Bi-yu TANG, Yi-hua SHI, Zhong-ping YANG, Li QIU, Xing-qian GU, Guang-ju PENG. Determination of Gallium, Germanium and Indium in Coal by Inductively Coupled Plasma-Mass Spectrometry with Ashing Acid Digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 371-378. DOI: 10.15898/j.cnki.11-2131/td.201711250186
Citation: Bi-yu TANG, Yi-hua SHI, Zhong-ping YANG, Li QIU, Xing-qian GU, Guang-ju PENG. Determination of Gallium, Germanium and Indium in Coal by Inductively Coupled Plasma-Mass Spectrometry with Ashing Acid Digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 371-378. DOI: 10.15898/j.cnki.11-2131/td.201711250186

Determination of Gallium, Germanium and Indium in Coal by Inductively Coupled Plasma-Mass Spectrometry with Ashing Acid Digestion

More Information
  • Received Date: November 24, 2017
  • Revised Date: March 10, 2018
  • Accepted Date: May 06, 2018
  • Published Date: June 30, 2018
  • HIGHLIGHTS
    (1) Coal samples were selected for different ashing temperature conditions, and the optimum ashing temperature of gallium, germanium and indium in coal was unified.
    (2) The nitric acid-sulfuric acid-hydrofluoric acid digestion system was selected to avoid the volatilization loss of germanium.
    (3) The optimal ashing temperature of Ga, Ge and In in coal is unified, so that the three elements can be processed and determined simultaneously.
    BACKGROUNDThe accurate determination of gallium, germanium and indium in coal provides an important basis for geochemical exploration of the scattered elements in coal, and is of great economic significance for the comprehensive utilization of the scattered metals. The ashing conditions of germanium are strict, and the analytical results of germanium are greatly influenced by the ashing temperature. Due to the different ashing temperatures of gallium (Ga), germanium (Ge) and indium (In), the three elements could not be processed and determined simultaneously using existing analytical methods.
    OBJECTIVESTo develop a method for the analysis of Ga, Ge and In simultaneously, avoid the loss of Ge in the ashing and digestion processes, and to eliminate the interference in determination.
    METHODSA sensitive and efficient analysis method of ashing acid digestion method combined with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for determining Ga, Ge and In in coal was established by using the optimum ashing temperature of 625℃, selecting suitable acid solution conditions and mass spectrometry determining conditions. Using nitric acid-sulfuric acid-hydrofluoric acid to dissolve ash and 8 mol/L nitric acid for reconstitution, the volatilization loss of niobium was avoided. By optimizing the instrumental working conditions and interference experiments, 103Rh was used as the internal standard element, and 71Ga, 74Ge and 115In were selected as the determined isotopes, eliminating the interference of various elements.
    RESULTSThe linear correlation coefficients of the standard curves of Ga, Ge and In are all above 0.9999. The detection limits of Ga, Ge and In are 0.004, 0.003 and 0.002 μg/L, respectively. The precisions range from 1.17% to 3.15%, and the sample recoveries are from 96.6% to 102.0%. The determination results of GBW07363, GBW07457 and GBW07428 are in agreement with the certified values.
    CONCLUSIONSCompared to traditional analytical methods of Ga, Ge and In in coal, the proposed method is simpler, faster, and has a lower detection limit with simultaneous determination of multiple elements.

  • 朱华雄, 陈寒勇, 章伟, 等.华北煤中金属矿产的种类和分布特征[J].煤炭学报, 2016, 41(2):303-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201602004

    Zhu H X, Chen H Y, Zhang W, et al.Metal mineral types and distribution characteristics in coal in Northern China[J].Journal of China Coal Society, 2016, 41(2):303-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201602004
    赵汀, 秦鹏珍, 王安建, 等.镓矿资源需求趋势分析与中国镓产业发展思考[J].地球学报, 2017, 38(1):77-84. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQXB201701012&dbname=CJFD&dbcode=CJFQ

    Zhao T, Qin P Z, Wang A J, et al.An analysis of gallium ore resources demand trend and the thinking concerning China's gallium industry development[J].Acta Geoscientica Sinica, 2017, 38(1):77-84. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQXB201701012&dbname=CJFD&dbcode=CJFQ
    Kuroiwa K, Ohura S, Morisada S, et al.Recovery of germanium from waste solar panels using ion-exchange membrane and solvent extraction[J].Minerals Engineering, 2014, 55(1):181-185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0231734146
    姚艳清, 刘四清, 董旭, 等.铟的富集分离工艺技术现状及展望[J].金属矿山, 2016(9):132-136. doi: 10.3969/j.issn.1001-1250.2016.09.027

    Yao Y Q, Liu S Q, Dong X, et al.Current situation and outlook on indium enrichment and separation technology[J].Metal Mine, 2016(9):132-136. doi: 10.3969/j.issn.1001-1250.2016.09.027
    袁华玮, 刘全军, 张治国.云南某炼锌渣中锗铟的硫酸浸出[J].金属矿山, 2016(7):189-192. doi: 10.3969/j.issn.1001-1250.2016.07.037

    Yuan H W, Liu Q J, Zhang Z G.Germanium and indium leaching by sulfuric acid from a zinc smelting slag in Yunnan[J].Metal Mine, 2016(7):189-192. doi: 10.3969/j.issn.1001-1250.2016.07.037
    Shan X Q, Ni Z M, Yuan Z N.Determination of indium in minerals, river sediments and coal fly ash by electrothermal atomic absorption spectrometry with palladium as a matrix modifier[J]. Analytica Chimica Acta, 1985, 171(1):269-277. http://www.sciencedirect.com/science/article/pii/S000326700084204X
    沈宇, 张尼, 高小红, 等.微波消解-双浊点萃取ICP-MS测定地球化学样品中的痕量铂钯钌铑[J].岩矿测试, 2016, 35(3):259-264. doi: 10.15898/j.cnki.11-2131/td.2016.03.007

    Shen Y, Zhang N, Gao X H, et al.Determination of Pt, Pd, Ru, Rh in geochemical samples by ICP-MS with microwave digestion and dua-cloud point extraction[J].Rock and Mineral Analysis, 2016, 35(3):259-264. doi: 10.15898/j.cnki.11-2131/td.2016.03.007
    Peters S T M, Münker C, Wombacher F, et al.Precise determination of low abundance isotopes (174Hf, 180W and 190Pt) in terrestrial materials and meteorites using multiple collector ICP-MS equipped with 1012Ω Faraday amplifiers[J].Chemical Geology, 2015, 413:132-145. doi: 10.1016/j.chemgeo.2015.08.018
    Nagaishi K, Ishikawa T.A simple method for the precise determination of boron, zirconium, niobium, hafnium and tantalum using ICP-MS and new results for rock reference samples[J].Geochemical Journal, 2009, 43(2):133-141. doi: 10.2343/geochemj.1.0010
    Bychkova Y V, Sinitsyn M Y, Petrenko D B, et al.Method peculiarities of multielemental analysis of rocks with inductively coupled plasma-mass spectrometry[J].Moscow University Geology Bulletin, 2017, 72(1):56-62. doi: 10.3103/S0145875217010033
    Filipiak-Szok A, Kurzawa M, Szłyk E.Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements[J].Journal of Trace Elements in Medicine and Biology, 2015, 30:54-58. doi: 10.1016/j.jtemb.2014.10.008
    Foteeva L S, Matczuk M, Pawlak K, et al.Combination of ICP-MS, capillary electrophoresis, and their hyphenation for probing Ru(Ⅲ) metallodrug-DNA interactions[J].Analytical and Bioanalytical Chemistry, 2017, 409(9):2421-2427. doi: 10.1007/s00216-017-0186-0
    Yang B, Zhang Y, Chen B, et al.Elemental-tagged immu-noassay combined with inductively coupled plasma mass spectrometry for the detection of tumor cells using a lead sulfide nanoparticle label[J].Talanta, 2017, 167:499-505. doi: 10.1016/j.talanta.2017.02.063
    Bitragunta S P, Palani S G, Gopala A, et al.Detection of TiO2 nanoparticles in municipal sewage treatment plant and their characterization using single particle ICP-MS[J].Bulletin of Environmental Contamination and Toxicology, 2017, 98(5):595-600. doi: 10.1007/s00128-017-2031-8
    Alkas F B, Shaban J A, Sukuroglu A A, et al.Monitoring and assessment of heavy metal/metalloid concentration by inductively coupled plasma mass spectroscopy (ICP-MS) method in Gonyeli Lake, Cyprus[J].Environmental Monitoring and Assessment, 2017, 189(10):516. doi: 10.1007/s10661-017-6222-x
    Manousakas M, Papaefthymiou H, Eleftheriadis K, et al.Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS[J].Science of the Total Environment, 2014, 493:694-700. doi: 10.1016/j.scitotenv.2014.06.043
    徐伟, 李育珍, 段太成, 等.电感耦合等离子体质谱法测定高纯二氧化锡电极材料中痕量金属杂质离子[J].分析化学, 2015, 43(9):1349-1352. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FXHX201509018&dbname=CJFD&dbcode=CJFQ

    Xu W, Li Y Z, Duan T C, et al.Determination of trace metal impurities in high pure tin oxide electrode material by inductively coupled plasma mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2015, 43(9):1349-1352. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FXHX201509018&dbname=CJFD&dbcode=CJFQ
    Navratilova J, Praetorius A, Gondikas A, et al.Detection of engineered copper nanoparticles in soil using single particle ICP-MS[J].International Journal of Environmental Research and Public Health, 2015, 12:15756-15768. doi: 10.3390/ijerph121215020
    刘曙, 沈劼, 周海明, 等.电感耦合等离子体质谱-原子荧光光谱法研究上海口岸进口印度尼西亚煤炭微量元素的赋存形态特征[J].岩矿测试, 2015, 34(4):436-441. doi: 10.15898/j.cnki.11-2131/td.2015.04.010

    Liu S, Shen J, Zhou H M, et al.Study on occurrence status characteristics of trace elements in imported Indonesia coals of Shanghai port using inductively coupled plasma-mass spectrometry and atomic fluorescence spectrometry[J].Rock and Mineral Analysis, 2015, 34(4):436-441. doi: 10.15898/j.cnki.11-2131/td.2015.04.010
    杨金辉, 张小毅.电感耦合等离子体质谱法测定煤中11种元素[J].冶金分析, 2013, 33(9):8-13. doi: 10.3969/j.issn.1000-7571.2013.09.002

    Yang J H, Zhang X Y.Determination of eleven elements in coal by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2013, 33(9):8-13. doi: 10.3969/j.issn.1000-7571.2013.09.002
    Mketo N, Nomngongo P N, Ngila J C.An innovative microwave-assisted digestion method with diluted hydrogen peroxide for rapid extraction of trace elements in coal samples followed by inductively coupled plasma-mass spectrometry[J].Microchemical Journal, 2016, 124:201-208. doi: 10.1016/j.microc.2015.08.010
    Krishna M V B, Chandrasekaran K, Chakravarthy S, et al.An integrated approach based on oxidative pyrolysis and microwave-assisted digestion for the multi-elemental analysis of coal samples by ICP-based techniques[J].Fuel, 2015, 158:770-778. doi: 10.1016/j.fuel.2015.06.039
    段云龙.煤炭试验方法标准及其说明[M].北京:中国标准出版社, 2004.

    Duan Y L.Standards of Coal Test Method and the Descriptions[M].Beijing:Standards Press of China, 2004.
    陈波, 刘洪青, 邢应香.电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J].岩矿测试, 2014, 33(2):192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006

    Chen B, Liu H Q, Xing Y X.Simultaneous determination of Ge, Se and Te in geological samples by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(2):192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006
    程秀花, 黎卫亮, 王海蓉, 等.封闭酸溶样ICP-MS法直接测定地质样品中镓、铟、铊、锗[J].分析试验室, 2015, 34(10):1204-1208. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FXSY201510026&dbname=CJFD&dbcode=CJFQ

    Cheng X H, Li W L, Wang H R, et al.Determination of gallium, indium, thallium and germanium in geological samples after pressurized acid digestion by inductively coupled plasma mass spectrometry[J].Chinese Journal of Analysis Laboratory, 2015, 34(10):1204-1208. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FXSY201510026&dbname=CJFD&dbcode=CJFQ
    靳兰兰, 王秀季, 李会来, 等.电感耦合等离子体质谱技术进展及其在冶金分析中的应用[J].冶金分析, 2016, 36(7):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201607001

    Jin L L, Wang X J, Li H L, et al.Progress in inductively coupled plasma mass spectrometry technology and its application in metallurgical analysis[J].Metallurgical Analysis, 2016, 36(7):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201607001
    赵小学, 张霖琳, 张建平, 等.ICP-MS在环境分析中的质谱干扰及其消除[J].中国环境监测, 2014, 30(3):101-106. doi: 10.3969/j.issn.1002-6002.2014.03.022

    Zhao X X, Zhang L L, Zhang J P, et al.Spectral interference and elimination of environmental analysis with ICP-MS[J].Environmental Monitoring in China, 2014, 30(3):101-106. doi: 10.3969/j.issn.1002-6002.2014.03.022
    Agatemor C, Beauchemin D.Matrix effects in inductively coupled plasma mass spectrometry:A review[J].Analytica Chimica Acta, 2011, 706:66-83. doi: 10.1016/j.aca.2011.08.027
    张杰芳, 闫玉乐, 夏承莉, 等.微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J].岩矿测试, 2017, 36(1):46-51. doi: 10.15898/j.cnki.11-2131/td.2017.01.007

    Zhang J F, Yan Y L, Xia C L, et al.Determination of Cr(Ⅵ) in coal ash by microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(1):46-51. doi: 10.15898/j.cnki.11-2131/td.2017.01.007
  • Cited by

    Periodical cited type(18)

    1. 苏炤新,赵传明,董希良,杨敬一,杨丰春,慈霖,张义东,郑囡. 我国抗生素环境污染及管理现状. 环境卫生学杂志. 2025(01): 31-37 .
    2. 李思,薛海林,王雅娟,宋瑞平,孙卫玲. 水环境中阿莫西林的分布特征及其风险研究进展. 应用基础与工程科学学报. 2024(01): 1-19 .
    3. 钟奕昕,李立湘,吴鑫,周施阳,姚飞延,董好刚. 浙南瓯江流域水体抗生素污染特征及风险评价. 环境科学. 2024(03): 1480-1491 .
    4. 李希冉,郭梦晗,李欣怡,祁义函,赵霞. 水环境四环素类抗生素降解技术研究进展. 化学工程师. 2024(05): 69-72+102 .
    5. 张译文,段明杰,罗锦秋,吕冬梅. 我国水环境抗生素污染研究综述与对策建议. 海峡科学. 2024(03): 84-90 .
    6. 高川子,廖浩麟,王毅博,郑一,郑春苗,裘文慧. 药物及个人护理用品的生态毒理. 化学进展. 2024(09): 1363-1379 .
    7. 王锦,叶开晓,田艳,刘珂,梁柳玲,李青倩,黄宁,王欣婷. 固相萃取-高效液相色谱-串联质谱法同时测定环境水样中22种抗生素. 色谱. 2023(03): 241-249 .
    8. 牛颖,安圣,陈凯,秦久君,刘菲. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展. 岩矿测试. 2023(01): 39-58 . 本站查看
    9. 孔慧敏,赵晓辉,徐琬,代宇函,张佳宇. 我国地下水环境抗生素赋存现状及风险评价. 环境工程. 2023(02): 219-226 .
    10. 张照荷,陈典,赵微,袁国礼,李俊,焦杏春. 水环境中药物与个人护理品(PPCPs)的环境水平及降解行为研究进展. 岩矿测试. 2023(04): 649-666 . 本站查看
    11. 焦利静,刘洋,卞战强,于建,王多春,李洪兴. 三地水源水中抗生素和抗性基因检出情况及相关性分析. 环境与职业医学. 2023(08): 936-941 .
    12. 邓星亮,杨安富,杜涛,林天,吴克富,卓奕秀,董璐,吴晓晨. 海南省三座典型垃圾填埋场渗滤液及周边地下水中抗生素的污染特征研究. 环境科学研究. 2023(09): 1779-1790 .
    13. 于开宁,王润忠,刘丹丹. 水环境中新污染物快速检测技术研究进展. 岩矿测试. 2023(06): 1063-1077 . 本站查看
    14. 郭子宁,王旭升,向师正,胡桐搏,刘菲,关翔宇. 再生水入渗区典型抗生素分布特征与地下水微生物群落影响因素研究. 岩矿测试. 2022(03): 451-462 . 本站查看
    15. 营娇龙,秦晓鹏,郎杭,郭健一,熊玲,张占昊,刘菲. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素. 岩矿测试. 2022(03): 394-403 . 本站查看
    16. 杨大杰,欧阳友,李炳华,潘兴瑶,马宁,杨默远,黄上富. 我国水环境中喹诺酮类抗生素赋存特征及生态风险评估. 人民黄河. 2022(08): 97-102+108 .
    17. 晋春虹. 四环素类抗生素的去除技术研究进展与展望. 山东化工. 2022(18): 102-106 .
    18. 马江雄,周欣,赵超,陈华国,龚小见. 水体中痕量四环素类抗生素分析方法研究进展. 化学通报. 2022(11): 1336-1345 .

    Other cited types(18)

Catalog

    Article views (1483) PDF downloads (53) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return