• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
Yuan ZENG, Li-qiang LUO. Research Progress on the Application and Interaction Mechanism between Specific Microorganisms and Heavy Metals in Soil[J]. Rock and Mineral Analysis, 2017, 36(3): 209-221. DOI: 10.15898/j.cnki.11-2131/td.201701170009
Citation: Yuan ZENG, Li-qiang LUO. Research Progress on the Application and Interaction Mechanism between Specific Microorganisms and Heavy Metals in Soil[J]. Rock and Mineral Analysis, 2017, 36(3): 209-221. DOI: 10.15898/j.cnki.11-2131/td.201701170009

Research Progress on the Application and Interaction Mechanism between Specific Microorganisms and Heavy Metals in Soil

More Information
  • Received Date: January 16, 2017
  • Revised Date: March 19, 2017
  • Accepted Date: May 20, 2017
  • Published Date: May 31, 2017
  • Highlights
    · Interaction mechanisms between specific microorganisms and heavy metal include biosorption, bioaccumulation and biotransformation (oxidation/reduction or ligand complexation).
    · Soil microorganism, Bacillus cereus, is an effective indicator of underlying gold mineralization.
    · The secretory products (such as organic acids and auxin) of specific microorganisms can enhance the bioavailability of heavy metals.
    · Specific microorganisms can stimulate plant growth and enhance the uptake of heavy metals.
    Economic development requires exploration and exploitation of mineral resources. It is difficult to find surface outcrop deposits, which will cause soil pollution by heavy metals that is a severe hazard to the environment and human health. Microorganisms in nature interact with heavy metals in air. Microorganisms with this specificity can be applied to metal prospect exploration and environmental bioremediation of heavy metal pollution. Interaction mechanisms between specific microorganisms and heavy metals and its application to exploration and environmental bioremediation of heavy metal pollution have been reviewed. The focus of this paper is on the adsorption, accumulation and transformation process between specific microorganisms and heavy metal ions, as well as the mechanism of microbial organisms changing heavy metal distribution, occurrence and toxicity. The interaction mechanism between Bacillus cereus and gold and its application potential to find concealed gold deposits were reviewed. Removal of heavy metals in the soil by the specific microorganism through the adsorption of metabolites and assisting plants to repair heavy metal pollution were introduced and elaborated upon.
  • 张花香. 蜡样芽孢杆菌芽孢与金矿藏关系初探[D]: 武汉: 华中师范大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10511-2006078474.htm

    Zhang H X.Primary Study of Relations between Bacillus Cereus Spores and Gold Mineral Resource[D].Wuhan:Central China Normal University, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10511-2006078474.htm
    Cobbina S, Myilla M, Michael K.Small scale gold mining and heavy metal pollution:Assessment of drinking water sources in Datuku in the Talensi-Nabdam district[J].International Journal of Scientific & Technology Research, 2013, 2(1):96-100. http://www.ijstr.org/paper-references.php?ref=IJSTR-0113-5654
    Khan S, El-Latif H A, Qiao M, et al.Effects of Cd and Pb on soil microbial community structure and activities[J].Environmental Science and Pollution Research, 2010, 17(2):288-296. doi: 10.1007/s11356-009-0134-4
    Zhao H, Xia B, Fan C, et al.Human health risk from soil heavy metal contamination under different land uses near Dabaoshan mine, Southern China[J].Science of the Total Environment, 2012, 417:45-54. https://www.researchgate.net/publication/221759270_Human_health_risk_from_soil_heavy_metal_contamination_under_different_land_uses_near_Dabaoshan_Mine_Southern_China
    Fernández D, Roldán A, Azcón R, et al.Effects of water stress, organic amendment and mycorrhizal inoculation on soil microbial community structure and activity during the establishment of two heavy metal-tolerant native plant species[J].Microbial Ecology, 2012, 63(4):794-803. doi: 10.1007/s00248-011-9972-y
    Bolan N S, Choppala G, Kunhikrishnan A, et al.Microbial transformation of trace elements in soils in relation to bioavailability and remediation[J].Reviews of Environmental Contamination and Toxicology, 2013, 225:1-56. doi: 10.1007%2F978-1-4614-6470-9_1.pdf
    Dixit R, Wasiullah, Malaviya D, et al.Bioremediation of heavy metals from soil and aquatic environment:An overview of principles and criteria of fundamental processes[J].Sustainability, 2015, 7(2):2189-2212. doi: 10.3390/su7022189
    Franzetti A, Gandolfi I, Fracchia L, et al.Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites[J].Biosurfactants, 2014:361-369. https://www.researchgate.net/profile/Panagiotis_Gkorezis/publication/289107394_Biosurfactant_Use_in_Heavy_Metal_Removal_from_Industrial_Effluents_and_Contaminated_Sites/links/568a3a0208ae1975839d6bfe.pdf?origin=publication_detail
    Vangronsveld J, Herzig R, Weyens N, et al.Phytoreme-diation of contaminated soils and groundwater:Lessons from the field[J].Environmental Science and Pollution Research, 2009, 16(7):765-794. doi: 10.1007/s11356-009-0213-6
    Sarma H.Metal hyperaccumulation in plants:A review focusing on phytoremediation technology[J].Journal of Environmental Science and Technology, 2011, 4(2):118-138. doi: 10.3923/jest.2011.118.138
    Singh A, Prasad S M.Reduction of heavy metal load in food chain:Technology assessment[J].Reviews in Environmental Science and Bio/Technology, 2011, 10(3):199-214. doi: 10.1007/s11157-011-9241-z
    Wuana R A, Okieimen F E.Heavy metals in contam-inated soils:A review of sources, chemistry, risks and best available strategies for remediation[J].ISRN Ecology, 2011:1-20. https://www.researchgate.net/publication/309761911_Heavy_metals_in_contaminated_soils_a_review_of_sources_chemistry_risks_and_best_available_strategies_for_remediation
    李韵诗, 冯冲凌, 吴晓芙, 等.重金属污染土壤植物修复中的微生物功能研究进展[J].生态学报, 2015, 35(20):6881-6890. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201520035.htm

    Li Y S, Feng C L, Wu X F, et al.A review on the functions of microorganisms in the phytoremediation of heavy metal-contaminated soils[J].Acta Ecologica Sinica, 2015, 35(20):6881-6890. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201520035.htm
    White P J.Phytoremediation assisted by microorganisms[J].Trends in Plant Science, 2001, 6(11):502. doi: 10.1016/S1360-1385(01)02093-3
    Griffiths B S, Philippot L.Insights into the resistance and resilience of the soil microbial community[J].FEMS Microbiology Reviews, 2013, 37(2):112-129. doi: 10.1111/j.1574-6976.2012.00343.x
    Bartkowiak A, Lemanowicz J.Application of biochemical tests to evaluate the pollution of the Unislaw basin soils with heavy metals[J].International Journal of Environmental Research, 2014, 8(1):93-100. https://www.researchgate.net/profile/Joanna_Lemanowicz/publication/261698446_Application_of_biochemical_testes_to_evaluate_the_pollution_of_the_Unislaw_Basin_soils_with_heavy_metals/links/0a85e53501ac3d4d9b000000.pdf
    韩桂琪, 王彬, 徐卫红, 等.重金属Cd, Zn, Cu, Pb复合污染对土壤微生物和酶活性的影响[J].水土保持学报, 2010(5):238-242. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201005050.htm

    Han G Q, Wang B, Xu W H, et al.Effects of heavy metal combined pollution on soil microbial indicators and soil enzymatic activity[J].Journal of Soil and Water Conservation, 2010(5):238-242. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201005050.htm
    Yang J S, Yang F L, Yang Y, et al.A proposal of "core enzyme" bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis[J].Environmental Pollution, 2016, 213:760-769. doi: 10.1016/j.envpol.2016.03.030
    Wang Q, Zhou D, Cang L, et al.Indication of soil heavy metal pollution with earthworms and soil microbial biomass carbon in the vicinity of an abandoned copper mine in Eastern Nanjing, China[J].European Journal of Soil Biology, 2009, 45(3):229-234. doi: 10.1016/j.ejsobi.2008.12.002
    Jose J, Giridhar R, Anas A, et al.Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India[J].Environmental Pollution, 2011, 159(10):2775-2780. doi: 10.1016/j.envpol.2011.05.009
    李小林, 颜森, 张小平, 等.铅锌矿区重金属污染对微生物数量及放线菌群落结构的影响[J].农业环境科学学报, 2011, 30(3):468-475. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201103012.htm

    Li X L, Yan S, Zhang X P, et al.Response of microbe quantity and actinomycetes community of heavy metal contaminated soils in lead-zinc mine[J].Journal of Agro-Environment Science, 2011, 30(3):468-475. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201103012.htm
    孙嘉龙, 肖唐付, 邹晓, 等.黔西南滥木厂铊矿化区铊污染的微生物效应[J].地球与环境, 2009, 37(1):62-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200901008.htm

    Sun J L, Xiao T F, Zou X, et al.Microbial effects induced by thallium accumulation in the Lanmuchang Tl mineralised area, Southwest Guizhou Province[J].Earth and Environment, 2009, 37(1):62-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200901008.htm
    Sheng Z, Chaohai W, Chaodeng L, et al.Damage to DNA of effective microorganisms by heavy metals:Impact on wastewater treatment[J].Journal of Environmental Sciences, 2008, 20(12):1514-1518. doi: 10.1016/S1001-0742(08)62558-9
    Zhang X, Li F, Liu T, et al.The variations in the soil enzyme activity, protein expression, microbial biomass, and community structure of soil contaminated by heavy metals[J].ISRN Soil Science, 2013:1-12. https://www.researchgate.net/profile/Xi_Zhang25/publication/259533502_The_Variations_in_the_Soil_Enzyme_Activity_Protein_Expression_Microbial_Biomass_and_Community_Structure_of_Soil_Contaminated_by_Heavy_Metals/links/0deec52c6d632a2d22000000.pdf?origin=publication_detail
    Chodak M, Gołębiewski M, Morawska-Płoskonka J, et al.Diversity of microorganisms from forest soils differently polluted with heavy metals[J].Applied Soil Ecology, 2013, 64:7-14. doi: 10.1016/j.apsoil.2012.11.004
    Colin V L, Villegas L B, Abate C M.Indigenous microor-ganisms as potential bioremediators for environments contaminated with heavy metals[J].International Biodeterioration & Biodegradation, 2012, 69:28-37. https://www.researchgate.net/publication/271560060_Indigenous_microorganisms_as_potential_bioremediators_for_environments_contaminated_with_heavy_metals
    湛方栋, 何永美, 李元, 等.废弃铅锌矿区和非矿区小花南芥根际真菌的分离及其铅耐性研究[J].生态环境学报, 2010, 19(3):599-604. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201003021.htm

    Zhan F D, He Y M, Li Y, et al.Isolation and Pb tolerance of rhizosphere fungi of Arabis alpine in abandoned lead-zinc mining and non-mining area[J].Ecology and Environmental Sciences, 2010, 19(3):599-604. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201003021.htm
    Muñoz A, Ruiz E, Abriouel H, et al.Heavy metal tolerance of microorganisms isolated from wastewaters:Identification and evaluation of its potential for biosorption[J].Chemical Engineering Journal, 2012, 210:325-332. doi: 10.1016/j.cej.2012.09.007
    Shoeb E, Badar U, Akhter J, et al.Horizontal gene transfer of stress resistance genes through plasmid transport[J].World Journal of Microbiology and Biotechnology, 2012, 28(3):1021-1025. doi: 10.1007/s11274-011-0900-6
    Schwitzguébel J P, van der Lelie D, Baker A, et al.Phytoremediation:European and American trends successes, obstacles and needs[J].Journal of Soils and Sediments, 2002, 2(2):91-99. doi: 10.1007/BF02987877
    Li P S, Tao H C.Cell surface engineering of micro-organisms towards adsorption of heavy metals[J].Critical Reviews in Microbiology, 2015, 41(2):140. doi: 10.3109/1040841X.2013.813898
    Kemner K M, Kelly S D, Lai B, et al.Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis[J].Science, 2004, 306(5696):686-687. doi: 10.1126/science.1103524
    He Z, Gao F, Sha T, et al.Isolation and characterization of a Cr(Ⅵ)-reduction Ochrobactrum sp.strain CSCr-3 from chromium landfill[J].Journal of Hazardous Materials, 2009, 163(2):869-873. http://www.sciencedirect.com/science/article/pii/S0304389408010704
    Huang J H.Impact of microorganisms on arsenic biogeochemistry:A review[J].Water, Air & Soil Pollution, 2014, 225(2):1-25. doi: 10.1007%2Fs11270-013-1848-y.pdf
    白红娟, 张肇铭, 贠妮, 等.球形红细菌去除和转化铅的机理研究[J].环境科学学报, 2007, 27(4):608-614. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200704012.htm

    Bai H J, Zhang Z M, Yun N, et al.Studies on removal and transformation mechanism of lead by Rhodobacter sphaeroides[J].Acta Scientiae Circumstantiae, 2007, 27(4):608-614. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200704012.htm
    Govarthanan M, Lee K J, Cho M, et al.Significance of autochthonous Bacillus sp.KK1 on biomineralization of lead in mine tailings[J].Chemosphere, 2013, 90(8):2267-2272. doi: 10.1016/j.chemosphere.2012.10.038
    Reith F, Rogers S L.Assessment of bacterial commu-nities in auriferous and non-auriferous soils using genetic and functional fingerprinting[J].Geomicrobiology Journal, 2008, 25(3):203-215. https://www.researchgate.net/publication/248985091_Assessment_of_Bacterial_Communities_in_Auriferous_and_Non-Auriferous_Soils_Using_Genetic_and_Functional_Fingerprinting
    Mehrnia R.Using Fractal Distribution of Geomicrobio-logical Anomalies for Prospecting Gold Mineralization Potentials in North West of Iran[C]//Proceedings of The 1st International Applied Geological Congress.Iran:Department of Geology, Islamic Azad University.2010:789-794.
    王红梅, 杨逢清, 谢树成, 等.第四纪土壤微生物与金离子的相互作用实验:微生物找矿依据[J].海洋地质与第四纪地质, 2002, 22(4):107-110. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200204016.htm

    Wang H M, Yang F Q, Xie S C, et al, Interaction between gold ion and quaternary soil microorganism:Bioexploration indication[J].Marine Geology & Quaternary Geology, 2002, 22(4):107-110. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200204016.htm
    Parduhn N L, 徐年生.矿产微生物勘探法在美国加州梅斯基特金矿区的应用效果[J].黄金地质科技, 1993(2):67-72. http://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ199302012.htm

    Parduhn N L, Xu N S.Application of mineral microbial prospecting method in California gold mine[J].Gold Geology Technology, 1993(2):67-72. http://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ199302012.htm
    Reith F, Mcphail D C, Christy A G.Bacillus cereus, gold and associated elements in soil and regolith samples from Tomakin Park gold mine in South-Eastern New South Wales, Australia[J].Journal of Geochemical Exploration, 2005, 85(2):81-98. doi: 10.1016/j.gexplo.2004.11.001
    汤显春, 谢树成.广西四川金矿床区土壤样品中蜡状芽孢杆菌的分离和鉴定[J].华中师范大学学报(自然科学版), 1999, 33(2):271-277. http://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ199902026.htm

    Tang X C, Xie S C.Isolation and identification of Bacillus cereus from soil samples of gold deposit in Guangxi and Sichuan[J].Journal of Centeral China Normal University (Natural Science), 1999, 33(2):271-277. http://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ199902026.htm
    Reith F, Zammit C M, Pohrib R, et al.Geogenic factors as drivers of microbial community diversity in soils overlying polymetallic deposits[J].Applied and Environmental Microbiology, 2015, 81(22):7822-7832. doi: 10.1128/AEM.01856-15
    Tokhmechi B, Mamarabadi M.Using bacillus cereus as a geo-biological marker for gold prospecting in Iran[J].International Journal of Mining & Geo-Engineering, 2012, 46(2):209-221. https://journals.ut.ac.ir/article_51328.html
    Yang Z, Zhang Z, Chai L, et al.Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp.Z-90[J].Journal of Hazardous Materials, 2016, 301:145-152. doi: 10.1016/j.jhazmat.2015.08.047
    Ren W X, Li P J, Geng Y, et al.Biological leaching of heavy metals from a contaminated soil by Aspergillus niger[J].Journal of Hazardous Materials, 2009, 167(1):164-169. https://www.researchgate.net/profile/Wanxia_Ren/publication/24030283_Biological_leaching_of_heavy_metals_from_a_contaminated_soil_by_Aspergillus_niger/links/573478b408aea45ee83ac4fd.pdf?origin=publication_detail
    Li X, Wu Y, Zhang C, et al.Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron[J].Chemical Engineering Journal, 2016, 306:393-400. doi: 10.1016/j.cej.2016.07.079
    Fosso-Kankeu E, Mulaba-Bafubiandi A, Mamba B, et al.Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms[J].Journal of Environmental Management, 2011, 92(10):2786-2793. doi: 10.1016/j.jenvman.2011.06.025
    Murugavelh S, Mohanty K.Isolation, identification and characterization of Cr(Ⅵ) reducing bacillus cereus from chromium contaminated soil[J].Chemical Engineering Journal, 2013, 230:1-9. doi: 10.1016/j.cej.2013.06.049
    Mohd B Z, Ali Hamood A W, Ibrahim Z, et al.Biosorption of As(Ⅲ) by non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment:Equilibrium and kinetic study[J].Applied Biochemistry and Biotechnology, 2013, 171(8):2247-2261. doi: 10.1007/s12010-013-0490-x
    金羽, 曲娟娟, 李影, 等.一株耐铅细菌的分离鉴定及其吸附特性研究[J].环境科学学报, 2013, 33(8):2248-2255. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-VNFY200510001051.htm

    Jin Y, Qu J J, Li Y, et al.Isolation, identification and Pb(Ⅱ) biosorption characterization of a lead-resistant strain[J].Acta Scientiae Circumstantiae, 2013, 33(8):2248-2255. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-VNFY200510001051.htm
    Chakravarty R, Banerjee P C.Mechanism of cadmium binding on the cell wall of an acidophilic bacterium[J].Bioresource Technology, 2012, 108:176-183. doi: 10.1016/j.biortech.2011.12.100
    Guin & #233; V, Spadini L, Sarret G, et al.Zinc sorption to three gram-negative bacteria:Combined titration, modeling, and EXAFS study[J].Environmental Science & Technology, 2006, 40(6):1806-1813. https://www.researchgate.net/profile/Cecile_Delolme/publication/7208018_Zinc_Sorption_to_Three_Gram-Negative_Bacteria_Combined_Titration_Modeling_and_EXAFS_Study/links/02e7e51a37fb424f8c000000/Zinc-Sorption-to-Three-Gram-Negative-Bacteria-Combined-Titration-Modeling-and-EXAFS-Study.pdf
    Comte S, Guibaud G, Baudu M.Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values[J].Journal of Hazardous Materials, 2008, 151(1):185-193. doi: 10.1016/j.jhazmat.2007.05.070
    Kumpiene J, Bert V, Dimitriou I, et al.Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO)[J].Science of the Total Environment, 2014, 496:510-522. doi: 10.1016/j.scitotenv.2014.06.130
    Jin H P, Bolan N, Megharaj M, et al.Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.)[J].Journal of Environmental Management, 2011, 92(4):1115-1120. doi: 10.1016/j.jenvman.2010.11.031
    Jackson T A, Vlaar S, Nguyen N, et al.Effects of bioavailable heavy metal species, arsenic, and acid drainage from mine tailings on a microbial community sampled along a pollution gradient in a freshwater ecosystem[J].Geomicrobiology Journal, 2015, 32(8):724-750. doi: 10.1080/01490451.2014.969412
    Braud A, Jézéquel K, Vieille E, et al.Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores[J].Water, Air, & Soil Pollution, 2006, 6(3-4):261-279. doi: 10.1007%2Fs11267-005-9022-1.pdf
    Baum C, Hrynkiewicz K, Leinweber P, et al.Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix×dasyclados)[J].Journal of Plant Nutrition and Soil Science, 2006, 169(4):516-522. doi: 10.1002/(ISSN)1522-2624
    黄艺, 陈有键, 陶澍.菌根植物根际环境对污染土壤中Cu, Zn, Pb, Cd形态的影响[J].应用生态学报, 2000, 11(3):431-434. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200003025.htm

    Huang Y, Chen Y J, Tao S.Effect of rhizospheric environment of VA-mycorrhizal plants on forms of Cu, Zn, Pb and Cd in polluted soil[J].Chinese Journal of Applied Ecology, 2000, 11(3):431-434. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200003025.htm
    Wu S, Luo Y, Cheung K, et al.Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil:A laboratory study[J].Environmental Pollution, 2006, 144(3):765-773. doi: 10.1016/j.envpol.2006.02.022
    Citterio S, Prato N, Fumagalli P, et al.The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.[J].Chemosphere, 2005, 59(1):21-29. doi: 10.1016/j.chemosphere.2004.10.009
    Christie P, Li X, Chen B.Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc[J].Plant and Soil, 2004, 261(1):209-217. doi: 10.1023/B:PLSO.0000035542.79345.1b
    Azcón R, del Carmen Perálvarez M, Biró B, et al.Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste[J].Applied Soil Ecology, 2009, 41(2):168-177. doi: 10.1016/j.apsoil.2008.10.008
    Rajkumar M, Prasad M N V, Swaminathan S, et al.Climate change driven plant-metal-microbe interactions[J].Environment International, 2013, 53:74-86. doi: 10.1016/j.envint.2012.12.009
    Ma Y, Prasad M, Rajkumar M, et al.Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J].Biotechnology Advances, 2011, 29(2):248-258. doi: 10.1016/j.biotechadv.2010.12.001
    López M L, Peralta-Videa J R, Benitez T, et al.Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter[J].Chemosphere, 2005, 61(4):595-598. doi: 10.1016/j.chemosphere.2005.02.028
    Sun L N, Zhang Y F, He L Y, et al.Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland[J].Bioresource Technology, 2010, 101(2):501-509. doi: 10.1016/j.biortech.2009.08.011
    Chen Y X, Wang Y P, Lin Q, et al.Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens[J].Environment International, 2005, 31(6):861-866. doi: 10.1016/j.envint.2005.05.044
    Abou-Shanab R, Ghanem K, Ghanem N, et al.The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils[J].World Journal of Microbiology and Biotechnology, 2008, 24(2):253-262. doi: 10.1007/s11274-007-9464-x
    Azcón R, del Carmen Perálvarez M, Roldán A, et al.Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants[J].Microbial Ecology, 2010, 59(4):668-677. doi: 10.1007/s00248-009-9618-5
    Sheng X F, Xia J J, Jiang C Y, et al.Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J].Environmental Pollution, 2008, 156(3):1164-1170. doi: 10.1016/j.envpol.2008.04.007
    Sheng X, He L, Wang Q, et al.Effects of inoculation of biosurfactant-producing Bacillus sp.J119 on plant growth and cadmium uptake in a cadmium-amended soil[J].Journal of Hazardous Materials, 2008, 155(1):17-22. https://www.researchgate.net/publication/263140199_Inoculation_of_Soil_with_Cadmium-Resistant_Bacteria_Enhances_Cadmium_Phytoextraction_by_Vetiveria_nemoralis_and_Ocimum_gratissimum
    Jiang C Y, Sheng X F, Qian M, et al.Isolation and characterization of a heavy metal-resistant Burkholderia sp.from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil[J].Chemosphere, 2008, 72(2):157-164. doi: 10.1016/j.chemosphere.2008.02.006
    Jankong P, Visoottiviseth P.Effects of arbuscular mycor-rhizal inoculation on plants growing on arsenic contaminated soil[J].Chemosphere, 2008, 72(7):1092-1097. doi: 10.1016/j.chemosphere.2008.03.040
    Ike A, Sriprang R, Ono H, et al.Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes[J].Chemosphere, 2007, 66(9):1670-1676. doi: 10.1016/j.chemosphere.2006.07.058
    Babu A G, Shea P J, Sudhakar D, et al.Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil[J].Journal of Environmental Management, 2015, 151:160-166. doi: 10.1016/j.jenvman.2014.12.045
    Chen L, Luo S, Li X, et al.Interaction of Cd-hyper-accumulator Solanum nigrum L.and functional endophyte Pseudomonas sp.Lk9 on soil heavy metals uptake[J].Soil Biology & Biochemistry, 2014, 68(1):300-308. http://www.sciencedirect.com/science/article/pii/S0038071713003659
    Dharni S, Srivastava A K, Samad A, et al.Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv.bourbon) grown on tannery sludge amended soil[J].Chemosphere, 2014, 117:433-439. doi: 10.1016/j.chemosphere.2014.08.001
    He H, Ye Z, Yang D, et al.Characterization of endophytic Rahnella sp.JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus[J].Chemosphere, 2013, 90(6):1960-1965. doi: 10.1016/j.chemosphere.2012.10.057
    Ma Y, Oliveira R S, Nai F, et al.The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil[J].Journal of Environmental Management, 2015, 156:62-69. doi: 10.1016/j.jenvman.2015.03.024
    Shin M N, Shim J, You Y, et al.Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma[J].Journal of Hazardous Materials, 2012, 199:314-320. http://www.sciencedirect.com/science/article/pii/S0304389411013604
    Visioli G, D'Egidio S, Vamerali T, et al.Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens[J].Chemosphere, 2014, 117:538-544. doi: 10.1016/j.chemosphere.2014.09.014
    Wan Y, Luo S, Chen J, et al.Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.[J].Chemosphere, 2012, 89(6):743-750. doi: 10.1016/j.chemosphere.2012.07.005
    Zhang X, Lin L, Zhu Z, et al.Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii[J].International Journal of Phytoremediation, 2013, 15(1):51-64. doi: 10.1080/15226514.2012.670315
  • Cited by

    Periodical cited type(1)

    1. 孟欣,袁珍,杨琛皓. 某区块砂岩储层沉积相及储层物性研究. 石化技术. 2025(03): 263-265 .

    Other cited types(0)

Catalog

    Article views (3944) PDF downloads (45) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return