phytochem.2006.09.023
    李景龙, 孙玉青, 陈心桐, 等.接种AM真菌和施加铁可协同降低水稻砷累积[J].菌物学报, 2017, 36(7):1037-1047. http://d.old.wanfangdata.com.cn/Periodical/jwxt201707022

    Li J L, Sun Y Q, Chen X T, et al.Arbuscular mycorrhizal inoculation and ferrum addition synergistically reduce arsenic accumulation in Oryza sativa[J]. Mycosystema, 2017, 36(7):1037-1047. http://d.old.wanfangdata.com.cn/Periodical/jwxt201707022
    Hamel C.Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture[J]. Agriculture, Ecosystems & Environment, 1996, 60(2/3):197-210. doi: 10.1016-S0167-8809(96)01071-7/
    Cano C, Bago A, Dalpe Y.Glomus custos sp. nov., isolated from a naturally heavy metal-polluted environment in Southern Spain[J]. Mycotaxon, 2009, 109:499-515. doi: 10.5248/109.499
    Leung H M, Ye Z H, Wong M H.Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils[J]. Environmental Pollution, 2006, 139(1):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e26b2e89f7dae778ea4aaf3b03ee0e1
    Liu Y, Zhu Y G, Chen B D, et al.Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L.[J]. Mycorrhiza, 2005, 15(3):187-192. doi: 10.1007/s00572-004-0320-7
    Ma Y, Dickinson N M, Wong M H.Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings[J]. Soil Biology & Biochemistry, 2006, 38(6):1403-1412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e25b2f7eaf27ec8e5dbc1990b4455ba4
    Vivas A, Biro B, Campos E, et al.Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp isolated from cadmium polluted soil under increasing cadmium levels[J]. Environmental Pollution, 2003, 126(2):179-189. doi: 10.1016/S0269-7491(03)00195-7
    余海波, 周守标, 宋静, 等.铜尾矿库能源植物稳定化修复过程中定居植物多样性研究[J].中国农学通报, 2010, 26(18):341-346. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201018074

    Yu H B, Zhou S B, Song J, et al.Diversity of settled plants during energy crops phytostabilization on copper mine tailings reservoir[J]. Chinese Agricultural Science Bulletin, 2010, 26(18):341-346. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201018074
    Solhi M, Shareatmadari H, Hajabbasi M.Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus[J]. Water, Air and Soil Pollution, 2005, 167(1/2/3/4):59-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebb0b15fb4048416e68c5218d4e368ff
    Marchiol L, Assolari S, Sacco P, et al.Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil[J]. Environmental Pollution, 2004, 132(1):21-27. doi: 10.1016/j.envpol.2004.04.001
    Chen B C, Lai H Y, Juang K W.Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass[J]. Ecotoxicology and Environmental Safety, 2012, 80:393-400. doi: 10.1016/j.ecoenv.2012.04.011
    郭家文, 张跃彬, 刘少春.能源甘蔗在3种尾矿砂上的生长适应性研究[J].西南农业学报, 2010, 23(5):1443-1446. doi: 10.3969/j.issn.1001-4829.2010.05.012

    Guo J W, Zhang Y B, Liu S C.Influence of three kinds of mine tailings on growth of adaptability in energy cane[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(5):1443-1446. doi: 10.3969/j.issn.1001-4829.2010.05.012
    侯新村, 范希峰, 武菊英, 等.草本能源植物修复重金属污染土壤的潜力[J].中国草地学报, 2012, 34(1):59-64. doi: 10.3969/j.issn.1673-5021.2012.01.011

    Hou X C, Fan X F, Wu J Y, et al.Potentiality of herbaceous bioenergy plants in remediation of soil contaminated by heavy metals[J]. Chinese Journal of Grassland, 2012, 34(1):59-64. doi: 10.3969/j.issn.1673-5021.2012.01.011
    Gamalero E, Lingua G, Berta G, et al.Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress[J]. Canadian Journal of Microbiology, 2009, 55(5):501-514. doi: 10.1139/W09-010
    毕银丽, 吴福勇, 武玉坤.丛枝菌根在煤矿区生态重建中的应用[J].生态学报, 2005, 25(8):2068-2073. doi: 10.3321/j.issn:1000-0933.2005.08.034

    Bi Y L, Wu F Y, Wu Y K.Application of arbuscular mycorrhizas in ecological restoration of areas affected by coal mining in China[J]. Acta Ecologica Sinica, 2005, 25(8):2068-2073. doi: 10.3321/j.issn:1000-0933.2005.08.034
    毕银丽, 吴王燕, 刘银平.丛枝菌根在煤矸石山土地复垦中的应用[J].生态学报, 2007, 27(9):3738-3743. doi: 10.3321/j.issn:1000-0933.2007.09.023

    Bi Y L, Wu W Y, Liu Y P.Application of arbuscular mycorrhizas in land reclamation of coal spoil heaps[J]. Acta Ecologica Sinica, 2007, 27(9):3738-3743. doi: 10.3321/j.issn:1000-0933.2007.09.023
    杜善周, 毕银丽, 吴王燕, 等.丛枝菌根对矿区环境修复的生态效应[J].农业工程学报, 2008, 24(4):113-116. doi: 10.3321/j.issn:1002-6819.2008.04.022

    Du S Z, Bi Y L, Wu W Y, et al.Ecological effects of arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(4):113-116. doi: 10.3321/j.issn:1002-6819.2008.04.022
    毕银丽, 吴福勇, 全文智.菌根与豆科植物组合在煤矿区废弃物的生态效应[J].中国矿业大学学报, 2006, 35(3):329-335. doi: 10.3321/j.issn:1000-1964.2006.03.009

    Bi Y L, Wu F Y, Quan W Z.Ecological effects of matching between mycorrhizal fungus and leguminous plants in solid wastes of mine area[J]. Journal of China University of Mining & Technology, 2006, 35(3):329-335. doi: 10.3321/j.issn:1000-1964.2006.03.009
    Yang C, Hamel C, Schellenberg M P, et al.Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in Semiarid Grasslands National Park, Canada[J]. Microbial Ecology, 2010, 59(4):724-733. doi: 10.1007/s00248-009-9629-2
    Urcelay C, Diaz S.The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity[J]. Ecology Letters, 2003, 6(5):388-391. doi: 10.1046/j.1461-0248.2003.00444.x
  • Related Articles

    [1]HE Yu-jun, SUN Meng-he, SHEN Ya-ting, SHUAI Qin, LUO Li-qiang. Research Progress on the Interaction Mechanism between Hyperaccumulator and Heavy Metals and Its Application[J]. Rock and Mineral Analysis, 2020, 39(5): 639-657. DOI: 10.15898/j.cnki.11-2131/td.202004140048
    [2]ZHANG Li-feng, LIU Jie-min, ZHANG Yi-ming. Distribution Characteristics of Rare Earth Elements in Plants and Soils from the Bayan Obo Mining Area[J]. Rock and Mineral Analysis, 2019, 38(5): 556-564. DOI: 10.15898/j.cnki.11-2131/td.201809200107
    [3]Yuan ZENG, Li-qiang LUO. Research Progress on the Application and Interaction Mechanism between Specific Microorganisms and Heavy Metals in Soil[J]. Rock and Mineral Analysis, 2017, 36(3): 209-221. DOI: 10.15898/j.cnki.11-2131/td.201701170009
    [4]WANG Rui, LIU Fei, ZHANG Yuan, CHEN Hong-han, QIN Li-hong. A Review on Pollution Status and Microbial Remediation Technologies of Perchlorate in the Environmental Medium[J]. Rock and Mineral Analysis, 2012, 31(4): 689-698.
    [5]TAN Ke-yan, LIU Xiao-duan, LIU Jiu-chen, TANG Qi-feng, HUANG Yuan-ying, LUO Song-guang. Remediation Experiments of Attapulgite Clay to Heavy Metal Contaminated Soil[J]. Rock and Mineral Analysis, 2011, 30(4): 451-456.
    [6]LIU Chun-hua, CEN Kuang, YU Yang. Study on the Occurrence States of Heavy Metals in Street Dusts of Beijing City and Their Environmental Effects[J]. Rock and Mineral Analysis, 2011, 30(2): 205-209.
    [7]TAN Ke-yan, LIU Xiao-duan, HUANG Yuan-ying, CHEN Yan-fang. Study on Adsorption Effects of Heavy Metal Ions by Reformed Soils with Fixed Ratios of Sodiummodified Bentonite to Soil at Different pH Conditions[J]. Rock and Mineral Analysis, 2010, 29(4): 411-413.
    [8]CHEN Yanfang, LIU Xiaoduan, TAN Keyan. The Application Feasibility of AB-DTPA Extraction in RemediationSimulation Experiments of Heavy Metal Contaminated Soils[J]. Rock and Mineral Analysis, 2010, 29(2): 131-135.
    [9]WANG Chang, GUO Peng-ran, CHEN Hang-ting, SHU Yong-hong. Evaluation of Bioavailability of Heavy Metals in Soils and Sediments[J]. Rock and Mineral Analysis, 2009, 28(2): 108-112.
    [10]LI Xiao-ge, PAN Jing, XI Dan-li , YANG Ming. Bioavailability and Speciation Analysis of Heavy Metals in Textile Dyeing Sludge[J]. Rock and Mineral Analysis, 2009, 28(1): 10-14.

Catalog

    Article views (2833) PDF downloads (90) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return