ZHANG Lei,WANG Lei,JIA Zhengxun,et al. Optimization of Cation Exchange Capacity Determination in Soil by Hexamminecobalt Trichloride Method[J]. Rock and Mineral Analysis,2024,43(3):509−516. DOI: 10.15898/j.ykcs.202304240054
Citation: ZHANG Lei,WANG Lei,JIA Zhengxun,et al. Optimization of Cation Exchange Capacity Determination in Soil by Hexamminecobalt Trichloride Method[J]. Rock and Mineral Analysis,2024,43(3):509−516. DOI: 10.15898/j.ykcs.202304240054

Optimization of Cation Exchange Capacity Determination in Soil by Hexamminecobalt Trichloride Method

More Information
  • Received Date: April 23, 2023
  • Revised Date: January 02, 2024
  • Accepted Date: March 08, 2024
  • Available Online: January 16, 2024
  • Compared with the traditional ammonium acetate exchange method and calcium acetate exchange method to determine cation exchange capacity (CEC), hexamminecobalt trichloride method has obvious advantages in the analysis of large quantities of samples. However, the application scope of this method is limited, and the detection results of neutral and alkaline samples are good, but the detection results of acidic samples are as low as 50%. In order to solve these problems, the pH was adjusted to alkaline with 2mol/L sodium hydroxide solution, the CEC value of the sample was significantly improved, and the determination results of both acidic and alkaline samples reached the range of standard values. By drawing the pH adjustment curve, the volume of 2mol/L sodium hydroxide solution was obtained in soil samples with different pH ranges, so as to adjust the pH value of unknown samples and realize the accurate determination of CEC. On the basis of the original method, the pH of the sample was adjusted to alkalinity, and the precision of the optimized method ranged from 1.02% to 3.82% (n=6). After optimization, the application scope of the method is expanded, the precision and accuracy are improved, and the detection efficiency of a large number of samples is effectively improved.

  • [1]
    赵莉. 乙酸铵交换法测定土壤阳离子交换量的不确定度评定研究[J]. 环境科学与管理, 2015, 40(10): 146−149.

    Zhao L. Uncertainty in determining of cation exchange capacity in soil samples by ammonium acetate exchange method[J]. Environmental Science and Management, 2015, 40(10): 146−149.
    [2]
    康婷, 周春火, 魏宗强, 等. 江西省土壤阳离子交换量区域分布特征及其影响因素[J]. 中国农学通报, 2021, 37(14): 66−71.

    Kang T, Zhou C H, Wei Z Q, et al. Regional distribution characteristics and influencing factors of soil cation exchange capacity in Jiangxi[J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 66−71.
    [3]
    Ngo D N G, Chuang X Y, Huang C P, et al. Compositional characterization of nine agricultural waste biochars: The relations between alkaline metals and cation exchange capacity with ammonium adsorption capability[J]. Journal of Environmental Chemical Engineering, 2023(11): 110003.
    [4]
    Jiang J, Wang Y P, Yu M X, et al. Soil organic matter in important for acid buffering and reducing aluminum leaching from acidic forest soils[J]. Chemical Geology, 2018(501): 86−94.
    [5]
    Shekofteh H, Ramazani F, Shirani H. Optimal feature selection for predicting soil CEC: Comparing the hybrid of ant colony organization algorithm and adaptive network-based fuzzy system with multiple linear regression[J]. Geoderma, 2017(298): 27−34.
    [6]
    Zhao X Z T, Arshad M, Li N, et al. Determination of the optimal mathematical model, sample size, digital data and transect spacing to map CEC (cation exchange capacity) in a sugarcane field[J]. Computers and Electronics in Agriculture, 2020(173): 105436.
    [7]
    Emamgholizadeh S, Bazoobandi A, Mohammadi B, et al. Prediction of soil cation exchange capacity using enhanced machine learning approaches in the southern region of the Caspian Sea[J]. Ain Shams Engineering Journal, 2023(14): 101876.
    [8]
    Aihemaiti A, Jiang J G, Li D A, et al. The interaction of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area[J]. Journal of Environmental Management, 2018(222): 216−226.
    [9]
    Cui X Y, Mao P, Sun S, et al. Phytoremediation of cadmium contaminated soils by Amaranthus hypochondriacus L: The effects of soil properties highlighting cation exchange capacity[J]. Chemosphere, 2021(283): 131067.
    [10]
    Liddicoat C, Bi P, Waycott M, et al. Ambient soil cation exchange capacity inversely associates with infectious and parasitic disease risk in regional Australia[J]. Science of the Total Environment, 2018(626): 117−125.
    [11]
    白志强, 张世熔, 钟钦梅, 等. 四环盆地西缘土壤阳离子交换量的特征及影响因素[J]. 土壤, 2020, 52(3): 581−587.

    Bai Z Q, Zhang S R, Zhong Q M, et al. Characteristics and impact factors of soil cation exchange capacity in western margin of Sichuan Basin[J]. Soils, 2020, 52(3): 581−587.
    [12]
    Chen Y T, Gao S B, Jones E J, et al. Prediction of soil cay content and cation exchange capacity using visible near-infrared spectroscopy, portable X-ray fluorescence, and X-ray diffraction techniques[J]. Environment Science and Technology, 2021, 55(8): 4629−4637. doi: 10.1021/acs.est.0c04130
    [13]
    Wan M X, Hu M Y, Qu M K, et al. Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and vis-NIR spectroscopy[J]. Geoderma, 2020(363): 114163.
    [14]
    Renault P, Cazevieille P, Verdier J, et al. Variations in the cation exchange capacity of a ferralsol supplied with vinasse, under changing aeration conditions comparison between CEC measuring methods[J]. Geoderma, 2009(154): 101−110.
    [15]
    黄英, 白冰, 李洋冰, 等. 三氯化六氨合钴浸提-分光光度法测定泥质砂岩黏土阳离子交换量[J]. 理化检验(化学分册), 2023, 59(2): 232−234.

    Huang Y, Bai B, Li Y B, et al. Determination of cation exchange capacity of argillaceous sandstone clay by cobalt trichloride leaching-spectrophotometry[J]. Physical Testing and Chemical Analysis: Part B (Chemical Analysis), 2023, 59(2): 232−234.
    [16]
    胡梦颖, 张鹏鹏, 徐进力, 等. CEC前处理系统-凯氏定氮仪快速测定土壤中的阳离子交换量[J]. 物探与化探, 2023, 47(2): 458−463.

    Hu M Y, Zhang P P, Xu J L, et al. Rapid determination of soil cation exchange capacity using a cation exchange capacity pretreatment system and a Kjeldahl apparatus[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 458−463.
    [17]
    Enang R K, Kips P A, Yerima B P K, et al. Pedotransfer functions for cation exchange capacity estimation in highly weathered soils of the tropical highlands of NW Cameroon[J]. Geoderma Regional, 2022(29): e00514.
    [18]
    杨利利, 李菲, 陈渝, 等. 分光光度法测定土壤中阳离子交换量的优化改进[J]. 中国农学通报, 2020, 36(35): 119−122.

    Yang L L, Li F, Chen Y, et al. Optimization and improvement of spectrophotometry method to determine cation exchange capacity in soil[J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 119−122.
    [19]
    侯玉兰, 吴银菊, 胡芳, 等. 全自动淋洗-凯氏定氮法快速测定土壤阳离子交换量[J]. 理化检验(化学分册), 2022, 58(8): 966−969.

    Hou Y L, Wu Y J, Hu F, et al. Rapid determination of soil cation exchange capacity by automatic leaching—Kjeldahl nitrogen determination method[J]. Physical Testing and Chemical Analysis: Part B (Chemical Analysis), 2022, 58(8): 966−969.
    [20]
    拉毛吉, 王玉功, 张榕. 乙酸铵离心交换法和乙酸钙离心交换法测定土壤阳离子交换量[J]. 中国无机分析化学, 2017, 7(3): 38−41.

    La M J, Wang Y G, Zhang R. Determination of cation exchange capacity of soil by centrifugal exchange of ammonium and calcium acetates[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(3): 38−41.
    [21]
    陈桂华, 范芳, 林芷君. 三氯化六氨合钴浸提-分光光度法测定土壤阳离子交换量[J]. 理化检验(化学分册), 2019, 55(12): 1448−1451.

    Chen G H, Fan F, Lin Z J. Determination of soil cation exchange capacity by cobalt hexamine trichloride extraction-spectrophotometry[J]. Physical Testing and Chemical Analysis: Part B (Chemical Analysis), 2019, 55(12): 1448−1451.
    [22]
    Purnamasari L, Rostaman T, Widowati L R, et al. Comparison of appropriate cation exchange capacity (CEC) extraction methods for soils from several regions of Indonesia[J]. IOP Conference Series: Earth and Environmental Science, 2021, 648: 012209. doi: 10.1088/1755-1315/648/1/012209
    [23]
    林清火, 刘海林, 王莉, 等. 碳基土壤调理剂对橡胶园土壤pH和阳离子交换量的影响[J]. 热带农业科学, 2018, 38(12): 1−9.

    Lin Q H, Liu H L, Wang L, et al. Effect of biochar-based soil conditioner on the soil pH and CEC in rubber plantations[J]. Chinese Journal of Tropical Agriculture, 2018, 38(12): 1−9.
    [24]
    岳中慧, 岳启建, 龙寿坤, 等. 三氯化六氨合钴法浸提-分光光度法测定土壤中阳离子交换量[J]. 化学分析计量, 2022, 31(4): 55−59.

    Yue Z H, Yue Q J, Long S K, et al. Determination of cation exchange capacity in soil by spectrophotometry after extraction of hexammonium cobalt trichloride[J]. Chemical Analysis and Meterage, 2022, 31(4): 55−59.
    [25]
    Kazak E S, Kazak A V. Experimental features of cation exchange capacity determination in organic-rich mudstones[J]. Journal of Natural Gas Science and Engineering, 2020(83): 103456.
    [26]
    Aran D, Maul A, Masfaraud J F. A spectrophotometric measurement of soil cation exchange capacity based on cobaltihexamine chloride absorbance[J]. C. R. Geoscience, 2008(340): 865−871.
    [27]
    王丽敏, 吴慧, 申立, 等. 分光光度法测定土壤阳离子交换量的方法优化[J]. 环境监控与预警, 2022, 14(2): 49−52, 69.

    Wang L M, Wu H, Shen L, et al. Method optimization of spectrophotometric determination of cation exchange capacity in soil[J]. Environmental Monitoring and Forewarning, 2022, 14(2): 49−52, 69.
    [28]
    王俊杰, 辛文涛, 王巧环. 超声浸提-分光光度法测定土壤阳离子交换量[J]. 中国无机分析化学, 2023, 13(6): 562−567.

    Wang J J, Xin W T, Wang Q H. Determination of soil cation exchange capacity by ultrasonic extraction-spectrophotometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(6): 562−567.
    [29]
    刘蓉, 邓茂, 李莹莹, 等. 不同酸碱度土壤阳离子交换量的测定研究[J]. 中国环境监测, 2019, 35(1): 125−130.

    Liu R, Deng M, Li Y Y, et al. Optimization for the determination of cation exchange capacity in soils with different acidity and alkalinity[J]. Environmental Monitoring in China, 2019, 35(1): 125−130.
    [30]
    段小燕, 施玉格. 三氯化六氨合钴浸提-分光光度法测定新疆土壤中阳离子交换量[J]. 干旱环境监测, 2019, 33(3): 113−116.

    Duan X Y, Shi Y G. Determination of the cation exchange capacity in Xinjiang soils using a hexamminecobalt trichloride solution by spectrophotography[J]. Arid Environmental Monitoring, 2019, 33(3): 113−116.
    [31]
    李媛, 段小燕, 施玉格, 等. 振荡提取-荧光分光光度法分析土壤样品中石油类物质[J]. 岩矿测试, 2023, 42(6): 1240−1247.

    Li Y, Duan X Y, Shi Y G, et al. Determination of the petroleum oil in soil by fluorescence spectrophotometry with oscillatory extraction[J]. Rock and Mineral Analysis, 2023, 42(6): 1240−1247.
  • Related Articles

    [1]Guo-dong XU, Bin JIN, Jian-hua GE, Jun DONG, Jiang CHENG. Determination of Trace Silver in Carbonate Rock Samples by Graphite Furnace Atomic Absorption Spectrometry with Ammonium Oxalate Matrix Modifier[J]. Rock and Mineral Analysis, 2016, 35(2): 134-137. DOI: 10.15898/j.cnki.11-2131/td.2016.02.004
    [2]Li LIN, Ji-jun YAO, Ren-kang YANG, Ji-hong SUN. Direct Determination of Pb in Cosmetics by Graphite Furnace Atomic Absorption Spectrometry with Suspension Sampling[J]. Rock and Mineral Analysis, 2013, 32(4): 644-648.
    [3]JIANG Xiaoliang, JIA Changsheng, YE Lin, YI Bihua, GONG Zhixiang. Determination of Trace Cadmium in Soaking Solution of Domestic Ceramics by Cold-vapor Generation-Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 431-434.
    [4]YUAN Ai-ping, HE Da-peng, LONG Yu-shan, WANG Jing-ling. Simultaneous Determination of Arsenic and Mercury in Talcum by Hydride Generation-Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(5): 389-391.
    [5]Determination of Trace Cadmium in Rock and Soil Samples by Graphite Furnace Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(4): 310-312.
    [6]Micro-hydride Generation Apparatus and Its Application in Determination of Mercury by Cold Atomic Absorption Spectromphotometry[J]. Rock and Mineral Analysis, 2008, 27(1): 69-70.
    [7]Speciation Analysis of Mobile and Toxic Mercury in Stream Sediment Samples by Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(5): 359-362.
    [8]Direct Determination of Trace Lead in Amber by Graphite Furnace Atomic Absorption Spectrometry with Slurry Sampling[J]. Rock and Mineral Analysis, 2003, (3): 228-230.
    [9]Determination of Micro Amounts of Mercury in Zinc Ores by Cold Atomic Fluorescence Spectrometry with Panfei Tube Separation[J]. Rock and Mineral Analysis, 2001, (2): 145-146.
    [10]Determination of Trace Mercury in Geological Samples by Slurry Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 1996, (4): 293-295.
  • Cited by

    Periodical cited type(8)

    1. 隋东,杨林,邹国庆,周武权,李海娟. 微波消解-三重四级杆电感耦合等离子体质谱法同时测定地球化学土壤中锗、砷、硒、镉、锡、碲. 化学分析计量. 2024(05): 60-65 .
    2. 侯雪,高正娇,齐白羽,王卓,刘静静. 三种消解方式在电感耦合等离子体质谱法同时测定废水中7种重金属元素中的应用研究. 化学世界. 2023(06): 453-458 .
    3. 张锦涛,张兵兵,卢兵,赵文志. 水浴浸提-氢化物发生-原子荧光法测定土壤和水系沉积物中硒的干扰及消除. 当代化工研究. 2022(08): 50-52 .
    4. 关昱,张彦迪,刘银河. CO_2/H_2O气氛下红沙泉煤中碱(土)金属的分布及其气化反应特性. 燃料化学学报. 2022(06): 674-682 .
    5. 刘彤彤,黄登丽. 王水溶样-电感耦合等离子体质谱法测定化探样品中痕量银. 冶金分析. 2021(07): 61-66 .
    6. 赵小学,位志鹏,王建波,李亚轲,赵林林,夏新,姜晓旭. 王水水浴消解/ICP-MS法测定土壤及水系沉积物中As、Se、Sb、Hg、Bi的适用性研究. 中国测试. 2021(09): 61-69 .
    7. 金一,安帅,宋丽华. 偏硼酸锂熔融-电感耦合等离子体光谱法和质谱法测定东北黑土中32种特征成分的含量. 理化检验-化学分册. 2021(12): 1074-1081 .
    8. 江莉莉. 原子荧光光谱法测定地球化学样品中痕量硒(Se)的研究. 浙江国土资源. 2021(S1): 106-110 .

    Other cited types(1)

Catalog

    Article views (269) PDF downloads (53) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return