Citation: | Bao-dong CHEN, Xin ZHANG, Song-lin WU, Lin-feng LI. The Role of Arbuscular Mycorrhizal Fungi in Heavy Metal Translocation, Transformation and Accumulation in the Soil-Plant Continuum: Underlying Mechanisms and Ecological Implications[J]. Rock and Mineral Analysis, 2019, 38(1): 1-25. DOI: 10.15898/j.cnki.11-2131/td.201807110083 |
崔玉静, 张旭红, 朱永官.体外模拟法在土壤-人途径重金属污染的健康风险评价中的应用[J].环境与健康杂志, 2007, 24(9):672-674. doi: 10.3969/j.issn.1001-5914.2007.09.006
Cui Y J, Zhang X H, Zhu Y G.Health risk assessment of soil-oral exposure of heavy metal contaminated soil by in vitro method[J]. Journal of Environment and Health, 2007, 24(9):672-674. doi: 10.3969/j.issn.1001-5914.2007.09.006
|
赵永红, 张涛, 成先雄.矿山废弃地植物修复中微生物的协同作用[J].中国矿业, 2008(10):46-48. doi: 10.3969/j.issn.1004-4051.2008.10.014
Zhao Y H, Zhang T, Cheng X X.Cooperation effect of microbe in plant remediation of mining wasteland[J]. China Mining Magazine, 2008(10):46-48. doi: 10.3969/j.issn.1004-4051.2008.10.014
|
周宝利, 陈玉成.植物修复的促进措施及根际微生物的作用[J].环境保护科学, 2006(3):39-42. doi: 10.3969/j.issn.1004-6216.2006.03.014
Zhou B L, Chen Y C.Enhancing approaches of phytoremediation and role of rhizomicrobes in remediation processes[J]. Environmental Protection Science, 2006(3):39-42. doi: 10.3969/j.issn.1004-6216.2006.03.014
|
Smith S E, Read D.Mycorrhizal Symbiosis[M]. San Diego:Academic Press, 2008:13-15.
|
Garg N, Chandel S.Arbuscular mycorrhizal networks:Process and functions.A review[J]. Agronomy for Sustainable Development, 2010, 30:581-599. doi: 10.1051/agro/2009054
|
Zarei M, Hempel S, Wubet T, et al.Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination[J]. Environmental Pollution, 2010, 158(8):2757-2765. doi: 10.1016/j.envpol.2010.04.017
|
Whitfield L, Richards A J, Rimmer D L.Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in Northern England[J]. Mycorrhiza, 2004, 14(1):55-62. doi: 10.1007/s00572-003-0268-z
|
Meier S, Borie F, Bolan N, et al.Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7):741-775. doi: 10.1080/10643389.2010.528518
|
Wang F.Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration:Mechanisms and applications[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(20):1901-1957. doi: 10.1080/10643389.2017.1400853
|
Chen B D, Tang X Y, Zhu Y G, et al.Metal concen-trations and mycorrhizal status of plants colonizing copper mine tailings:Potential for revegetation[J]. Science in China Series C-Life Sciences, 2005, 48(Supplement 1):156-164. http://www.cnki.com.cn/Article/CJFDTotal-JCXG2005S1021.htm
|
伍松林, 张莘, 陈保冬.丛枝菌根对土壤-植物系统中重金属迁移转化的影响[J].生态毒理学报, 2013, 8(6):847-856. http://d.old.wanfangdata.com.cn/Periodical/cyyhj201306005
Wu S L, Zhang X, Chen B D.Effects of arbuscular mycorrhizal fungi on heavy metal translocation and transformation in the soil-plant continuum[J]. Asian Journal of Ecotoxicology, 2013, 8(6):847-856. http://d.old.wanfangdata.com.cn/Periodical/cyyhj201306005
|
Ortega-Larrocea M D, Xoconostle-Cazares B, Maldonado-Mendoza I E, et al.Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico[J]. Environmental Pollution, 2010, 158(5):1922-1931. doi: 10.1016/j.envpol.2009.10.034
|
Regvar M, Likar M, Piltaver A, et al.Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site:The potential of screening in a model phytostabilisation study[J]. Plant and Soil, 2010, 330(1/2):345-356.
|
Long L K, Yao Q, Guo J, et al.Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils[J]. European Journal of Soil Biology, 2010, 46(5):288-294. doi: 10.1016/j.ejsobi.2010.06.003
|
Chen B D, Liu Y, Shen H, et al.Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.)[J]. Mycorrhiza, 2004, 14(6):347-354. doi: 10.1007/s00572-003-0281-2
|
Chen B D, Li X L, Tao H Q, et al.The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc[J]. Chemosphere, 2003, 50(6):839-846. doi: 10.1016/S0045-6535(02)00228-X
|
Andrade S A L, Abreu C A, de Abreu M F, et al.Influence of lead additions on arbuscular mycorrhiza and rhizobium symbioses under soybean plants[J]. Applied Soil Ecology, 2004, 26(2):123-131. doi: 10.1016/j.apsoil.2003.11.002
|
Chen B D, Shen H, Li X L, et al.Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc[J]. Plant and Soil, 2004, 261(1/2):219-229. doi: 10.1023/B:PLSO.0000035538.09222.ff
|
张淑彬.土壤中重金属镉铅对丛枝菌根真菌生长的直接影响研究[D].北京: 中国农业大学出版社, 2005. http://cdmd.cnki.com.cn/article/cdmd-10019-2005084346.htm
Zhang S B.Direct Effects of Soil Cadmium and Lead on Growth of Arbuscular Mycorrhizal Fungi[D]. Beijing: China Agricultural University Press, 2005. http://cdmd.cnki.com.cn/article/cdmd-10019-2005084346.htm
|
Zhang S, Feng G, Li X L.The direct effect of cadmium in soil on growth of arbuscular mycorrhizal fungi Glomus mosseae[J]. Mygosystema, 2005, 24(4):576-581. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jwxt200504017
|
Chen X, Wu C H, Tang J J, et al.Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment[J]. Chemosphere, 2005, 60(5):665-671. doi: 10.1016/j.chemosphere.2005.01.029
|
Leyval C, Turnau K, Haselwandter K.Effect of heavy metal pollution on mycorrhizal colonization and function:Physiological, ecological and applied aspects[J]. Mycorrhiza, 1997, 7(3):139-153. doi: 10.1007/s005720050174
|
Chen B D, Zhu Y G, Duan J, et al.Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings[J]. Environmental Pollution, 2007, 147(2):374-380. doi: 10.1016/j.envpol.2006.04.027
|
Dong Y, Zhu Y G, Smith F A, et al.Arbuscular mycorr-hiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil[J]. Environmental Pollution, 2008, 155(1):174-181. doi: 10.1016/j.envpol.2007.10.023
|
Zhang X, Ren B H, Wu S L, et al.Arbuscular mycorr-hizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil[J]. Chemosphere, 2015, 119:224-230. doi: 10.1016/j.chemosphere.2014.06.042
|
Zhang X, Ren B H, Wu S L, et al.Rhizophagus irregu-laris influences As and P uptake by alfafaand the neighboring non-host pepperweed growing in an As-contaminated soil[J]. Journal of Environmental Sciences, 2018, 67:36-44. doi: 10.1016/j.jes.2017.07.005
|
Zhang X, Wu S L, Ren B H, et al.Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains[J]. Mycorrhiza, 2016, 26:299-309. doi: 10.1007/s00572-015-0669-9
|
Wu S L, Hu Y J, Zhang X, et al.Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism[J]. Environmental and Experimental Botany, 2018, 147:43-52. doi: 10.1016/j.envexpbot.2017.11.010
|
Wu S L, Chen B D, Sun Y Q, et al.Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(Ⅵ)-contaminated soils[J]. Environmental Toxicology and Chemistry, 2014, 33:2105-2113. doi: 10.1002/etc.v33.9
|
Chen B D, Zhu Y G, Zhang X H, et al.The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil[J]. Environmental Science and Pollution Research, 2005, 12(6):325-331. doi: 10.1065/espr2005.06.267
|
Davies F T, Puryear J D, Newton R J, et al.Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus)[J]. Journal of Plant Physiology, 2001, 158(6):777-786. doi: 10.1078/0176-1617-00311
|
Li H Y, Smith S E, Holloway R E, et al.Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J]. New Phytologist, 2006, 172(3):536-543. doi: 10.1111/nph.2006.172.issue-3
|
Feng G, Song Y C, Li X L, et al.Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil[J]. Applied Soil Ecology, 2003, 22(2):139-148. doi: 10.1016/S0929-1393(02)00133-6
|
Yao Q, Li X L, Ai W D, et al.Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links[J]. European Journal of Soil Biology, 2003, 39(1):47-54. doi: 10.1016/S1164-5563(02)00008-0
|
Chen B D, Roos P, Borggaard O K, et al.Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer[J]. New Phytologist, 2005, 165(2):591-598. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM15720669
|
Chen B D, Xiao X Y, Zhu Y G, et al.The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa linn[J]. Science of the Total Environment, 2007, 379(2-3):226-234. doi: 10.1016/j.scitotenv.2006.07.038
|
Chen B D, Jakobsen I, Roos P, et al.Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil[J]. Plant and Soil, 2005, 275(1/2):349-359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fda2e9d421c7bdc08cc35e13cb49eec9
|
Bissonnette L, St-Arnaud M, Labrecque M.Phytoextrac-tion of heavy metals by two salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial[J]. Plant and Soil, 2010, 332(1-2):55-67. doi: 10.1007/s11104-009-0273-x
|
Yu X Z, Cheng J M, Wong M H.Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass[J]. Soil Biology & Biochemistry, 2005, 37(2):195-201. https://www.sciencedirect.com/science/article/abs/pii/S0038071704002810
|
刘灵芝, 李培军, 巩宗强, 等.矿区分离丛枝菌根真菌对万寿菊吸Cd潜力影响[J].微生物学通报, 2011, 38(4):575-582. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201104020
Liu L Z, Li P J, Gong Z Q, et al.Effects of arbuscular mycorrhizal fungi isolated from mining area on the enhancement of Cd uptake in marigold plants[J]. Microbiology China, 2011, 38(4):575-582. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201104020
|
Arriagada C, Aranda E, Sampedro I, et al.Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus[J]. Chemosphere, 2009, 77(2):273-278. doi: 10.1016/j.chemosphere.2009.07.042
|
Citterio S, Prato N, Fumagalli P, et al.The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.[J]. Chemosphere, 2005, 59(1):21-29. doi: 10.1016/j.chemosphere.2004.10.009
|
Li J L, Sun Y Q, Jiang X, et al.Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning[J]. Ecotoxicology and Environmental Safety, 2018, 157:235-243. doi: 10.1016/j.ecoenv.2018.03.073
|
Findeneg G, Broda E.Mechanism of uptake of trace ele-ments by plant roots[J]. Nature, 1965, 208:196-197. doi: 10.1038/208196a0
|
Dalton F N.Dual pattern of potassium-transport in plant-cells-A physical artifact of a single uptake mechanism[J]. Journal of Experimental Botany, 1984, 35(161):1723-1732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002112909
|
Leitenmaier B, Witt A, Witzke A, et al.Biochemical and biophysical characterisation yields insights into the mechanism of a Cd/Zn transporting ATPase purified from the hyperaccumulator plant Thlaspi caerulescens[J]. Biochimica et Biophysica Acta-Biomembranes, 2011, 1808(10):2591-2599. doi: 10.1016/j.bbamem.2011.05.010
|
Zhao F J, McGrath S P, Meharg A A.Arsenic as a food chain contaminant:Mechanisms of plant uptake and metabolism and mitigation strategies[J]. Annual Review of Plant Biology, 2010, 61:535-559. doi: 10.1146/annurev-arplant-042809-112152
|
Kaszycki P, Gabrys H, Appenroth K J, et al.Exogenously applied sulphate as a tool to investigate transport and reduction of chromate in the duckweed Spirodela polyrhiza[J]. Plant Cell and Environment, 2005, 28(2):260-268. doi: 10.1111/pce.2005.28.issue-2
|
Zhu Y G, Smolders E.Plant uptake of radiocaesium:A review of mechanisms, regulation and application[J]. Journal of Experimental Botany, 2000, 51(351):1635-1645. doi: 10.1093/jexbot/51.351.1635
|
Cavagnaro T R.The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations:A review[J]. Plant and Soil, 2008, 304(1/2):315-325. doi: 10.1007/s11104-008-9559-7
|
Carvalho L M, Cacador I, Martins-Loucao M A.Arbus-cular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L[J]. Plant and Soil, 2006, 285(1/2):161-169. doi: 10.1007/s11104-006-9001-y
|
Wang F Y, Lin X G, Yin R.Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil[J]. Pedobiologia, 2007, 51(2):99-109. doi: 10.1016/j.pedobi.2007.02.003
|
Latef A.Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.)[J]. Mycorrhiza, 2011, 21(6):495-503. doi: 10.1007/s00572-010-0360-0
|
Xu P L, Christie P, Liu Y, et al.The arbuscular mycorr-hizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake[J]. Environmental Pollution, 2008, 156(1):215-220. doi: 10.1016/j.envpol.2008.01.003
|
Yu Y, Zhang S Z, Huang H L, et al.Arsenic accumu-lation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae[J]. Journal of Agricultural and Food Chemistry, 2009, 57(9):3695-3701. doi: 10.1021/jf900107y
|
Eleiwa M M E.Effect of different concentrations of zinc or cadmium on Vigna sinensis plants in presence or absence of arbuscular mycorrhizal fungi and rhizobia[J]. Egyptian Journal of Soil Science, 2004, 44(3):385-405. http://d.old.wanfangdata.com.cn/Periodical/xblxyxb201803025
|
Hutchinson J J, Young S D, Black C R, et al.Deter-mining uptake of radio-labile soil cadmium by arbuscular mycorrhizal hyphae using isotopic dilution in a compartmented-pot system[J]. New Phytologist, 2004, 164(3):477-484. doi: 10.1111/j.1469-8137.2004.01206.x
|
Janouskova M, Vosatka M, Rossi L, et al.Effects of arbuscular mycorrhizal inoculation on cadmium accumulation by different tobacco (Nicotiana tabacum L.) types[J]. Applied Soil Ecology, 2007, 35(3):502-510. doi: 10.1016/j.apsoil.2006.10.002
|
Hovsepyan A, Greipsson S.Effect of arbuscular mycorr-hizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil[J]. International Journal of Phytoremediation, 2004, 6(4):305-321. doi: 10.1080/16226510490888820
|
Wu F Y, Ye Z H, Wong M H.Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L[J]. Chemosphere, 2009, 76(9):1258-1264. doi: 10.1016/j.chemosphere.2009.05.020
|
Vinichuk M, Martensson A, Ericsson T, et al.Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils[J]. Journal of Environmental Radioactivity, 2013, 115:151-156. doi: 10.1016/j.jenvrad.2012.08.004
|
de Souza L A, de Andrade S A L, de Souza S C R, et al.Tolerance and phytoremediation potential of Stizolobium aterrimum associated to the arbuscular mycorrhizal fungi Glomus etunicatum in lead-contaminated soil[J]. Revista Brasileira De Ciencia Do Solo, 2011, 35(4):1441-1451. doi: 10.1590/S0100-06832011000400038
|
Liu L, Zhang Y, Li P, et al.Effect of arbuscular mycorr-hizal fungi isolated from mining area on growth and Cd uptake of Tagetes erecta L.[J]. Acta Pedologica Sinica, 2012, 49(1):43-49.
|
Zhong W I, Li J T, Chen Y T, et al.A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi[J]. Journal of Environmental Monitoring, 2012, 14(9):2497-2504. doi: 10.1039/c2em30333g
|
Garg N, Kaur H.Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi[J]. Journal of Plant Nutrition, 2013, 36(1):67-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/01904167.2012.733051
|
Shen H, Christie P, Li X.Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium[J]. Environmental Geochemistry and Health, 2006, 28(1/2):111-119. doi: 10.1007/s10653-005-9020-2
|
Chen B D, Zhu Y G, Smith F A.Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil[J]. Chemosphere, 2006, 62(9):1464-1473. doi: 10.1016/j.chemosphere.2005.06.008
|
Liu Y, Christie P, Zhang J L, et al.Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus[J]. Environmental and Experimental Botany, 2009, 66(3):435-441. doi: 10.1016/j.envexpbot.2009.03.002
|
Vogel-Mikus K, Pongrac P, Kump P, et al.Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake[J]. Environmental Pollution, 2006, 139(2):362-371. doi: 10.1016/j.envpol.2005.05.005
|
Audet P, Charest C.Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation:Meta-analytical and conceptual perspectives[J]. Environmental Pollution, 2007, 147(3):609-614. doi: 10.1016/j.envpol.2006.10.006
|
Janouskova M, Pavlikova D, Macek T, et al.Influence of arbuscular mycorrhiza on the growth and cadmium uptake of tobacco with inserted metallothionein gene[J]. Applied Soil Ecology, 2005, 29(3):209-214. doi: 10.1016/j.apsoil.2004.12.006
|
Biro I, Nemeth T, Takacs T.Changes of parameters of infectivity and efficiency of different Glomus mosseae arbuscular mycorrhizal fungi strains in cadmium-loaded soils[J]. Communications in Soil Science and Plant Analysis, 2009, 40(1/2/3/4/5/6):227-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c410d1e0ece1f841686487752015253b
|
Yu Y, Zhang S Z, Huang H L, et al.Uptake of arsenic by maize inoculated with three different arbuscular mycorrhizal fungi[J]. Communications in Soil Science and Plant Analysis, 2010, 41(6):735-743. doi: 10.1080/00103620903563964
|
刘茵, 孔凡美, 冯固, 等.丛枝菌根真菌对紫羊茅镉吸收与分配的影响[J].环境科学学报, 2004, 24(6):1122-1127. doi: 10.3321/j.issn:0253-2468.2004.06.029
Liu Y, Kong F, Feng G, et al.Effect of arbuscular mycorrhizal fungi on cadmium uptake and translocation in Festuca rubra plant[J]. Acta Scientiae Circumstantiae, 2004, 24(6):1122-1127. doi: 10.3321/j.issn:0253-2468.2004.06.029
|
de Andrade S A L, Jorge R A, da Silveira A P D.Cadmium effect on the association of jackbean (Canavalia ensiformis) and arbuscular mycorrhizal fungi[J]. Scientia Agricola, 2005, 62(4):389-394. doi: 10.1590/S0103-90162005000400013
|
Hua J F, Lin X G, Yin R, et al.Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.)[J]. Journal of Environmental Sciences-China, 2009, 21(9):1214-1220. doi: 10.1016/S1001-0742(08)62406-7
|
Sudova R, Vosatka M.Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants[J]. Plant and Soil, 2007, 296(1/2):77-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45769064937388db6cb765321c638a51
|
Weissenhorn I, Glashoff A, Leyval C, et al.Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils[J]. Plant and Soil, 1994, 167(2):189-196. doi: 10.1007/BF00007944
|
Tullio M, Pierandrei F, Salerno A, et al.Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil[J]. Biology and Fertility of Soils, 2003, 37(4):211-214. doi: 10.1007/s00374-003-0580-y
|
于永光, 赵斌.不同pH水平下两种菌根真菌对紫云英生长的影响及其相互作用[J].菌物学报, 2008, 27(2):209-216. http://d.old.wanfangdata.com.cn/Periodical/jwxt200802007
Yu Y G, Zhao B.The interaction and effect of two species of arbuscular mycorrhizal fungi on the growth of Astragalus sinicus L. at different pH level[J]. Mycosystema, 2008, 27(2):209-216. http://d.old.wanfangdata.com.cn/Periodical/jwxt200802007
|
冯海艳, 刘茵, 冯固, 等.接种AM真菌对黑麦草吸收和分配Cd的影响[J].农业环境科学学报, 2005, 24(3):426-431. doi: 10.3321/j.issn:1672-2043.2005.03.003
Feng H Y, Liu Y, Feng G, et al.Effect of arbuscular mycorrhizal fungi on uptake and distribution of cadmium in Lolium L.[J]. Journal of Agro-environment Science, 2005, 24(3):426-431. doi: 10.3321/j.issn:1672-2043.2005.03.003
|
Coughlan A P, Dalpe Y, Lapointe L, et al.Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests[J]. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2000, 30(10):1543-1554. doi: 10.1139/x00-090
|
Gao X P, Tenuta M, Flaten D N, et al.Cadmium concen-tration in flax colonized by mycorrhizal fungi depends on soil phosphorus and cadmium concentrations[J]. Communications in Soil Science and Plant Analysis, 2011, 42(15):1882-1897. doi: 10.1080/00103624.2011.587572
|
Angle J S, Heckman J R.Effect of soil-pH and sewage-sludge on VA mycorrhizal infection of soybeans[J]. Plant and Soil, 1986, 93(3):437-441. doi: 10.1007/BF02374294
|
Robinson B H, Leblanc M, Petit D, et al.The potential of Thlaspi caerulescens for phytoremediation of contaminated soils[J]. Plant and Soil, 1998, 203(1):47-56. doi: 10.1023/A:1004328816645
|
Christophersen H M, Smith F A, Smith S E.Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway[J]. New Phytologist, 2009, 184(4):962-974. doi: 10.1111/j.1469-8137.2009.03009.x
|
Kothari S K, Marschner H, George E.Effect of VA my-corrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize[J]. New Phytologist, 1990, 116(2):303-311. doi: 10.1111/nph.1990.116.issue-2
|
Guo Y, George E, Marschner H.Contribution of an arbu-scular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants[J]. Plant and Soil, 1996, 184(2):195-205. doi: 10.1007/BF00010449
|
Joner E J, Leyval C.Uptake of Cd-109 by roots and hyphae of a Glomus mosseae Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium[J]. New Phytologist, 1997, 135(2):353-360. doi: 10.1046/j.1469-8137.1997.00633.x
|
Jansa J, Mozafar A, Frossard E.Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize[J]. Agronomie, 2003, 23(5/6):481-488. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5e3574471df33d0cee55d828b2b7ae1
|
Gonzalez-Chavez M D A, Ortega-Larrocea M D, Carrillo-Gonzalez R, et al.Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza[J]. Fungal Biology, 2011, 115(12):1197-1209. https://www.sciencedirect.com/science/article/pii/S1878614611001577
|
Dupre de B H, Voets L, Delvaux B, et al.Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions[J]. Environmental Microbiology, 2006, 8(11):1926-1934. doi: 10.1111/emi.2006.8.issue-11
|
Rufyikiri G, Thiry Y, Declerck S.Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions[J]. New Phytologist, 2003, 158(2):391-399. doi: 10.1046/j.1469-8137.2003.00747.x
|
Wu S L, Zhang X, Sun Y Q, et al.Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS[J]. Environmental Science & Technology, 2015, 49:14036-14047. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=487c2f070c788d423ce08a59f50bcd61
|
Wu S L, Zhang X, Sun Y Q, et al.Chromium immobili-zation by extra-and intraradical fungal structures of arbuscular mycorrhizal symbioses[J]. Journal of Hazardous Materials, 2016, 316:34-42. doi: 10.1016/j.jhazmat.2016.05.017
|
Galli U, Schuepp H, Brunold C.Heavy-metal binding by mycorrhizal fungi[J]. Physiologia Plantarum, 1994, 92(2):364-368. doi: 10.1111/ppl.1994.92.issue-2
|
Chen B D, Christie P, Li X L.A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza[J]. Chemosphere, 2001, 42(2):185-192. doi: 10.1016/S0045-6535(00)00124-7
|
陈保冬, 李晓林, 朱永官.丛枝菌根真菌菌丝体吸附重金属的潜力及特征[J].菌物学报, 2005, 24(2):283-291. http://d.old.wanfangdata.com.cn/Periodical/jwxt200502019
Chen B D, Li X L, Zhu Y G.Potential and characteristics of heavy metals adsorption by AM fungal mycelium[J]. Mycosystema, 2005, 24(2):283-291. http://d.old.wanfangdata.com.cn/Periodical/jwxt200502019
|
Joner E J, Briones R, Leyval C.Metal-binding capacity of arbuscular mycorrhizal mycelium[J]. Plant and Soil, 2000, 226(2):227-234. doi: 10.1023/A:1026565701391
|
Gonzalez-Chavez C, D'Haen J, Vangronsveld J, et al.Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil[J]. Plant and Soil, 2002, 240(2):287-297. doi: 10.1023/A:1015794622592
|
Zhang X H, Lin A J, Gao Y L, et al.Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake[J]. Soil Biology and Biochemistry, 2009, 41(5):930-935. doi: 10.1016/j.soilbio.2008.08.011
|
Weiersbye I M, Straker C J, Przybylowicz W J.Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings[J]. Nuclear Instruments & Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1999, 158(1/2/3/4):335-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9c1362bf7ce2358268cfc8bc956e14f
|
Gonzalez-Guerrero M, Melville L H, Ferrol N, et al.Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices[J]. Canadian Journal of Microbiology, 2008, 54(2):103-110. doi: 10.1139/W07-119
|
Wu S L, Zhang X, Chen B D, et al.Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance[J]. Environmental and Experimental Botany, 2016, 122:10-18. doi: 10.1016/j.envexpbot.2015.08.006
|
Nayuki K, Chen B D, Ohtomo R, et al.Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence[J]. Microbes and Environments, 2014, 29(1):60-66. doi: 10.1264/jsme2.ME13093
|
Wu S L, Vosátka M, Vogel-Mikus K, et al.Nano zero-valent iron mediated metal (loid) uptake and translocation by arbuscular mycorrhizal symbioses[J]. Environmental Science & Technology, 2018, DOI: 10.1021/acs.est.7b05516.
|
Subramanian K S, Tenshia V, Jayalakshmi K, et al.Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization[J]. Applied Soil Ecology, 2009, 43(1):32-39. doi: 10.1016/j.apsoil.2009.05.009
|
张旭红, 林爱军, 张莘, 等.丛枝菌根真菌对旱稻根际Pb形态分布的影响[J].中国农学通报, 2012, 28(6):24-29. doi: 10.3969/j.issn.1000-6850.2012.06.005
Zhang X H, Lin A J, Zhang X, et al.The effects of arbuscular mycorrhizal fungi (AMF) on forms of Pb in the upland rice rhizosphere[J]. Chinese Agricultural Science Bulletin, 2012, 28(6):24-29. doi: 10.3969/j.issn.1000-6850.2012.06.005
|
Manceau A, Nagy K L, Marcus M A, et al.Formation of metallic copper nanoparticles at the soil-root interface[J]. Environmental Science & Technology, 2008, 42(5):1766-1772. doi: 10.1089-fpd.2009.0421/
|
Huang Y, Tao S, Chen Y J.The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil[J]. Journal of Environmental Sciences-China, 2005, 17(2):276-280. http://www.cnki.com.cn/Article/CJFDTotal-HJKB200502022.htm
|
Leung H M, Wu F Y, Cheung K C, et al.Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator[J]. Journal of Hazardous Materials, 2010, 181(1-3):497-507. doi: 10.1016/j.jhazmat.2010.05.042
|
刘云霞, 周益奇, 董妍, 等.接种丛枝菌根真菌(Glomus mosseae)对旱稻吸收砷及土壤砷形态变化的影响[J].生态毒理学报, 2012, 7(2):195-200. http://d.old.wanfangdata.com.cn/Periodical/cyyhj201202012
Liu Y X, Zhou Y Q, Dong Y, et al.Effect of inoculation of arbuscular mycorrhizal fungi (Glomus mosseae) on As uptake of upland rice and transformation of As speciation in soil[J]. Asian Journal of Ecotoxicology, 2012, 7(2):195-200. http://d.old.wanfangdata.com.cn/Periodical/cyyhj201202012
|
Rillig M C.Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian Journal of Soil Science, 2004, 84(4):355-363. doi: 10.4141/S04-003
|
Rillig M C, Wright S F, Nichols K A, et al.Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant and Soil, 2001, 233(2):167-177. doi: 10.1023/A:1010364221169
|
Gonzalez-Chavez M C, Carrillo-Gonzalez R, Wright S F, et al.The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental Pollution, 2004, 130(3):317-323. doi: 10.1016/j.envpol.2004.01.004
|
Driver J D, Holben W E, Rillig M C.Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology & Biochemistry, 2005, 37(1):101-106. https://www.sciencedirect.com/science/article/abs/pii/S0038071704002718
|
Cornejo P, Meiera S, Borie G, et al.Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration[J]. Science of the Total Environment, 2008, 406(1-2):154-160. doi: 10.1016/j.scitotenv.2008.07.045
|
Vodnik D, Grcman H, Macek I, et al.The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil[J]. Science of the Total Environment, 2008, 392(1):130-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5796ed291317d90d3751ad9a7e9a5bf
|
Gonzáalez-Chávez M C, Carrillo-González R, Wright S F.The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental Pollution, 2004, 130(3):317-323. https://www.sciencedirect.com/science/article/pii/S0269749104000375
|
Posta K, Marschner H, Romheld V.Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize[J]. Mycorrhiza, 1994, 5(2):119-124. doi: 10.1007/BF00202343
|
Kothari S K, Marschner H, Romheld V. Effect of a vesicular arbuscular mycorrhizal fungus and rhizosphere microorganisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea Mays L.)[J]. New Phytologist, 1991, 117(4):649-655. doi: 10.1111/nph.1991.117.issue-4
|
Solis-Dominguez F A, Valentin-Vargas A, Chorover J, et al.Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings[J]. Science of the Total Environment, 2011, 409(6):1009-1016. doi: 10.1016/j.scitotenv.2010.11.020
|
Li X L, Christie P.Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil[J]. Chemosphere, 2001, 42(2):201-207. doi: 10.1016/S0045-6535(00)00126-0
|
Bethlenfalvay G J, Andrade G, Azcon-Aguilar C.Plant and soil responses to mycorrhizal fungi and rhizobacteria in nodulated or nitrate-fertilized peas (Pisum sativum L.)[J]. Biology and Fertility of Soils, 1997, 24(2):164-168. doi: 10.1007/s003740050225
|
Bi Y L, Li X L, Christie P.Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus[J]. Chemosphere, 2003, 50(6):831-837. doi: 10.1016/S0045-6535(02)00227-8
|
Janouskova M, Pavlikova D.Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium[J]. Plant and Soil, 2010, 332(1/2):511-520. doi: 10.1007-s11104-010-0317-2/
|
González-Chávez M del C A, Ortega-Larrocea M del P, Carrillo-González R, et al.Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza[J]. Fungal Biology, 2011, 115(12):1197-209. doi: 10.1016/j.funbio.2011.08.005
|
González-Guerrero M, Azcón-Aguilar C, Mooney M, et al.Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family[J]. Fungal Genetics and Biology, 2005, 42(2):130-140. doi: 10.1016/j.fgb.2004.10.007
|
Burleigh S H, Kristensen B K, Bechmann I E.A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization[J]. Plant Molecular Biology, 2003, 52(5):1077-1088. doi: 10.1023/A:1025479701246
|
Chen B, Nayuki K, Kuga Y, et al.Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis[J]. Microbes and Environments, 2018:ME18010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_4356321
|
González-Guerrero M, Melville L H, Ferrol N, et al.Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices[J]. Canadian Journal of Microbiology, 2008, 54(2):103-110. doi: 10.1139/W07-119?journalCode=cjm#.XGywoPm-CZQ
|
Li J L, Sun Y Q, Zhang X, et al.A novel methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization[J]. Chemosphere, 2018, 209:392-400. doi: 10.1016/j.chemosphere.2018.06.092
|
Chen X, Li H, Chan W F, et al.Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress[J]. Chemosphere, 2012, 89(10):1248-1254. doi: 10.1016/j.chemosphere.2012.07.054
|
Christophersen H M, Smith F A, Smith S E.Unraveling the influence of arbuscular mycorrhizal colonization on arsenic tolerance in medicago:Glomus mosseae is more effective than G. intraradices, associated with lower expression of root epidermal Pi transporter genes[J]. Frontiers in Physiology, 2012, 3:91. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3325761
|
陈英旭.土壤重金属的植物污染化学[M].北京:科学出版社, 2008:74-84.
Chen Y X.Plant Contamination Chemistry of Heavy Metals in Soil[M]. Beijing:Science Press, 2008:74-84.
|
Paradi I, Berecz B, Halasz K, et al.Influence of arbuscular mycorrhiza and cadmium on the polyamine contents of Ri T-DNA transformed Daucus carota L. root cultures[J]. Acta Biologica Szegediensis, 2003, 47(1/2/3/4):31-36. http://www.academia.edu/6138512/Influence_of_arbuscular_mycorrhiza_and_cadmium_on_the_polyamine_contents_of_Ri_T-DNA_transformed_Daucus_carota_L._root_cultures
|
Aloui A, Dumas-Gaudot E, Daher Z, et al.Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation[J]. Plant Physiology and Biochemistry, 2012, 60:233-239. doi: 10.1016/j.plaphy.2012.08.014
|
Andrade S A L, Gratao P L, Schiavinato M A, et al.Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations[J]. Chemosphere, 200975(10):1363-1370. doi: 10.1016/j.chemosphere.2009.02.008
|
Liu L Z, Gong Z Q, Zhang Y L, et al.Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi[J]. Pedosphere, 2011, 21(3):319-327. doi: 10.1016/S1002-0160(11)60132-X
|
Campagnac E, Sahraoui A L H, Debiane D, et al.Arbuscular mycorrhiza partially protect chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid[J]. Mycorrhiza, 2010, 20(3):167-178. doi: 10.1007/s00572-009-0267-9
|
Garg N, Chandel S.Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp under NaCl and Cd stresses[J]. Journal of Plant Growth Regulation, 2012, 31(3):292-308. doi: 10.1007/s00344-011-9239-3
|
Ouziad F, Hildebrandt U, Schmelzer E, et al.Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress[J]. Journal of Plant Physiology, 2005, 162(6):634-649. doi: 10.1016/j.jplph.2004.09.014
|
Cicatelli A, Lingua G, Todeschini V, et al.Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression[J]. Annals of Botany, 2010, 106(5):791-802. doi: 10.1093/aob/mcq170
|
Rivera-Becerril F, van Tuinen D, Martin-Laurent F, et al.Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress[J]. Mycorrhiza, 2005, 16(1):51-60. doi: 10.1007/s00572-005-0016-7
|
梁宇, 荆玉祥, 沈世华.植物蛋白质组学研究进展[J].植物生态学报, 2004, 28(1):114-125. doi: 10.3321/j.issn:1005-264X.2004.01.017
Liang Y, Jing Y X, Shen S H.Advances in plant proteomics[J]. Chinese Journal of Plant Ecology, 2004, 28(1):114-125. doi: 10.3321/j.issn:1005-264X.2004.01.017
|
Repetto O, Bestel-Corre G, Dumas-Gaudot E, et al.Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots[J]. New Phytologist, 2003, 157(3):555-567. doi: 10.1046/j.1469-8137.2003.00682.x
|
Aloui A, Recorbet G, Gollotte A, et al.On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis:A root proteomic study[J]. Proteomics, 2009, 9(2):420-433. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19072729
|
王真辉.丛枝菌根对植物吸收转运砷的影响及砷胁迫相关比较蛋白组学研究[D].北京: 中国农业大学出版社, 2009: 75-89.
Wang Z H.Effects of Arbuscular Mycorrhiza on Arsenic Uptake and Translocation in Plants and Comparative Genomics Studies on Arsenic Stress[D]. Beijing: China Agricultural University Press, 2009: 75-89.
|
Halliwell B, Gutteridge J M C.Free Radicals in Biology and Medicine[M]. New York:Oxford Science Publications, 1999:31-47.
|
Avery S V.Metal toxicity in yeasts and the role of oxidative stress[J]. Advances in Applied Microbiology, 2001, 49:111-142. doi: 10.1016/S0065-2164(01)49011-3
|
孙存普, 张建中, 段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社, 1999:30-32.
Sun C P, Zhang J Z, Duan S J.Introduction to Free Radical Biology[M]. Hefei:University of Science and Technology of China Press, 1999:30-32.
|
Fridovich I.Superoxide radical and superoxide dismutase[J]. Biochemical Society Transactions, 1973, 1:48-50. doi: 10.1042/bst0010048
|
Miller A F.Superoxide dismutases:Active sites that save, but a protein that kills[J]. Current Opinion in Chemical Biology, 2004, 8(2):162-168. doi: 10.1016/j.cbpa.2004.02.011
|
Sturtz L A, Diekert K, Jensen L T, et al.A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria-A physiological role for SOD1 in guarding against mitochondrial oxidative damage[J]. Journal of Biological Chemistry, 2001, 276(41):38084-38089. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2305553da1969c828ee650abd131ed6
|
Lanfranco L, Novero M, Bonfante P.The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts[J]. Plant Physiology, 2005, 137(4):1319-1330. doi: 10.1104/pp.104.050435
|
González-Guerrero M, Oger E, Benabdellah K, et al.Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices[J]. Current Genetics, 2010, 56(3):265-274. doi: 10.1007/s00294-010-0298-y
|
Sheehan D, Meade G, Foley V M, et al.Structure, function and evolution of glutathione transferases:Implications for classification of non-mammalian members of an ancient enzyme superfamily[J]. Biochemical Journal, 2001, 360:1-16. doi: 10.1042/bj3600001
|
Waschke A, Sieh D, Tamasloukht M, et al.Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices[J]. Mycorrhiza, 2006, 17(1):1-10. doi: 10.1007/s00572-006-0075-4
|
Benabdellah K, Azcon-Aguilar C, Valderas A, et al.GintPDX1 encodes a protein involved in vitamin B6 biosynthesis that is up-regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus intraradices[J]. New Phytologist, 2009, 184(3):682-693. doi: 10.1111/nph.2009.184.issue-3
|
Benabdellah K, Merlos M, Azconaguilar C, et al.GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress[J]. Fungal Genetics and Biology, 2009, 46(1):94-103. doi: 10.1016/j.fgb.2008.09.013
|
Lanfranco L.The fine-tuning of heavy metals in my-corrhizal fungi[J]. New Phytologist, 2007, 174(1):3-6. doi: 10.1111/j.1469-8137.2007.02029.x
|
Gonzalez-Guerrero M, Cano C, Azcon-Aguilar C, et al.GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress[J]. Mycorrhiza, 2007, 17(4):327-335. doi: 10.1007/s00572-007-0108-7
|
Bergero R, Lanfranco L, Ghignone S, et al.Enhanced activity of the GmarMT1 promoter from the mycorrhizal fungus Gigaspora margarita at limited carbon supply[J]. Fungal Genetics and Biology, 2007, 44(9):877-885. doi: 10.1016/j.fgb.2007.01.010
|
Lanfranco L, Bolchi A, Ros E C, et al.Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus[J]. Plant Physiology, 2002, 130(1):58-67. doi: 10.1104-pp.003525/
|
González-Guerrero M, Benabdellah K, Valderas A, et al.GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices[J]. Mycorrhiza, 2009, 20(2):137-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31940163642fde03f5d816113d3dd5dd
|
Azcón-Aguilar C, Barea J M, Gianinazzi S, et al.Mycorrhizas-functional Processes and Ecological Impact[M]. Heidelberg:Springer, 2009:107-122.
|
Montanini B, Blaudez D, Jeandroz S, et al.Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family:Improved signature and prediction of substrate specificity[J]. BMC Genomics, 2007, 8:107 doi: 10.1186/1471-2164-8-107.
|
Eide D J.The SLC39 family of metal ion transporters[J]. Pflugers Archiv-European Journal of Physiology, 2004, 447(5):796-800. doi: 10.1007/s00424-003-1074-3
|
Hildebrandt U, Regvar M, Bothe H.Arbuscular mycorr-hiza and heavy metal tolerance[J]. Phytochemistry, 2007, 68(1):139-146. doi: 10.1016/j.phytochem.2006.09.023
|
李景龙, 孙玉青, 陈心桐, 等.接种AM真菌和施加铁可协同降低水稻砷累积[J].菌物学报, 2017, 36(7):1037-1047. http://d.old.wanfangdata.com.cn/Periodical/jwxt201707022
Li J L, Sun Y Q, Chen X T, et al.Arbuscular mycorrhizal inoculation and ferrum addition synergistically reduce arsenic accumulation in Oryza sativa[J]. Mycosystema, 2017, 36(7):1037-1047. http://d.old.wanfangdata.com.cn/Periodical/jwxt201707022
|
Hamel C.Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture[J]. Agriculture, Ecosystems & Environment, 1996, 60(2/3):197-210. doi: 10.1016-S0167-8809(96)01071-7/
|
Cano C, Bago A, Dalpe Y.Glomus custos sp. nov., isolated from a naturally heavy metal-polluted environment in Southern Spain[J]. Mycotaxon, 2009, 109:499-515. doi: 10.5248/109.499
|
Leung H M, Ye Z H, Wong M H.Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils[J]. Environmental Pollution, 2006, 139(1):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e26b2e89f7dae778ea4aaf3b03ee0e1
|
Liu Y, Zhu Y G, Chen B D, et al.Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L.[J]. Mycorrhiza, 2005, 15(3):187-192. doi: 10.1007/s00572-004-0320-7
|
Ma Y, Dickinson N M, Wong M H.Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings[J]. Soil Biology & Biochemistry, 2006, 38(6):1403-1412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e25b2f7eaf27ec8e5dbc1990b4455ba4
|
Vivas A, Biro B, Campos E, et al.Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp isolated from cadmium polluted soil under increasing cadmium levels[J]. Environmental Pollution, 2003, 126(2):179-189. doi: 10.1016/S0269-7491(03)00195-7
|
余海波, 周守标, 宋静, 等.铜尾矿库能源植物稳定化修复过程中定居植物多样性研究[J].中国农学通报, 2010, 26(18):341-346. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201018074
Yu H B, Zhou S B, Song J, et al.Diversity of settled plants during energy crops phytostabilization on copper mine tailings reservoir[J]. Chinese Agricultural Science Bulletin, 2010, 26(18):341-346. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201018074
|
Solhi M, Shareatmadari H, Hajabbasi M.Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus[J]. Water, Air and Soil Pollution, 2005, 167(1/2/3/4):59-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebb0b15fb4048416e68c5218d4e368ff
|
Marchiol L, Assolari S, Sacco P, et al.Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil[J]. Environmental Pollution, 2004, 132(1):21-27. doi: 10.1016/j.envpol.2004.04.001
|
Chen B C, Lai H Y, Juang K W.Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass[J]. Ecotoxicology and Environmental Safety, 2012, 80:393-400. doi: 10.1016/j.ecoenv.2012.04.011
|
郭家文, 张跃彬, 刘少春.能源甘蔗在3种尾矿砂上的生长适应性研究[J].西南农业学报, 2010, 23(5):1443-1446. doi: 10.3969/j.issn.1001-4829.2010.05.012
Guo J W, Zhang Y B, Liu S C.Influence of three kinds of mine tailings on growth of adaptability in energy cane[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(5):1443-1446. doi: 10.3969/j.issn.1001-4829.2010.05.012
|
侯新村, 范希峰, 武菊英, 等.草本能源植物修复重金属污染土壤的潜力[J].中国草地学报, 2012, 34(1):59-64. doi: 10.3969/j.issn.1673-5021.2012.01.011
Hou X C, Fan X F, Wu J Y, et al.Potentiality of herbaceous bioenergy plants in remediation of soil contaminated by heavy metals[J]. Chinese Journal of Grassland, 2012, 34(1):59-64. doi: 10.3969/j.issn.1673-5021.2012.01.011
|
Gamalero E, Lingua G, Berta G, et al.Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress[J]. Canadian Journal of Microbiology, 2009, 55(5):501-514. doi: 10.1139/W09-010
|
毕银丽, 吴福勇, 武玉坤.丛枝菌根在煤矿区生态重建中的应用[J].生态学报, 2005, 25(8):2068-2073. doi: 10.3321/j.issn:1000-0933.2005.08.034
Bi Y L, Wu F Y, Wu Y K.Application of arbuscular mycorrhizas in ecological restoration of areas affected by coal mining in China[J]. Acta Ecologica Sinica, 2005, 25(8):2068-2073. doi: 10.3321/j.issn:1000-0933.2005.08.034
|
毕银丽, 吴王燕, 刘银平.丛枝菌根在煤矸石山土地复垦中的应用[J].生态学报, 2007, 27(9):3738-3743. doi: 10.3321/j.issn:1000-0933.2007.09.023
Bi Y L, Wu W Y, Liu Y P.Application of arbuscular mycorrhizas in land reclamation of coal spoil heaps[J]. Acta Ecologica Sinica, 2007, 27(9):3738-3743. doi: 10.3321/j.issn:1000-0933.2007.09.023
|
杜善周, 毕银丽, 吴王燕, 等.丛枝菌根对矿区环境修复的生态效应[J].农业工程学报, 2008, 24(4):113-116. doi: 10.3321/j.issn:1002-6819.2008.04.022
Du S Z, Bi Y L, Wu W Y, et al.Ecological effects of arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(4):113-116. doi: 10.3321/j.issn:1002-6819.2008.04.022
|
毕银丽, 吴福勇, 全文智.菌根与豆科植物组合在煤矿区废弃物的生态效应[J].中国矿业大学学报, 2006, 35(3):329-335. doi: 10.3321/j.issn:1000-1964.2006.03.009
Bi Y L, Wu F Y, Quan W Z.Ecological effects of matching between mycorrhizal fungus and leguminous plants in solid wastes of mine area[J]. Journal of China University of Mining & Technology, 2006, 35(3):329-335. doi: 10.3321/j.issn:1000-1964.2006.03.009
|
Yang C, Hamel C, Schellenberg M P, et al.Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in Semiarid Grasslands National Park, Canada[J]. Microbial Ecology, 2010, 59(4):724-733. doi: 10.1007/s00248-009-9629-2
|
Urcelay C, Diaz S.The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity[J]. Ecology Letters, 2003, 6(5):388-391. doi: 10.1046/j.1461-0248.2003.00444.x
|